1
|
Szarszoń K, Andrä S, Janek T, Wątły J. Insights into the Chemistry, Structure, and Biological Activity of Human Salivary MUC7 Fragments and Their Cu(II) and Zn(II) Complexes. Inorg Chem 2024; 63:11616-11627. [PMID: 38856909 PMCID: PMC11200262 DOI: 10.1021/acs.inorgchem.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mucin 7 (MUC7) is one of the salivary proteins whose role in the innate immune system is widely known, but still, neither its mechanism of action nor the impact of its metal coordination is fully understood. MUC7 and its fragments demonstrate potent antimicrobial activity, serving as a natural defense mechanism for organisms against pathogens. This study delves into the bioinorganic chemistry of MUC7 fragments (L1─EGRERDHELRHRRHHHQSPK; L2─EGRERDHELRHRR; L3─HHHQSPK) and their complexes with Cu(II) and Zn(II) ions. The antimicrobial characteristics of the investigated peptides and their complexes were systematically assessed against bacterial and fungal strains at pH 5.40 and pH 7.40. Our findings highlight the efficacy of these systems against Streptococcus sanguinis, a common oral cavity pathogen. Most interestingly, Zn(II) coordination increased (or triggered) the MUC7 antimicrobial activity, which underscores the pivotal role of metal ion coordination in governing the antimicrobial activity of human salivary MUC7 fragments against S. sanguinis.
Collapse
Affiliation(s)
- Klaudia Szarszoń
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Silke Andrä
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Tomasz Janek
- Department
of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Joanna Wątły
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
3
|
Yang J, Ran K, Ma W, Chen Y, Chen Y, Zhang C, Ye H, Lu Y, Ran C. Degradation of Amyloid-β Species by Multi-Copper Oxidases. J Alzheimers Dis 2024; 101:525-539. [PMID: 39213075 DOI: 10.3233/jad-240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Kathleen Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Wenzhe Ma
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Yanshi Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Yanxin Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, IL, USA
| | - Ying Lu
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| |
Collapse
|
4
|
Yang J, Ran K, Ma W, Chen L, Chen C, Zhang C, Ye H, Lu Y, Ran C. Degradation of amyloid beta species by multi-copper oxidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547398. [PMID: 37461701 PMCID: PMC10350030 DOI: 10.1101/2023.07.02.547398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Reduction of the production of amyloid beta (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. In this study, we discovered that ceruloplasmin (CP), an important multi-copper oxidase (MCO) in human blood, could degrade Aβ peptides. We also found that the presence of Vitamin C could enhance the degrading effect in a concentration-dependent manner. We then validated the CP-Aβ interaction using total internal reflection fluorescence (TIRF) microscopy, fluorescence photometer, and fluorescence polarization measurement. Based on the above discovery, we hypothesized that other MCOs had similar Aβ-degrading functions. Indeed, we found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that ascorbate oxidase (AO) had the strongest degrading effect among the tested MCOs. Using induced pluripotent stem (iPS) neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Ab-induced deficit in synaptic transmission in the hippocampus. To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Cindy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| |
Collapse
|
5
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
8
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
9
|
Gout J, Meuris F, Desbois A, Dorlet P. In vitro coordination of Fe-protoheme with amyloid β is non-specific and exhibits multiple equilibria. J Inorg Biochem 2021; 227:111664. [PMID: 34955310 DOI: 10.1016/j.jinorgbio.2021.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In addition to copper and zinc, heme is thought to play a role in Alzheimer's disease and its metabolism is strongly affected during the course of this disease. Amyloid β, the peptide associated with Alzheimer's disease, was shown to bind heme in vitro with potential catalytic activity linked to oxidative stress. To date, there is no direct determination of the structure of this complex. In this work, we studied the binding mode of heme to amyloid β in different conditions of pH and redox state by using isotopically labelled peptide in combination with advanced magnetic and vibrational spectroscopic methods. Our results show that the interaction between heme and amyloid β leads to a variety of species in equilibrium. The formation of these species seems to depend on many factors suggesting that the binding site is neither very strong nor highly specific. In addition, our data do not support the currently accepted model where a water molecule is bound to the ferric heme as sixth ligand. They also exclude structural models mimicking a peroxidatic site in the amyloid β-Fe-protoheme complexes.
Collapse
Affiliation(s)
- Jérôme Gout
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Floriane Meuris
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Alain Desbois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Al-Shammari N, Savva L, Kennedy-Britten O, Platts JA. Forcefield evaluation and accelerated molecular dynamics simulation of Zn(II) binding to N-terminus of amyloid-β. Comput Biol Chem 2021; 93:107540. [PMID: 34271422 DOI: 10.1016/j.compbiolchem.2021.107540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
We report conventional and accelerated molecular dynamics simulation of Zn(II) bound to the N-terminus of amyloid-β. By comparison against NMR data for the experimentally determined binding mode, we find that certain combinations of forcefield and solvent model perform acceptably in describing the size, shape and secondary structure, and that there is no appreciable difference between implicit and explicit solvent models. We therefore used the combination of ff14SB forcefield and GBSA solvent model to compare the result of different binding modes of Zn(II) to the same peptide, using accelerated MD to enhance sampling and comparing the free peptide simulated in the same way. We show that Zn(II) imparts significant rigidity to the peptide, disrupts the secondary structure and pattern of salt bridges seen in the free peptide, and induces closer contact between residues. Free energy surfaces in 1 or 2 dimensions further highlight the effect of metal coordination on peptide's spatial extent. We also provide evidence that accelerated MD provides improved sampling over conventional MD by visiting as many or more configurations in much shorter simulation times.
Collapse
Affiliation(s)
| | - Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | | | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
11
|
Beuning CN, Zocchi LJ, Malikidogo KP, Esmieu C, Dorlet P, Crans DC, Hureau C. Measurement of Interpeptidic Cu II Exchange Rate Constants of Cu II-Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorg Chem 2021; 60:7650-7659. [PMID: 33983723 DOI: 10.1021/acs.inorgchem.0c03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interpeptidic CuII exchange rate constants were measured for two Cu amyloid-β complexes, Cu(Aβ1-16) and Cu(Aβ1-28), to fluorescent peptides GHW and DAHW using a quantitative tryptophan fluorescence quenching methodology. The second-order rate constants were determined at three pH values (6.8, 7.4, and 8.7) important to the two Cu(Aβ) coordination complexes, components Cu(Aβ)I and Cu(Aβ)II. The interpeptidic CuII exchange rate constant is approximately 104 M-1 s-1 but varies in magnitude depending on many variables. These include pH, length of the Aβ peptide, location of the anchoring histidine ligand in the fluorescent peptide, number of amide deprotonations required in the tryptophan peptide to coordinate CuII, and interconversion between Cu(Aβ)I and Cu(Aβ)II. We also present EPR data probing the CuII exchange between peptides and the formation of ternary species between Cu(Aβ) and GHW. As the nonfluorescent GHK and DAHK peptides are important motifs found in the blood and serum, their ability to sequester CuII ions from Cu(Aβ) complexes may be relevant for the metal homeostasis and its implication in Alzheimer's disease. Thus, their kinetic CuII interpeptidic exchange rate constants are important chemical rate constants that can help elucidate the complex CuII trafficking puzzle in the synaptic cleft.
Collapse
Affiliation(s)
- Cheryle N Beuning
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Luca J Zocchi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, IMM, 13400 Marseille, France
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
12
|
Oxidase Reactivity of Cu II Bound to N-Truncated Aβ Peptides Promoted by Dopamine. Int J Mol Sci 2021; 22:ijms22105190. [PMID: 34068879 PMCID: PMC8155989 DOI: 10.3390/ijms22105190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.
Collapse
|
13
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Stefaniak E, Pushie MJ, Vaerewyck C, Corcelli D, Griggs C, Lewis W, Kelley E, Maloney N, Sendzik M, Bal W, Haas KL. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorg Chem 2020; 59:16952-16966. [PMID: 33211469 DOI: 10.1021/acs.inorgchem.0c02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1-16 and Aβ4-16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aβ4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Catherine Vaerewyck
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David Corcelli
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Chloe Griggs
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Whitney Lewis
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Emma Kelley
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Noreen Maloney
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life (Basel) 2020; 10:life10070118. [PMID: 32698429 PMCID: PMC7400086 DOI: 10.3390/life10070118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a severe disorder that affects millions of people worldwide. It is a very debilitating disease with no cure at the moment. The necessity of finding an effective treatment is very demanding, and the entire scientific community is putting in a lot of effort to address this issue. The major hallmark of Alzheimer's disease is the presence of toxic aggregated species in the brain, impaired metal homeostasis, and high levels of oxidative stress. Rosmarinic acid is a well-known potent antioxidant molecule, the efficacy of which has been proved both in vitro and in vivo. In this study, we investigated the possible role played by rosmarinic acid as a mediator of the copper(II)-induced neurotoxicity. Several spectroscopic techniques and biological assays were applied to characterize the metal complexes and to evaluate the cytotoxicity and the mutagenicity of rosmarinic acid and its Cu(II) complex. Our data indicate that rosmarinic acid is able to interfere with the interaction between amyloid β and Cu(II) by forming an original ternary association.
Collapse
|
16
|
Sasanian N, Bernson D, Horvath I, Wittung-Stafshede P, Esbjörner EK. Redox-Dependent Copper Ion Modulation of Amyloid-β (1-42) Aggregation In Vitro. Biomolecules 2020; 10:E924. [PMID: 32570820 PMCID: PMC7355640 DOI: 10.3390/biom10060924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Plaque deposits composed of amyloid-β (Aβ) fibrils are pathological hallmarks of Alzheimer's disease (AD). Although copper ion dyshomeostasis is apparent in AD brains and copper ions are found co-deposited with Aβ peptides in patients' plaques, the molecular effects of copper ion interactions and redox-state dependence on Aβ aggregation remain elusive. By combining biophysical and theoretical approaches, we here show that Cu2+ (oxidized) and Cu+ (reduced) ions have opposite effects on the assembly kinetics of recombinant Aβ(1-42) into amyloid fibrils in vitro. Cu2+ inhibits both the unseeded and seeded aggregation of Aβ(1-42) at pH 8.0. Using mathematical models to fit the kinetic data, we find that Cu2+ prevents fibril elongation. The Cu2+-mediated inhibition of Aβ aggregation shows the largest effect around pH 6.0 but is lost at pH 5.0, which corresponds to the pH in lysosomes. In contrast to Cu2+, Cu+ ion binding mildly catalyzes the Aβ(1-42) aggregation via a mechanism that accelerates primary nucleation, possibly via the formation of Cu+-bridged Aβ(1-42) dimers. Taken together, our study emphasizes redox-dependent copper ion effects on Aβ(1-42) aggregation and thereby provides further knowledge of putative copper-dependent mechanisms resulting in AD.
Collapse
Affiliation(s)
| | | | | | | | - Elin K. Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (N.S.); (D.B.); (I.H.); (P.W.-S.)
| |
Collapse
|
17
|
Franklin LM, Walker SM, Hill G. A DFT study of isolated histidine interactions with metal ions (Ni 2+, Cu 2+, Zn 2+) in a six-coordinated octahedral complex. J Mol Model 2020; 26:116. [PMID: 32377871 DOI: 10.1007/s00894-020-04389-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Understanding the role that metal ions play in biological and material processes is critical to addressing a number of diseases and problems facing society today. There have been a number of studies that have begun to approach this concern from a myriad of different perspectives. However, there is still a considerable lack of understanding concerning the mechanisms and structures of metal-related problems, specifically biological and medical-related issues. Understanding the mechanism of ingestion and uptake of metals into the human body is critical to addressing many diseases such as Alzheimer's and certain types of cancers. Using computational techniques, this work adds to the overall understanding of metal interactions with proteins by focusing on metal ion interactions with the amino acid, histidine, one of the most common sites of metal attachment. In this work, the geometries of single and dual histidines attached to Ni2+, Cu2+, and Zn2+ ions at B3LYP/6-311G(d) are presented. The results show stable octahedral complexes associated with each of the metal ions. Free energy calculations suggest that all three complexes are spontaneous in the formation of the dual histidine-metal complexes. Nickel and copper are spontaneous in the formation of the single histidine complex, although the copper complex undergoes slight geometric changes. Zinc is found to be nonspontaneous in forming the single histidine complex. Finally, the reduction potential of the single histidine-metal complex is presented. All of the complexes show positive reduction potentials. However, the nickel and copper complexes undergo geometrical changes to adopt a square planar conformation. Graphical abstract The impact of metal ions in biological systems is of great importance to understanding a diverse number of diseases. By understanding the fundamentals of select ions complexed with histidines, greater understanding of the mechanisms of actions these ions play in health may be elucidated. This work presents initial structures and thermodynamics of histidine complexes with nickel, copper, and zinc metal ions.
Collapse
Affiliation(s)
- Latasha M Franklin
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Sharnek M Walker
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Glake Hill
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
18
|
Active-site environment of Cu bound amyloid β and amylin peptides. J Biol Inorg Chem 2019; 24:1245-1259. [DOI: 10.1007/s00775-019-01724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
|
19
|
Lermyte F, Everett J, Lam YPY, Wootton CA, Brooks J, Barrow MP, Telling ND, Sadler PJ, O'Connor PB, Collingwood JF. Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2123-2134. [PMID: 31350722 PMCID: PMC6805827 DOI: 10.1007/s13361-019-02283-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Native top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid β (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods-collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation-all yielding consistent results. Amyloid β is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer's disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons. Those metals which exhibited the strongest binding to the peptide (Cu2+, Co2+, Ni2+) all shared a very similar binding region containing two of the histidine residues near the N-terminus (His6, His13). Notably, Fe3+ bound to the peptide only when stabilized toward hydrolysis, aggregation, and precipitation by a chelating ligand, binding in the region between Ser8 and Gly25. We also identified two additional binding regions near the flexible, hydrophobic C-terminus, where other metals (Mg2+, Ca2+, Mn2+, Na+, and K+) bound more weakly-one centered on Leu34, and one on Gly38. Unexpectedly, collisional activation of the complex formed between the peptide and [CoIII(NH3)6]3+ induced gas-phase reduction of the metal to CoII, allowing the peptide to fragment via radical-based dissociation pathways. This work demonstrates how native mass spectrometry can provide new insights into the interactions between amyloid β and metal cations.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil D Telling
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
20
|
Summers KL, Schilling KM, Roseman G, Markham KA, Dolgova NV, Kroll T, Sokaras D, Millhauser GL, Pickering IJ, George GN. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorg Chem 2019; 58:6294-6311. [PMID: 31013069 DOI: 10.1021/acs.inorgchem.9b00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aβ) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aβ, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aβ via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aβ in vitro, there is still uncertainty surrounding Cu(II) coordination in Aβ. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aβ(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aβ(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aβ(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aβ(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aβ(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aβ(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Kevin M Schilling
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Graham Roseman
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Kate A Markham
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Natalia V Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| |
Collapse
|
21
|
Influence of methionine–ruthenium complex on the fibril formation of human islet amyloid polypeptide. J Biol Inorg Chem 2019; 24:179-189. [DOI: 10.1007/s00775-019-01637-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
|
22
|
Rana M, Sharma AK. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019; 11:64-84. [DOI: 10.1039/c8mt00203g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coordination chemistry of transition metal ions (Fe, Cu, Zn) with the amyloid-β (Aβ) peptides has attracted a lot of attention in recent years due to its repercussions in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| | - Anuj Kumar Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| |
Collapse
|
23
|
Sarkar A, Sengupta K, Chatterjee S, Seal M, Faller P, Dey SG, Dey A. Metal Binding to Aβ Peptides Inhibits Interaction with Cytochrome c: Insights from Abiological Constructs. ACS OMEGA 2018; 3:13994-14003. [PMID: 31458095 PMCID: PMC6644584 DOI: 10.1021/acsomega.8b01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/08/2018] [Indexed: 06/01/2023]
Abstract
Aβ(1-40) peptide is mutated to introduce cysteine residue to allow formation of organized self-assembled monolayers (SAMs) on Au electrodes. Three mutants of this peptide are produced, which vary in the position of the inserted cysteine residue. Fourier transform infrared data on these peptide SAMs show the presence of both α helices and β sheet in these Aβ constructs. These peptide constructs interact with cytochrome c (Cytc), allowing electron transfer between Cytc and the electrode via the Aβ peptides. Binding of metals like Zn2+ or Cu2+ induces changes in the morphologies of these assemblies, making them fold, which inhibits their spontaneous interaction with Cytc.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Manas Seal
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Peter Faller
- Biometals
and Biology Chemistry, Institut de Chemie (CNRS UMR 7177), University of Strasbourg, 4 rue B. pascal, 67081 Strasbourg Cedex, France
| | - Somdatta Ghosh Dey
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association
for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
25
|
Coskuner-Weber O. Revisiting Cu(II) Bound Amyloid-β40 and Amyloid-β42 Peptides: Varying Coordination Chemistries. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.424144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Borghesani V, Alies B, Hureau C. Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur J Inorg Chem 2018; 2018:7-15. [PMID: 30186035 PMCID: PMC6120674 DOI: 10.1002/ejic.201700776] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/25/2023]
Abstract
In the present micro-review, we describe the Cu(II) binding to several forms of amyloid-β peptides, the peptides involved in Alzheimer's disease. It has indeed been shown that in addition to the "full-length" peptide originating from the precursor protein after cleavage at position 1, several other shorter peptides do exist in large proportion and may be involved in the disease as well. Cu(II) binding to amyloid-β peptides is one of the key interactions that impact both the aggregating properties of the amyloid peptides and the Reactive Oxygen Species (ROS) production, two events linked to the etiology of the disease. Binding sites and affinity are described in correlation with Cu(II) induced ROS formation and Cu(II) altered aggregation, for amyloid peptides starting at position 1, 3, 4, 11 and for the corresponding pyroglutamate forms when they could be obtained (i.e. for peptides cleaved at positions 3 and 11). It appears that the current paradigm which points out a toxic role of the Cu(II) - amyloid-β interaction might well be shifted towards a possible protective role when the peptides considered are the N-terminally truncated ones.
Collapse
Affiliation(s)
- Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | | | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
28
|
Lee HJ, Savelieff MG, Kang J, Brophy MB, Nakashige TG, Lee SJC, Nolan EM, Lim MH. Calprotectin influences the aggregation of metal-free and metal-bound amyloid-β by direct interaction. Metallomics 2018; 10:1116-1127. [DOI: 10.1039/c8mt00091c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CP-Ser [S100A8(C42S)/S100A9(C3S) oligomer] interacts with metal-free and metal-bound Aβ40 peptides and modulates their aggregation in the absence and presence of metal ions.
Collapse
Affiliation(s)
- Hyuck Jin Lee
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | | | - Juhye Kang
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Department of Chemistry
| | | | | | - Shin Jung C. Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Elizabeth M. Nolan
- Department of Chemistry
- Massachusetts Institute of Technology (MIT)
- Cambridge
- USA
| | - Mi Hee Lim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
29
|
Atrián-Blasco E, Conte-Daban A, Hureau C. Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Trans 2017; 46:12750-12759. [PMID: 28937157 PMCID: PMC5656098 DOI: 10.1039/c7dt01344b] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
While metal ions such as copper and zinc are essential in biology, they are also linked to several amyloid-related diseases, including Alzheimer's disease (AD). Zinc and copper can indeed modify the aggregation pathways of the amyloid-β (Aβ) peptide, the key component encountered in AD. In addition, the redox active copper ions do produce Reactive Oxygen Species (ROS) when bound to the Aβ peptide. While Cu(i) or Cu(ii) or Zn(ii) coordination to the Aβ has been extensively studied in the last ten years, characterization of hetero-bimetallic Aβ complexes is still scarce. This is also true for the metal induced Aβ aggregation and ROS production, for which studies on the mutual influence of the copper and zinc ions are currently appearing. Last but not least, zinc can strongly interfere in therapeutic approaches relying on copper detoxification. This will be exemplified with a biological lead, namely metallothioneins, and with synthetic ligands.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Amandine Conte-Daban
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Christelle Hureau
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| |
Collapse
|
30
|
Branch T, Barahona M, Dodson CA, Ying L. Kinetic Analysis Reveals the Identity of Aβ-Metal Complex Responsible for the Initial Aggregation of Aβ in the Synapse. ACS Chem Neurosci 2017. [PMID: 28621929 PMCID: PMC5609119 DOI: 10.1021/acschemneuro.7b00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
![]()
The
mechanism of Aβ aggregation in the absence of metal ions
is well established, yet the role that Zn2+ and Cu2+, the two most studied metal ions, released during neurotransmission,
paly in promoting Aβ aggregation in the vicinity of neuronal
synapses remains elusive. Here we report the kinetics of Zn2+ binding to Aβ and Zn2+/Cu2+ binding
to Aβ-Cu to form ternary complexes under near physiological
conditions (nM Aβ, μM metal ions). We find that these
reactions are several orders of magnitude slower than Cu2+ binding to Aβ. Coupled reaction-diffusion simulations of the
interactions of synaptically released metal ions with Aβ show
that up to a third of Aβ is Cu2+-bound under repetitive
metal ion release, while any other Aβ-metal complexes (including
Aβ-Zn) are insignificant. We therefore conclude that Zn2+ is unlikely to play an important role in the very early
stages (i.e., dimer formation) of Aβ aggregation, contrary to
a widely held view in the subject. We propose that targeting the specific
interactions between Cu2+ and Aβ may be a viable
option in drug development efforts for early stages of AD.
Collapse
Affiliation(s)
- Thomas Branch
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mauricio Barahona
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte A. Dodson
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Liming Ying
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Grasso G, Komatsu H, Axelsen P. Covalent modifications of the amyloid beta peptide by hydroxynonenal: Effects on metal ion binding by monomers and insights into the fibril topology. J Inorg Biochem 2017; 174:130-136. [DOI: 10.1016/j.jinorgbio.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022]
|
32
|
Yang J, Zhang X, Zhu Y, Lenczowski E, Tian Y, Yang J, Zhang C, Hardt M, Qiao C, Tanzi RE, Moore A, Ye H, Ran C. The double-edged role of copper in the fate of amyloid beta in the presence of anti-oxidants. Chem Sci 2017; 8:6155-6164. [PMID: 28989646 PMCID: PMC5627602 DOI: 10.1039/c7sc01787a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
The biological fate of amyloid beta (Aβ) species is a fundamental question in Alzheimer's disease (AD) pathogenesis. The competition between clearance and aggregation of Aβs is critical for the onset of AD. Copper has been widely considered to be an inducer of harmful crosslinking of Aβs, and an important triggering factor for the onset of AD. In this report, however, we present data to show that copper can also be an inducer of Aβ degradation in the presence of a large excess of well-known intrinsic (such as dopamine) or extrinsic (such as vitamin C) anti-oxidants. The degraded fragments were identified using SDS-Page gels, and validated via nanoLC-MS/MS. A tentative mechanism for the degradation was proposed and validated with model peptides. In addition, we performed electrophysiological analysis to investigate the synaptic functions in brain slices, and found that in the presence of a significant excess of vitamin C, Cu(ii) could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Collectively, our evidence strongly indicated that a proper combination of copper and anti-oxidants might have a positive effect on the prevention of AD. This double-edged function of copper in AD has been largely overlooked in the past. We believe that our report is very important for fully understanding the function of copper in AD pathology.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Xueli Zhang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Yiying Zhu
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Emily Lenczowski
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Yanli Tian
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Department of Parasitology , Zhongshan School of Medicine , Sun Yat-Sen University , Guangzhou , 510080 , China
| | - Jian Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Can Zhang
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Markus Hardt
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Chunhua Qiao
- College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Rudolph E Tanzi
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Anna Moore
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| | - Hui Ye
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Chongzhao Ran
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| |
Collapse
|
33
|
Zhu D, Gong G, Wang W, Du W. Disaggregation of human islet amyloid polypeptide fibril formation by ruthenium polypyridyl complexes. J Inorg Biochem 2017; 170:109-116. [DOI: 10.1016/j.jinorgbio.2017.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/21/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
34
|
Liao Q, Owen MC, Olubiyi OO, Barz B, Strodel B. Conformational Transitions of the Amyloid-β Peptide Upon Copper(II) Binding and pH Changes. Isr J Chem 2017. [DOI: 10.1002/ijch.201600108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Michael C. Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Olujide O. Olubiyi
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences; Afe Babalola University; Nigeria
| | - Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
35
|
Sóvágó I, Várnagy K, Lihi N, Grenács Á. Coordinating properties of peptides containing histidyl residues. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Coskuner O. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms. J Biol Inorg Chem 2016; 21:957-973. [DOI: 10.1007/s00775-016-1392-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022]
|
37
|
Jones MR, Dyrager C, Hoarau M, Korshavn KJ, Lim MH, Ramamoorthy A, Storr T. Multifunctional quinoline-triazole derivatives as potential modulators of amyloid-β peptide aggregation. J Inorg Biochem 2016; 158:131-138. [PMID: 27133802 DOI: 10.1016/j.jinorgbio.2016.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Michael R Jones
- Department of Chemistry, Simon Fraser University, V5A-1S6 Burnaby, BC, Canada
| | - Christine Dyrager
- Department of Chemistry, Simon Fraser University, V5A-1S6 Burnaby, BC, Canada
| | - Marie Hoarau
- Department of Chemistry, Simon Fraser University, V5A-1S6 Burnaby, BC, Canada
| | - Kyle J Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, USA
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, USA; Department of Biophysics, University of Michigan, Ann Arbor, USA
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, V5A-1S6 Burnaby, BC, Canada.
| |
Collapse
|
38
|
Hevroni BL, Major DT, Dixit M, Mhashal AR, Das S, Fischer B. Nucleoside-2′,3′/3′,5′-bis(thio)phosphate antioxidants are also capable of disassembly of amyloid beta42-Zn(ii)/Cu(ii) aggregates via Zn(ii)/Cu(ii)-chelation. Org Biomol Chem 2016; 14:4640-53. [DOI: 10.1039/c6ob00613b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleoside-2′,3′/3′,5′-bis(thio)phosphate antioxidants were identified as efficient agents of disassembly of Aβ42-Zn(ii)/Cu(ii) aggregates by M(ii)-chelation, thus making promising scaffolds for new Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
| | - Dan Thomas Major
- Lise Meitner-Minerva Center of Computational Quantum Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Mudit Dixit
- Lise Meitner-Minerva Center of Computational Quantum Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Anil Ranu Mhashal
- Lise Meitner-Minerva Center of Computational Quantum Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Susanta Das
- Lise Meitner-Minerva Center of Computational Quantum Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Bilha Fischer
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| |
Collapse
|
39
|
De Santis E, Minicozzi V, Proux O, Rossi G, Silva KI, Lawless MJ, Stellato F, Saxena S, Morante S. Cu(II)-Zn(II) Cross-Modulation in Amyloid-Beta Peptide Binding: An X-ray Absorption Spectroscopy Study. J Phys Chem B 2015; 119:15813-20. [PMID: 26646533 DOI: 10.1021/acs.jpcb.5b10264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we analyze at a structural level the mechanism by which Cu(II) and Zn(II) ions compete for binding to the Aβ peptides that is involved in the etiology of Alzheimer's disease. We collected X-ray absorption spectroscopy data on samples containing Aβ with Cu and Zn at different concentration ratios. We show that the order in which metals are added to the peptide solution matters and that, when Zn is added first, it prevents Cu from binding. On the contrary, when Cu is added first, it does not (completely) prevent Zn binding to Aβ peptides. Our analysis suggests that Cu and Zn ions are coordinated to different numbers of histidine residues depending on the [ion]:[peptide] concentration ratio.
Collapse
Affiliation(s)
- Emiliano De Santis
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble , Grenoble 38400, France
| | - Giancarlo Rossi
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy.,Centro Fermi , Rome 00184, Italy
| | - K Ishara Silva
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Francesco Stellato
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Silvia Morante
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| |
Collapse
|
40
|
Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues. J Inorg Biochem 2015; 151:87-93. [DOI: 10.1016/j.jinorgbio.2015.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/04/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022]
|
41
|
Kong X, Zhao Z, Lei X, Zhang B, Dai D, Jiang L. Interaction of Metal Ions with the His13-His14 Sequence Relevant to Alzheimer’s Disease. J Phys Chem A 2015; 119:3528-34. [DOI: 10.1021/acs.jpca.5b01443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiangtao Kong
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhi Zhao
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- School of Physics
and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Lei
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Bingbing Zhang
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- State Key Laboratory
of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Dongxu Dai
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Ling Jiang
- State Key Laboratory
of Molecular Reaction Dynamics, iChEM, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
42
|
Kozin SA, Makarov AA. New biomarkers and drug targets for diagnosis and therapy of Alzheimer’s disease (molecular determinants of zinc-dependent oligomerization of β-amyloid). Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:5-9. [DOI: 10.17116/jnevro2015115115-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Silva KI, Michael BC, Geib SJ, Saxena S. ESEEM analysis of multi-histidine Cu(II)-coordination in model complexes, peptides, and amyloid-β. J Phys Chem B 2014; 118:8935-44. [PMID: 25014537 PMCID: PMC4120975 DOI: 10.1021/jp500767n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We validate the use of ESEEM to predict the number of (14)N nuclei coupled to a Cu(II) ion by the use of model complexes and two small peptides with well-known Cu(II) coordination. We apply this method to gain new insight into less explored aspects of Cu(II) coordination in amyloid-β (Aβ). Aβ has two coordination modes of Cu(II) at physiological pH. A controversy has existed regarding the number of histidine residues coordinated to the Cu(II) ion in component II, which is dominant at high pH (∼8.7) values. Importantly, with an excess amount of Zn(II) ions, as is the case in brain tissues affected by Alzheimer's disease, component II becomes the dominant coordination mode, as Zn(II) selectively substitutes component I bound to Cu(II). We confirm that component II only contains single histidine coordination, using ESEEM and set of model complexes. The ESEEM experiments carried out on systematically (15)N-labeled peptides reveal that, in component II, His 13 and His 14 are more favored as equatorial ligands compared to His 6. Revealing molecular level details of subcomponents in metal ion coordination is critical in understanding the role of metal ions in Alzheimer's disease etiology.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | |
Collapse
|
44
|
|
45
|
Alí-Torres J, Mirats A, Maréchal JD, Rodríguez-Santiago L, Sodupe M. 3D structures and redox potentials of Cu2+-Aβ(1-16) complexes at different pH: a computational study. J Phys Chem B 2014; 118:4840-50. [PMID: 24738872 DOI: 10.1021/jp5019718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress induced by redox-active metal cations such as Cu(2+) is a key event in the development of Alzheimer's disease. A detailed knowledge of the structure of Cu(2+)-Aβ complex is thus important to get a better understanding of this critical process. In the present study, we use a computational approach that combines homology modeling with quantum-mechanics-based methods to determine plausible 3D structures of Cu(2+)-Aβ(1-16) complexes that enclose the different metal coordination spheres proposed experimentally at different pH values. With these models in hand, we determine their standard reduction potential (SRP) with the aim of getting new insights into the relation between the structure of these complexes and their redox behavior. Results show that in all cases copper reduction induces CObackbone decoordination, which, for distorted square planar structures in the oxidized state (Ia_δδ, IIa_εδε, IIa_εεε, and IIc_ε), leads to tricoordinated species. For the pentacoordinated structural candidate Ib_δε with Glu11 at the apical position, the reduction leads to a distorted tetrahedral structure. The present results highlight the importance of the nature of the ligands on the SRP. The computed values (with respect to the standard hydrogen electrode) for complexes enclosing negatively charged ligands in the coordination sphere (from -0.81 to -0.12 V) are significantly lower than those computed for models involving neutral ligands (from 0.19 to 0.28 V). Major geometry changes induced by reduction, on both the metal site and the peptide configuration, are discussed as well as their possible influence in the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Jorge Alí-Torres
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
46
|
Wise O, Coskuner O. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue. J Comput Chem 2014; 35:1278-89. [DOI: 10.1002/jcc.23622] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/06/2014] [Accepted: 03/23/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Olivia Wise
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| | - Orkid Coskuner
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| |
Collapse
|
47
|
Ghosh C, Dey SG. Ligand-Field and Ligand-Binding Analysis of the Active Site of Copper-Bound Aβ Associated with Alzheimer’s Disease. Inorg Chem 2013; 52:1318-27. [DOI: 10.1021/ic301865n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandradeep Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|
48
|
Jiang D, Zhang L, Grant GPG, Dudzik CG, Chen S, Patel S, Hao Y, Millhauser GL, Zhou F. The elevated copper binding strength of amyloid-β aggregates allows the sequestration of copper from albumin: a pathway to accumulation of copper in senile plaques. Biochemistry 2013; 52:547-56. [PMID: 23237523 DOI: 10.1021/bi301053h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper coexists with amyloid-β (Aβ) peptides at a high concentration in the senile plaques of Alzheimer's disease (AD) patients and has been linked to oxidative damage associated with AD pathology. However, the origin of copper and the driving force behind its accumulation are unknown. We designed a sensitive fluorescent probe, Aβ(1-16)(Y10W), by substituting the tyrosine residue at position 10 in the hydrophilic domain of Aβ(1-42) with tryptophan. Upon mixing Cu(II), Aβ(1-16)(Y10W), and aliquots of Aβ(1-42) taken from samples incubated for different lengths of time, we found that the Cu(II) binding strength of aggregated Aβ(1-42) has been elevated by more than 2 orders of magnitude with respect to that of monomeric Aβ(1-42). Electron paramagnetic spectroscopic measurements revealed that the Aβ(1-42) aggregates, unlike their monomeric form, can seize copper from human serum albumin, an abundant copper-containing protein in brain and cerebrospinal fluid. The significantly elevated binding strength of the Aβ(1-42) aggregates can be rationalized by a Cu(II) coordination sphere constituted by three histidines from two adjacent Aβ(1-42) molecules. Our work demonstrates that the copper binding affinity of Aβ(1-42) is dependent on its aggregation state and provides new insight into how and why senile plaques accumulate copper in vivo.
Collapse
Affiliation(s)
- Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ciregna D, Monzani E, Thiabaud G, Pizzocaro S, Casella L. Copper–β-amyloid peptides exhibit neither monooxygenase nor superoxide dismutase activities. Chem Commun (Camb) 2013; 49:4027-9. [DOI: 10.1039/c3cc41297k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Pramanik D, Ghosh C, Mukherjee S, Dey SG. Interaction of amyloid β peptides with redox active heme cofactor: Relevance to Alzheimer's disease. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|