1
|
Desaulniers D, Zhou G, Stalker A, Cummings-Lorbetskie C. Effects of Copper or Zinc Organometallics on Cytotoxicity, DNA Damage and Epigenetic Changes in the HC-04 Human Liver Cell Line. Int J Mol Sci 2023; 24:15580. [PMID: 37958568 PMCID: PMC10650525 DOI: 10.3390/ijms242115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Copper and zinc organometallics have multiple applications and many are considered "data-poor" because the available toxicological information is insufficient for comprehensive health risk assessments. To gain insight into the chemical prioritization and potential structure activity relationship, the current work compares the in vitro toxicity of nine "data-poor" chemicals to five structurally related chemicals and to positive DNA damage inducers (4-nitroquinoline-oxide, aflatoxin-B1). The HC-04 non-cancer human liver cell line was used to investigate the concentration-response effects (24 h and 72 h exposure) on cell proliferation, DNA damage (γH2AX and DNA unwinding assays), and epigenetic effects (global genome changes in DNA methylation and histone modifications using flow cytometry). The 24 h exposure screening data (DNA abundance and damage) suggest a toxicity hierarchy, starting with copper dimethyldithiocarbamate (CDMDC, CAS#137-29-1) > zinc diethyldithiocarbamate (ZDEDC, CAS#14324-55-1) > benzenediazonium, 4-chloro-2-nitro-, and tetrachlorozincate(2-) (2:1) (BDCN4CZ, CAS#14263-89-9); the other chemicals were less toxic and had alternate ranking positions depending on assays. The potency of CDMDC for inducing DNA damage was close to that of the human hepatocarcinogen aflatoxin-B1. Further investigation using sodium-DMDC (SDMDC, CAS#128-04-1), CDMDC and copper demonstrated the role of the interactions between copper and the DMDC organic moiety in generating a high level of CDMDC toxicity. In contrast, additive interactions were not observed with respect to the DNA methylation flow cytometry data in 72 h exposure experiments. They revealed chemical-specific effects, with hypo and hypermethylation induced by copper chloride (CuCl2, CAS#10125-13-0) and zinc-DMDC (ZDMDC, CAS#137-30-4), respectively, but did not show any significant effect of CDMDC or SDMDC. Histone-3 hypoacetylation was a sensitive flow cytometry marker of 24 h exposure to CDMDC. This study can provide insights regarding the prioritization of chemicals for future study, with the aim being to mitigate chemical hazards.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Gu Zhou
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Andrew Stalker
- Health Canada, Regulatory Research Division, Biologics and Radiopharmaceutical Drugs Directorate, Ottawa, ON K1A 0K9, Canada
| | | |
Collapse
|
2
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
3
|
Calderon-Aparicio A, Cornejo A, Orue A, Rieber M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience 2019; 13:890. [PMID: 30792807 PMCID: PMC6369974 DOI: 10.3332/ecancer.2019.890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ammonium tetrathiomolybdate (TTM) and disulfiram (DSF) are copper (Cu) chelators in cancer clinical trials partly because Cu chelation: a) restricts the activity of Cu-binding MEK1/2 enzymes which drive tumourigenesis by KRAS or BRAF oncogenic mutations and b) enhances uptake of oxaliplatin (OxPt), clinically used in advanced KRAS-mutant colorectal carcinomas (CRC). Whereas TTM decreases intracellular Cu trafficking, DSF can reach other Cu-dependent intracellular proteins. Since the use of individual or combined Cu chelation may help or interfere with anti-cancer therapy, this study investigated whether TTM modifies the response to DSF supplemented with: 1) UO126, a known MEK1/2 inhibitor; 2) other Cu chelators like neocuproine (NC) or 1, 10-o-phenanthroline (OPT) in wt p53 melanoma cells differing in BRAF or KRAS mutations; 3) OxPt in mutant p53 CRC cells devoid of KRAS and BRAF mutations or harbouring either KRAS or BRAF mutations. TTM was not toxic against V600E-mut-BRAF A375 and G12D-mut-KRAS/high c-myc C8161 melanoma cells. Moreover, TTM protected both melanoma types from toxicity induced by DSF, NC and co-treatment with sub-lethal levels of DSF and the MEK inhibitor, UO126. Toxicity by co-treatment with DSF+OPT was poorly reversed by TTM in C8161 melanoma cells. In contrast to the greater toxicity of 0.1 μM DSF against mutant p53 CRC cells irrespective of their KRAS mutation, TTM did not protect G12V-mut-KRAS/high c-myc SW620 CRC from DSF+OxPt compared to KRAS-WT/BRAF-WT Caco-2 CRC. Our results show that DSF co-treatment with: a) MEK inhibitors may enhance tumour suppression; b) OxPt in CRC may counteract impaired response to cetuximab by KRAS/BRAF mutations and c) as a single treatment, TTM may be less effective than DSF and decreases the efficacy of the latter.
Collapse
Affiliation(s)
| | | | - Andrea Orue
- Instituto Venezolano de Investigaciones Cientificas, Tumor Cell Biology Laboratory, Caracas 1020-A, Venezuela.,These authors contributed equally to this work
| | - Manuel Rieber
- Instituto Venezolano de Investigaciones Cientificas, Tumor Cell Biology Laboratory, Caracas 1020-A, Venezuela.,These authors contributed equally to this work
| |
Collapse
|
4
|
Buelna-Chontal M, Hernández-Esquivel L, Correa F, Díaz-Ruiz JL, Chávez E. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline. Cell Biol Int 2016; 40:1349-1356. [PMID: 27730705 DOI: 10.1002/cbin.10690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022]
Abstract
In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Jorge Luis Díaz-Ruiz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| |
Collapse
|
5
|
Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 2013; 733:83-91. [PMID: 23463874 DOI: 10.1016/j.mrfmmm.2012.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper ions are well suited to facilitate formation of reactive oxygen species (ROS) that can damage biomolecules, including DNA and chromatin. That this can occur in vitro with isolated DNA or chromatin,or by exposure of cultured mammalian cells to copper complexed with various agents, has been well demonstrated. Whether that is likely to occur in vivo is not as clear. This review addresses the question of whether and how copper ions or complexes – in forms that could be present in vivo, damage DNA and chromosome structure and/or promote epigenetic changes that can lead to pathology and diseases, including cancer and neurological conditions such as Alzheimer's disease, Lewy body dementias, and spongiform encephalopathies. This question is considered in light of our knowledge that copper-dependent enzymes are important contributors to antioxidant defense, and that the mammalian organism has robust mechanisms for maintaining constant levels of copper not only in body fluids but in its major organs. Overall,and except in unusual genetic states that lead to copper overload in specific cells (particularly those in liver), it appears that excessive intake of copper is not a significant factor in the development of disease states.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
6
|
Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012; 32:643-53. [DOI: 10.1002/jat.2717] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Tsu-Fan Cheng
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| | - Supratim Choudhuri
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review; College Park; MD; USA
| | - Kristi Muldoon-Jacobs
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| |
Collapse
|
7
|
Mathew V, Keshavayya J, Vaidya VP, Khan MHM. Triazoles as complexing agents: synthesis, characterization and pharmacological activities of copper complexes of 4-amino-3-mercapto-5-substituted aryl-1,2,4-triazoles. J COORD CHEM 2010. [DOI: 10.1080/00958970801950615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vinod Mathew
- a Acharya & B. M. Reddy College of Pharmacy , Bangalore-560 090, Karnataka, India
| | - J. Keshavayya
- b School of Studies in Chemistry , Kuvempu University , Jnana Sahayadri, Shankaraghatta – 577 451, Shimoga, Karnataka, India
| | - V. P. Vaidya
- b School of Studies in Chemistry , Kuvempu University , Jnana Sahayadri, Shankaraghatta – 577 451, Shimoga, Karnataka, India
| | - M. H. Moinuddin Khan
- c Department of Chemistry , J.N.N. College of Engineering , Shimoga, Karnataka, India
| |
Collapse
|
8
|
Chen J, Du C, Kang J, Wang J. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem Biol Interact 2008; 171:26-36. [DOI: 10.1016/j.cbi.2007.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 01/13/2023]
|
9
|
Bai X, Wu L, Liang T, Liu Z, Li J, Li D, Xie H, Yin S, Yu J, Lin Q, Zheng S. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2007; 134:83-91. [PMID: 17611778 DOI: 10.1007/s00432-007-0252-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 05/08/2007] [Indexed: 12/23/2022]
Abstract
PURPOSE It has been indicated that activated hepatic stellate cells (HSCs) play key roles on the pathogenesis of hepatocellular carcinoma (HCC). The purpose of the study was to investigate the potential mechanism in it. METHODS Activation of HSCs, the expression of myocyte enhancer factor 2 (MEF2), class II histone deacetylases (II HDACs) and histone acetylation were analyzed in specimens of primary HCCs, cirrhotic and normal livers. Activated HSCs were identified using anti-a-smooth muscle actin (a-SMA) by Immunohistochemistry (IHC). The levels of expression of MEF2A, MEF2C and II HDACs mRNA and protein were measured by real time quantitative PCR and western blot (WB). Histone acetylation was assessed using anti-acetyl-histone H3, -H4 by WB and IHC. A P value < 0.05 was considered statistically significant. RESULTS A-SMA positive activated HSCs were more prominent in HCCs and cirrhotic livers than in normal livers, accompanied by marked expression of MEF2A and MEF2C. The expression of MEF2A, MEF2C and II HDACs, both mRNA and protein, were much more enhanced in HCCs than those in cirrhotic and normal livers (P < 0.05). Histone H3 and H4 were hyperacetylated in HCCs compared with those in cirrhotic and normal livers (P < 0.05). The correlation coefficients between the expression of MEF2 and II HDACs, acetyl-histones were all beyond 0.5. CONCLUSIONS These data showed a potential molecular mechanism that activated HSCs participate in the pathogenesis of HCCs by overexpression of MEF2 and its consequent impact on histone hyperacetylation. Further investigations aimed at interfering MEF2 expression are needed.
Collapse
Affiliation(s)
- Xueli Bai
- Key Laboratory of Multi-organ Transplantation of Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev 2006; 15:165-74. [PMID: 16646663 DOI: 10.1089/scd.2006.15.165] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acetylation of histones and nonhistone proteins is an important post-translational modification involved in the regulation of gene expression in mammalian cells. Dysfunction of histone acetyltransferase (HAT) is often associated with the manifestation of several diseases. In this report, HATs are new targets for the development of therapeutics. Our studies first proved that curcumin induces histone hypoacetylation in brain cancer cells and finally induces apoptotic cell death through a (PARP)- and caspase 3-mediated manner. In addition, curcumin induces recontrolling of neural stem cell fates. It induces effective neurogenesis, synaptogenesis, and migration of neural progenitor cells in vitro in brain-derived adult neural stem cells. We also confirmed the neurogenic effect of curcumin in our in vivo experiments. Curcumin actively suppressed differentiation in astrocytes while promoting differentiation into the neurons associated with decrease of histone H3 and H4 acetylation. We suggest that histone hypoacetylation plays an important role in determine stem cell fate through controlling the simultaneous expression of many genes. Thus, the present finding that curcumin, a nontoxic dietary compound, is a histone acetyltransferase inhibitor would supply a new window to understand further the molecular mechanism of histone acetylase inhibitors (HAI) in cancer and neural stem cells and provide a new target molecule for treating central nervous system disorders.
Collapse
Affiliation(s)
- Soo-Kyung Kang
- Department of Physiology, College of Medicine, Pusan National University, Busan, South Korea.
| | | | | |
Collapse
|