1
|
Abdel-Fatah R, Elkashty A, El-Sharkawy H. The use of free buccal pad fat graft as a viable therapeutic modality in localized gingival recession: a randomized controlled clinical trial. BMC Oral Health 2025; 25:780. [PMID: 40413437 DOI: 10.1186/s12903-025-06150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The buccal fat pad (BFP) is a unique, encapsulated fatty tissue that retains its volume and structure over time and contains undifferentiated mesenchymal cells. It has been used in various surgical techniques, such as closing oroantral and oronasal communications and repairing defects due to trauma or malignancy. A few years ago, the buccal fat pad was utilized as a pedicle or free soft tissue graft to treat gingival recessions. Therefore, this randomized clinical trial (RCT) was conducted to assess the effectiveness of the free buccal fat pad graft (FBPFG) compared to the de-epithelialized free gingival graft (DFGG) in conjunction with coronally advanced flap (CAF) in localized gingival recession treatment. MATERIALS AND METHODS This RCT included 39 participants, with 20 patients receiving a coronally advanced flap (CAF) with FBPFG (Group I) and 19 patients treated with CAF and DFGG (Group II). Clinical parameters such as probing depth (PD), clinical attachment level (CAL), recession depth (RD), width of keratinized gingiva (WKG), and gingival thickness (GT) were assessed after 3- and 6 months of surgical intervention. RESULTS After 3- and 6-month follow-ups, statistically significant changes were noted between the groups in all clinical parameters. At 1st and 2nd days of surgical intervention, there was a statistically significant decrease in the values of the visual analogue scale (VAS) in group I compared to group II. Regarding dentinal hypersensitivity, there were statistically significant variations of 3- and 6-month parameters compared to baseline in the two groups. However, there were no differences between the two after the therapy. CONCLUSION It was proven that DFGG produces significantly better outcomes than FBPFG in treating localized gingival recession. However, FBPFG might serve as a viable alternative for mild to moderate gingival recession cases, where only a limited reduction in recession depth and modest increase in gingival thickness and width of keratinized tissues are required, with the benefit of lower donor site morbidity. TRIAL REGISTRATION This randomized controlled clinical trial was registered on the Pan African Clinical Trials Registry and approved on 22/06/2023 (Trial no: PACTR202307891237031).
Collapse
Affiliation(s)
- Reham Abdel-Fatah
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Depatment, Faculty of Dentistry, Mansoura University, Algomhoria St, Mansoura City, Aldakhlia, 35516, Egypt.
| | - Ayman Elkashty
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Depatment, Faculty of Dentistry, Mansoura University, Algomhoria St, Mansoura City, Aldakhlia, 35516, Egypt
| | - Hesham El-Sharkawy
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Depatment, Faculty of Dentistry, Mansoura University, Algomhoria St, Mansoura City, Aldakhlia, 35516, Egypt
| |
Collapse
|
2
|
Akita D, Tsukimura N, Kazama T, Takahashi R, Taniguchi Y, Inoue J, Suzuki A, Tanabe N, Seki K, Arai Y, Asano M, Sato S, Hagiwara Y, Kano K, Honda M, Matsumoto T. Regeneration of Two-Walled Infrabony Periodontal Defects in Swine After Buccal Fat Pad-Derived Dedifferentiated Fat Cell Autologous Transplantation. Biomolecules 2025; 15:604. [PMID: 40305349 PMCID: PMC12024700 DOI: 10.3390/biom15040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells show proliferative capabilities and multipotency. Given that the buccal fat pad (BFP) serves as a readily available resource for DFAT cell isolation, BFP-derived DFAT (BFP-DFAT) cells are a promising candidate in orofacial tissue engineering. In this research, we assessed the regenerative capacity of the periodontium through autologous BFP-DFAT cell transplantation in adult swine (micro-minipigs; MMPs). The BFP-DFAT cells were transplanted into inflammation-inducing two-walled infrabony periodontal defects located on the mesial of the second mandibular premolar (n = 6). Twelve weeks post-transplantation, a remarkable attachment gain was noted in the DFAT group, based on probing depths and clinical attachment levels. Histological and immunohistochemical analyses indicated new continuous cellular cementum and alveolar bone formation within the created infrabony defect. Well-organized periodontal ligament-like fibers were embedded between newly formed cementum and the alveolar bone. Histometric analysis demonstrated that the DFAT group had a 2.2-fold increase in new alveolar bone length and a 2.2-fold enhancement in vascularization than those in the control group. Except for minor inflammation in the lungs, no teratomas were detected in the recipient MMPs. BFP-DFAT cells significantly enhanced periodontal tissue regeneration, thus representing an optimal source for tissue engineering applications in dentistry.
Collapse
Affiliation(s)
- Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Naoki Tsukimura
- Division of General Dentistry, The Nippon Dental University School of Life Dentistry, Tokyo 102-8158, Japan;
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (T.K.); (T.M.)
| | - Rie Takahashi
- Section of Laboratory Animals, Nihon University School of Medicine, Tokyo 173-8601, Japan; (R.T.); (Y.T.)
| | - Yoshiki Taniguchi
- Section of Laboratory Animals, Nihon University School of Medicine, Tokyo 173-8601, Japan; (R.T.); (Y.T.)
| | - Jin Inoue
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan; (J.I.); (A.S.); (N.T.)
| | - Ayana Suzuki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan; (J.I.); (A.S.); (N.T.)
| | - Nodoka Tanabe
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan; (J.I.); (A.S.); (N.T.)
| | - Keisuke Seki
- Department of Comprehensive Dentistry and Clinical Education, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Yoshiyuki Hagiwara
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa 252-0880, Japan;
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, Nagoya 464-8650, Japan;
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (T.K.); (T.M.)
| |
Collapse
|
3
|
Yuuki Y, Katafuchi T, Kazama T, Matsumoto T, Makishima M. C3H10T1/2 Mesenchymal Stem Cell Line as a New In Vitro Tool for Studying Adipocyte Dedifferentiation. BIOLOGY 2025; 14:444. [PMID: 40282309 PMCID: PMC12024763 DOI: 10.3390/biology14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Dedifferentiated fat (DFAT) cells are adipocyte-derived cells that are able to differentiate into multiple cell lineages such as adipocytes, osteoblasts and chondrocytes, similar to mesenchymal stem cells (MSCs). Despite their great potential for developing novel clinical interventions by using their multipotency, the detailed mechanisms of how adipocytes undergo dedifferentiation into DFAT cells are not completely understood, because useful in vitro tools for studying adipocyte dedifferentiation are missing. In this study, we show that mature adipocytes derived from the MSC cell line C3H10T1/2 underwent dedifferentiation into cells with DFAT cell-like characteristics, when they were cultured in an inverted flask. During the dedifferentiation, expression levels of genes and protein specific to adipocytes were continuously decreased, whereas those for MSC, proliferation and WNT/β-catenin signaling were gradually increased. These DFAT-like cells also underwent differentiation into adipocytes, osteoblasts and chondrocytes with their specific cell morphology and gene expression. We also observed that an individually cultured single adipocyte also underwent dedifferentiation into DFAT-like cells that were able to differentiate into the multiple cell lineages. Our results indicate that C3H10T1/2 cells could be a great tool for determining molecular biological and biochemical mechanisms underlying adipocyte dedifferentiation.
Collapse
Affiliation(s)
- Yuriko Yuuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan; (Y.Y.); (M.M.)
| | - Takeshi Katafuchi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan; (Y.Y.); (M.M.)
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (T.M.)
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (T.M.)
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan; (Y.Y.); (M.M.)
| |
Collapse
|
4
|
Nishiguchi Y, Ueda M, Kubo H, Jo JI, Hashimoto Y, Takenobu T. Optimized human dedifferentiated fat cells from the buccal fat pad-derived osteoinductive extracellular vesicles promote osteoblast differentiation. J Dent Sci 2025; 20:278-285. [PMID: 39873097 PMCID: PMC11763207 DOI: 10.1016/j.jds.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs). Materials and methods DFATs were isolated from human buccal fat pads, cultured to confluency, and placed in either a standard or osteogenic induction medium. After culturing for 3 days, the conditioned medium was used to generate EVs using the size-exclusion chromatography and concentration filter method. Results Characterization of DFAT-EVs revealed typical EV morphology and positive markers (CD9 and CD63), with no differences between the two groups. In vitro assays demonstrated that EVs derived from the osteogenic induction medium (OI-EVs) significantly increased alkaline phosphatase activity and osteogenesis-related genes (Runx2 and collagen type I) compared to control EVs. Next-generation sequencing identified differentially expressed miRNAs, and gene ontology analysis suggested pathways involved in osteoblast differentiation. Conclusion Isolating DFATs from buccal fat pads under osteogenic induction conditions offers a procedure confined to the oral cavity, eliminating the need for harvesting from other sites. Thus, DFAT-EVs hold promise for promoting bone regeneration in maxillofacial applications.
Collapse
Affiliation(s)
- Yusuke Nishiguchi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Mamoru Ueda
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Hirohito Kubo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, Osaka, Japan
| | | | - Toshihiko Takenobu
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| |
Collapse
|
5
|
Shen Y, Xu Z, Zhang X, Zhai Z, Wu Y, Qu F, Xu C. Conditioned Extracellular Vesicles Derived from Dedifferentiated Fat Cells Promote Bone Regeneration by Altering MicroRNAs. Pharmaceutics 2024; 16:1430. [PMID: 39598553 PMCID: PMC11597201 DOI: 10.3390/pharmaceutics16111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Extracellular vesicles (EVs) derived from stem cells demonstrate significant potential in bone regeneration. Adipose tissue is regarded as a stem cell reservoir with abundant reserves and easy accessibility. Compared to adipose-derived stem cells (ASCs), dedifferentiated fat cells (DFATs) possess similar stem cell characteristics but exhibit greater proliferative capacity, higher homogeneity, and an enhanced osteogenic differentiation potential. This study is the first to examine the effect of DFATs-derived EVs on bone regeneration and elucidate their potential mechanisms of action. Methods: Primary DFATs were cultured using the "ceiling culture" method and EVs were isolated by ultracentrifugation and characterized. Experiments were performed to assess the impact of the EVs on the proliferation, migration, and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Subsequently, high-throughput miRNA sequencing was conducted on the EVs derived from DFATs that had undergone 0 days (0d-EVs) and 14 days (14d-EVs) of osteogenic differentiation. Results: The results indicated that the EVs derived from DFATs which experienced 14 days of osteogenic induction significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. High-throughput sequencing results revealed that up-regulated miRNAs in the 14d-EVs were primarily involved in biological processes such as the Notch signaling pathway and the positive regulation of cell movement and migration. The target genes of these differently expressed miRNAs were enriched in osteogenesis-related signaling pathways. Conclusion: This study innovatively demonstrated that conditioned EVs (14d-EVs) derived from DFATs promoted the osteogenic differentiation of BMSCs via miRNAs, offering a promising cell-free therapeutic option for bone defect.
Collapse
Affiliation(s)
- Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zihang Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Xinyu Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zidi Zhai
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| |
Collapse
|
6
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
8
|
Ishizawa M, Takano M, Kittaka A, Matsumoto T, Makishima M. 2α-Substituted Vitamin D Derivatives Effectively Enhance the Osteoblast Differentiation of Dedifferentiated Fat Cells. Biomolecules 2024; 14:706. [PMID: 38927109 PMCID: PMC11202298 DOI: 10.3390/biom14060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a principal regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). Previous studies have shown that 2α-(3-hydroxypropyl)-1,25D3 (O1C3) and 2α-(3-hydroxypropoxy)-1,25D3 (O2C3), vitamin D derivatives resistant to inactivation enzymes, can activate VDR, induce leukemic cell differentiation, and increase blood calcium levels in rats more effectively than 1,25(OH)2D3. In this study, to further investigate the usefulness of 2α-substituted vitamin D derivatives, we examined the effects of O2C3, O1C3, and their derivatives on VDR activity in cells and mouse tissues and on osteoblast differentiation of dedifferentiated fat (DFAT) cells, a cell type with potential therapeutic application in regenerative medicine. In cell culture experiments using kidney-derived HEK293 cells, intestinal mucosa-derived CaCO2 cells, and osteoblast-derived MG63 cells, and in mouse experiments, O2C2, O2C3, O1C3, and O1C4 had a weaker effect than or equivalent effect to 1,25(OH)2D3 in VDR transactivation and induction of the VDR target gene CYP24A1, but they enhanced osteoblast differentiation in DFAT cells equally to or more effectively than 1,25(OH)2D3. In long-term treatment with the compound without the medium change (7 days), the derivatives enhanced osteoblast differentiation more effectively than 1,25(OH)2D3. O2C3 and O1C3 were more stable than 1,25(OH)2D3 in DFAT cell culture. These results indicate that 2α-substituted vitamin D derivatives, such as inactivation-resistant O2C3 and O1C3, are more effective than 1,25(OH)2D3 in osteoblast differentiation of DFAT cells, suggesting potential roles in regenerative medicine with DFAT cells and other multipotent cells.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
9
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
11
|
Lin Y, Mu D. Immunomodulatory effect of human dedifferentiated fat cells: comparison with adipose-derived stem cells. Cytotechnology 2023; 75:231-242. [PMID: 37187946 PMCID: PMC10167088 DOI: 10.1007/s10616-023-00572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/11/2023] [Indexed: 05/17/2023] Open
Abstract
Dedifferentiated fat cells (DFATs), which are originated by the dedifferentiation of adipocytes, display surface markers of mesenchymal stem cells and are able to differentiate into different cell types, thus, yielding a huge therapeutic potential in repairing damaged tissues and organs. The use of allogeneic stem cells from healthy donors constitutes the basis of a new strategy for cell therapy in the field of transplantation and the first requirement for allografts is determining their immunological properties. In this study, human DFATs and ADSCs were passaged as in vitro models to investigate their immunomodulatory effects. Phenotypic analysis of cell surface markers and three-line differentiation protocols were used to identify stem cells. The immunogenic phenotypes of DFATs and ADSCs were analyzed by flow cytometry and a mixed lymphocyte reaction was used to assess their immune function. The characteristics of stem cells were confirmed by phenotypic identification of cell surface markers and three-line differentiation. Flow cytometry analysis showed that P3 generation DFATs and ADSCs contained human leukocyte antigen (HLA) class I molecules, but did not express HLA class II molecules and costimulatory molecules CD40, CD80 and CD86. Moreover, allogeneic DFATs and ADSCs could not induce the proliferation of peripheral blood mononuclear cells (PBMCs). In addition, both populations were shown to inhibit the Concanavalin A-stimulated proliferation of PBMCs and act as third-party cells responsible for inhibiting the mixed lymphocyte response. DFATs have immunosuppressive properties similar to ADSCs. Based on this, allogeneic DFATs have potential applications in tissue repair or cell therapy.
Collapse
Affiliation(s)
- Yan Lin
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144 People’s Republic of China
| | - Dali Mu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144 People’s Republic of China
| |
Collapse
|
12
|
Bollmann A, Sons HC, Schiefer JL, Fuchs PC, Windolf J, Suschek CV. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions. Biomedicines 2022; 10:biomedicines10123071. [PMID: 36551827 PMCID: PMC9776284 DOI: 10.3390/biomedicines10123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) play an important role in various therapeutic approaches to bone regeneration. However, such applications become challenging when the obtained cells show a functional disorder, e.g., an impaired osteogenic differentiation potential (ODP). In addition to ASCs, human adipose tissue is also a source for another cell type with therapeutic potential, the dedifferentiated fat cells (DFATs), which can be obtained from mature adipocytes. Here, we for the first time compared the ODPs of each donors ASC and DFAT obtained from the same adipose tissue sample as well as the role of oxidative stress or antioxidative catalase on their osteogenic outcome. Osteogenic potential of ASC and DFAT from nine human donors were compared in vitro. Flow cytometry, staining for calcium accumulation with alizarin red, alkaline phosphatase assay and Western blots were used over an osteogenic induction period of up to 14 days. H2O2 was used to induce oxidative stress and catalase was used as an antioxidative measure. We have found that ASC and DFAT cultures' ODPs are nearly identical. If ASCs from an adipose tissue sample showed good or bad ODP, so did the corresponding DFAT cultures. The inter-individual variability of the donor ODPs was immense with a maximum factor of about 20 and correlated neither with the age nor the sex of the donors of the adipose tissue. Oxidative stress in the form of exogenously added H2O2 led to a significant ODP decrease in both cell types, with this ODP decrease being significantly lower in DFAT cultures than in the corresponding ASC cultures. Regardless of the individual cell culture-specific ODP, however, exogenously applied catalase led to an approx. 2.5-fold increase in osteogenesis in the ASC and DFAT cultures. Catalase appears to be a potent pro-osteogenic factor, at least in vitro. A new finding that points to innovative strategies and therapeutic approaches in bone regeneration. Furthermore, our results show that DFATs behave similarly to ASCs of the same adipose tissue sample with respect to ODPs and could therefore be a very attractive and readily available source of multipotent stem cells in bone regenerative therapies.
Collapse
Affiliation(s)
- Anne Bollmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Hans Christian Sons
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Paul C. Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Viktor Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
13
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
14
|
Application of the Buccal Fat Pad in Oral Reconstruction: Covered With Collagen Membrane or Not? J Craniofac Surg 2022; 33:e559-e562. [PMID: 35075049 DOI: 10.1097/scs.0000000000008476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To evaluate the clinical effectiveness of collagen membrane as biological dressing in protecting the covered buccal fat pad (BFP) from physical damage during postoperative healing phase in the reconstruction of oral soft tissue defect. METHODS A retrospective cohort study was performed in patients undergoing oral defects reconstruction using BFP. The predictor variable was the application of collagen membrane or not. The primary outcome variable was the wound healing. Other variables considered included age, gender, pain score, time taken for epithelialization, defect size and site. Postoperative follow-up was done at 1 week, 3 weeks, 6 months, and 1 year. RESULTS Thirty patients in Zhuhai People's Hospital were selected and randomly divided in 2 groups. Group I patients were reconstructed using BFP alone, whereas collagen membrane was used as a covering over BFP in group II patients. In group I, 4 patients developed dehiscence 1-week postoperative, and underwent Infection with food lodgment along with another 1 patient at 3-week follow-up, whereas none of the group II patients developed dehiscence or infection. Pain score was lesser in group II patients as compared to group I. Time taken for epithelialization was about 3 weeks in both groups. CONCLUSIONS Combined application of collagen membrane protects the covered BFP from masticatory physical damage and food lodgment, which reduces infection and graft loss. It is worthy of consideration as an effective method for the reconstruction of selected moderate-sized oral defects, especially in larger size or at distant location.
Collapse
|
15
|
Takabatake K, Matsubara M, Yamachika E, Fujita Y, Arimura Y, Nakatsuji K, Nakano K, Nagatsuka H, Iida S. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method. Int J Mol Sci 2021; 22:12392. [PMID: 34830277 PMCID: PMC8620969 DOI: 10.3390/ijms222212392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). METHOD We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. RESULTS The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. CONCLUSION DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Masakazu Matsubara
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Eiki Yamachika
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Dentistry, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan
| | - Yuki Fujita
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| | - Yuki Arimura
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Kazuki Nakatsuji
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Histoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| |
Collapse
|
16
|
Nie F, Bi H, Zhang C, Ding P. Differentiation potential and mRNA profiles of human dedifferentiated adipose cells and adipose‑derived stem cells from young donors. Mol Med Rep 2020; 23:47. [PMID: 33200799 PMCID: PMC7705993 DOI: 10.3892/mmr.2020.11685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Dedifferentiated adipose cells (DAs) and adipose-derived stem cells (ADSCs) are two of the primary types of stem cells derived from adipose tissue, which have been reported to possess similar characteristics, but also exhibit unique phenotypic and functional advantages. However, several reports have described inconsistent results regarding their differences in multilineage differentiation function. Moreover, to the best of our knowledge, there are no studies assessing their myogenic ability, or the differences in the transcriptome between the two cell types derived from lipoaspirates via tumescent liposuction from the same donors. The aim of the present study was to compare the properties and expression profiles of these cell types. Subcutaneous adipose tissue of three female patients (aged 23–30 years) with a physiological BMI (19.1–23.9 kg/m2) were obtained during tumescent liposuction of the abdomen or the thigh. The stromal vascular fraction and mature adipocytes were obtained via collagenase digestion, and ADSCs and DAs were cultured successively. To determine the differences between DAs and ADSCs after 6–7 passages, cell proliferation assays, phenotypic assessment, differentiation assays and high-throughput RNA sequencing (seq) were used. Similar cell morphologies, proliferation dynamics, surface markers and transcriptome expression profiles were observed between the DAs and ADSCs. Whilst there were notable individual differences in the osteogenic, lipogenic, chondrogenic and myogenic abilities of the DAs and ADSCs, it was difficult to determine their differentiation potential based only on the cell source. Interestingly, the myogenic ability was relatively stronger in cells with relatively weaker lipogenic ability. Only 186 differentially expressed genes between the two groups were identified using RNAseq. Several of these genes were involved in biological functions such as transcription regulation, protein translation regulation, cytokine interactions and energy metabolism regulation. The results of the present study suggested a similar functional potential of DAs and ADSCs from young donors undergoing tumescent liposuction operation in regeneration areas and the balance of the differentiative ability of the same cell populations. These data may provide a foundation for further clinical administration of stem cells derived from adipose tissues in therapy.
Collapse
Affiliation(s)
- Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chen Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
17
|
Nakano K, Kubo H, Nakajima M, Honda Y, Hashimoto Y. Bone Regeneration Using Rat-Derived Dedifferentiated Fat Cells Combined with Activated Platelet-Rich Plasma. MATERIALS 2020; 13:ma13225097. [PMID: 33198129 PMCID: PMC7697578 DOI: 10.3390/ma13225097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Bone regeneration using mesenchymal stem cells has several limitations. We investigated adipose-derived dedifferentiated fat (DFAT) cells as an alternative, and evaluated their cell proliferation rate, osteoblast differentiation, and bone regeneration ability in combination with activated platelet-rich plasma (aPRP). Rat DFATs and aPRP were isolated using ceiling culture and centrifugation, respectively. The cell proliferation rate was measured, and the cells were cultured in an osteoblast differentiation medium under varying concentrations of aPRP for 21 days and stained with Alizarin red. Gene expression was evaluated using real time polymerase chain reaction. Critical defects were implanted with DFAT seeded gelatin sponges under aPRP, and four weeks later, the bone regeneration ability was evaluated using micro-computed tomography and hematoxylin-eosin staining. The cell proliferation rate was significantly increased by the addition of aPRP. Alizarin red staining was positive 21 days after the start of induction, with significantly higher Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression levels than those in the controls. A 9 mm critical defect was largely closed (60.6%) after four weeks of gelatin sponge implantation with DFAT and aPRP. Therefore, materials combining DFAT cells and aPRP may be an effective approach for bone regeneration. Further research is needed to explore the long-term effects of these materials.
Collapse
Affiliation(s)
- Kosuke Nakano
- Graduate School of Dentistry Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1, Kuzuha-hanazono-cho, Hirakata City, Osaka 573-1121, Japan;
| | - Hirohito Kubo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan; (H.K.); (M.N.)
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan; (H.K.); (M.N.)
| | - Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, 8-1, Kuzuha-hanazono-cho, Hirakata City, Osaka 573-1121, Japan;
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1, Kuzuha-hanazono-cho, Hirakata City, Osaka 573-1121, Japan
- Correspondence: ; Tel.: +81-7264-3016
| |
Collapse
|
18
|
Adipose-Derived Stem Cells and Ceiling Culture-Derived Preadipocytes Cultured from Subcutaneous Fat Tissue Differ in Their Epigenetic Characteristics and Osteogenic Potential. Plast Reconstr Surg 2020; 144:644-655. [PMID: 31461020 DOI: 10.1097/prs.0000000000005913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipose-derived stem cells and ceiling culture-derived preadipocytes can be harvested from subcutaneous adipose tissue. Little is known about the epigenetic differences, which may contribute to differences in osteogenic potential, between these cell types. The purpose of this study was to address the osteogenic potential and underlying epigenetic status of adipose-derived stem cells and ceiling culture-derived preadipocytes. METHODS Adipose-derived stem cells and ceiling culture-derived preadipocytes were cultured from abdominal subcutaneous fat tissues of four metabolically healthy, lean female patients. After 7 weeks of culture, cellular responses to osteogenic differentiation media were examined. To evaluate the osteogenic potentials of undifferentiated adipose-derived stem cells and ceiling culture-derived preadipocytes, two types of epigenetic assessment were performed using next-generation sequencing: DNA methylation assays with the Human Methylation 450K BeadChip, and chromatin immunoprecipitation assays for trimethylation of histone H3 at lysine 4. RESULTS Human ceiling culture-derived preadipocytes showed greater osteogenic differentiation ability than did adipose-derived stem cells. In an epigenetic survey of the promoters of four osteogenic regulator genes (RUNX2, SP7, ATF4, and BGLAP), the authors found a general trend toward decreased CpG methylation and increased trimethylation of histone H3 at lysine 4 levels in ceiling culture-derived preadipocytes as compared to adipose-derived stem cells, indicating that these genes were more likely to be highly expressed in ceiling culture-derived preadipocytes. CONCLUSIONS The surveyed epigenetic differences between adipose-derived stem cells and ceiling culture-derived preadipocytes were consistent with the observed differences in osteogenic potential. These results enhance the authors' understanding of these cells and will facilitate their further application in regenerative medicine.
Collapse
|
19
|
Gene expression profiles of early chondrogenic markers in dedifferentiated fat cells stimulated by bone morphogenetic protein 4 under monolayer and spheroid culture conditions in vitro. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Tateno A, Asano M, Akita D, Toriumi T, Tsurumachi-Iwasaki N, Kazama T, Arai Y, Matsumoto T, Kano K, Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats. J Oral Sci 2019; 61:534-538. [PMID: 31631097 DOI: 10.2334/josnusd.18-0458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated by using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarly, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.
Collapse
Affiliation(s)
- Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| | | | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
21
|
Deng Z, Zou J, Wang W, Nie Y, Tung WT, Ma N, Lendlein A. Dedifferentiation of mature adipocytes with periodic exposure to cold. Clin Hemorheol Microcirc 2019; 71:415-424. [PMID: 31006679 DOI: 10.3233/ch-199005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10°C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37°C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1α, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37°C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells.
Collapse
Affiliation(s)
- Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wing-Tai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| |
Collapse
|
22
|
Côté JA, Ostinelli G, Gauthier MF, Lacasse A, Tchernof A. Focus on dedifferentiated adipocytes: characteristics, mechanisms, and possible applications. Cell Tissue Res 2019; 378:385-398. [PMID: 31289929 DOI: 10.1007/s00441-019-03061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
|
23
|
Osteogenesis of Multipotent Progenitor Cells using the Epigallocatechin Gallate-Modified Gelatin Sponge Scaffold in the Rat Congenital Cleft-Jaw Model. Int J Mol Sci 2018; 19:ijms19123803. [PMID: 30501071 PMCID: PMC6320852 DOI: 10.3390/ijms19123803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cost-effective and functionalized scaffolds are in high demand for stem-cell-based regenerative medicine to treat refractory bone defects in craniofacial abnormalities and injuries. One potential strategy is to utilize pharmacological and cost-effective plant polyphenols and biocompatible proteins, such as gelatin. Nevertheless, the use of chemically modified proteins with plant polyphenols in this strategy has not been standardized. Here, we demonstrated that gelatin chemically modified with epigallocatechin gallate (EGCG), the major catechin isolated from green tea, can be a useful material to induce bone regeneration in a rat congenial cleft-jaw model in vivo when used with/without adipose-derived stem cells or dedifferentiated fat cells. Vacuum-heated gelatin sponges modified with EGCG (vhEGCG-GS) induced superior osteogenesis from these two cell types compared with vacuum-heated gelatin sponges (vhGS). The EGCG-modification converted the water wettability of vhGS to a hydrophilic property (contact angle: 110° to 3.8°) and the zeta potential to a negative surface charge; the modification enhanced the cell adhesion property and promoted calcium phosphate precipitation. These results suggest that the EGCG-modification with chemical synthesis can be a useful platform to modify the physicochemical property of gelatin. This alteration is likely to provide a preferable microenvironment for multipotent progenitor cells, inducing superior bone formation in vivo.
Collapse
|
24
|
Ruslin M, Hajrah-Yusuf AS, Tajrin A, Lo LJ, Forouzanfar T. Utilization of pedicled buccal fat pads for coverage of the lateral relaxing wound: A review of literature and a case series of 15 patients. J Clin Exp Dent 2018; 10:e502-e506. [PMID: 29849977 PMCID: PMC5971070 DOI: 10.4317/jced.54797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 11/05/2022] Open
Abstract
Background The buccal fat pad (BFP) is an encapsulated mass originated from a specific fat tissue in various volume throughout the life of each person and BFP has been used in various surgeries as a source of useful graft material due to its easy accessibility and rich vascularization. Case Report This report describes fifteen patients who were treated with buccal fat pads (BFP) as a pedicled graft for lateral relaxing wound closure in primary cleft palate surgery. A review of relevant literature is also presented. Results All patients had a mean follow-up of 3.7 weeks with a minimum follow-up time of three weeks and a maximum follow-up of four weeks. All patients who had an uneventful immediate postoperative period showed signs of BFP epithelialization characterized by a yellowish tissue beginning in the first week and ending within 3-4 weeks after surgery. Conclusions The use of BFP for the small to medium-sized defects reconstruction in palatoplasty is a safe and reliable method with fast healing. Even older patients who would not be able to tolerate time-consuming flap reconstruction procedures had good results. Key words:Cleft palate, buccal fat pads, lateral relaxing wound.
Collapse
Affiliation(s)
- Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry University of Hasanuddin, Makassar, Indonesia
| | - Andi S Hajrah-Yusuf
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry University of Hasanuddin, Makassar, Indonesia
| | - Andi Tajrin
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry University of Hasanuddin, Makassar, Indonesia
| | - Lun-Jou Lo
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry University of Hasanuddin, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry University of Hasanuddin, Makassar, Indonesia
| |
Collapse
|
25
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Saito-Tamura Y, Tonogi M, Shimizu N, Honda M. Effect of collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Oral Sci 2018; 60:14-23. [PMID: 29479028 DOI: 10.2334/josnusd.16-0786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dedifferentiated fat (DFAT) cells were isolated from mature adipocytes using the ceiling culture method. Recently, we successfully isolated DFAT cells from adipocytes with a relatively small size (<40 μm). DFAT cells have a higher osteogenic potential than that of medium adipocytes. Therefore, the objective of this study was to determine the optimal concentration of collagenase solution for isolating small adipocytes from human buccal fat pads (BFPs). Four concentrations of collagenase solution (0.01%, 0.02%, 0.1%, and 0.5%) were used, and their effectiveness was assessed by the number of small adipocytes and DFAT cells isolated. The total number of floating adipocytes that dissociated with 0.02% collagenase was 2.5 times of that dissociated with 0.1% collagenase. The number of floating adipocytes with a diameter of ≤29 μm that dissociated with 0.02% collagenase was thrice of those dissociated with 0.1% and 0.5% collagenase. The number of DFAT cells that dissociated with 0.02% collagenase was 1.5 times of that dissociated with 0.1% collagenase. In addition, DFAT cells that dissociated with 0.02% collagenase had a higher osteogenic differentiation potential than those that dissociated with 0.1% collagenase. These results suggest that 0.02% is the optimal collagenase concentration for isolating small adipocytes from BFPs.
Collapse
Affiliation(s)
- Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Taro Matsumoto
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
| | - Tomohiko Kazama
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
27
|
Kakudo T, Kishimoto N, Matsuyama T, Momota Y. Functional recovery by application of human dedifferentiated fat cells on cerebral infarction mice model. Cytotechnology 2018; 70:949-959. [PMID: 29352391 DOI: 10.1007/s10616-018-0193-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Elderly people whose daily activities have declined due to a cerebrovascular disorder may suffer from dysphagia and may find oral hygiene difficult. Therefore, it is important to establish an effective therapy for the underlying cerebrovascular disorder. Dedifferentiated fat cells (DFAT) were obtained from mature adipocytes isolated from human buccal adipose pads in a ceiling culture. DFAT expressed the neural markers Nestin and SOX2. Flow cytometric analysis revealed that the cells had properties similar to mesenchymal stem cells. Although the transplantation of DFAT did not change the infarction area and volume ratios in a murine cerebral infarction model, functional recovery was observed in behavioral tests. Furthermore, DFAT administered to mice were later detected in cerebral infarctions. It therefore appears that transplanted DFAT affect the brain after infarction and contribute to the promotion of functional recovery. This finding may provide new cell replacement therapy options for treating disorders of the central nervous system.
Collapse
Affiliation(s)
- Tomoki Kakudo
- Department of Anesthesiology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka, Osaka, 540-0008, Japan. .,Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1, Mukogawacho, Nishinomiya, Hyogo, 633-8501, Japan.
| | - Naotaka Kishimoto
- Department of Anesthesiology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka, Osaka, 540-0008, Japan.,Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1, Mukogawacho, Nishinomiya, Hyogo, 633-8501, Japan
| | - Tomohiro Matsuyama
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1, Mukogawacho, Nishinomiya, Hyogo, 633-8501, Japan
| | - Yoshihiro Momota
- Department of Anesthesiology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka, Osaka, 540-0008, Japan
| |
Collapse
|
28
|
hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro. Int J Mol Sci 2017; 18:ijms18122699. [PMID: 29236047 PMCID: PMC5751300 DOI: 10.3390/ijms18122699] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/23/2017] [Accepted: 12/09/2017] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue comprises both adipose and non-adipose cells such as mesenchymal stem cells. These cells show a surface antigenic profile similar to that of bone-marrow-derived MSC. The cells derived from the dedifferentiation of mature adipocytes (DFAT) are another cell population with characteristics of stemness. The aim of this study is to provide evidence of the stemness, proliferation, and differentiation of human adipose stem cells (hASC) and DFAT obtained from human subcutaneous AT and evaluate their potential use in regenerative medicine. Cell populations were studied by histochemical and molecular biology techniques. Both hASC and DFAT were positive for MSC markers. Their proliferative capacity was similar and both populations were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. DFAT were able to accumulate lipids and their lipoprotein lipase and adiponectin gene expression were high. Alkaline phosphatase and RUNX2 gene expression were greater in hASC than in DFAT at 14 days but became similar after three weeks. Both cell populations were able to differentiate into chondrocytes, showing positive staining with Alcian Blue and gene expression of SOX9 and ACAN. In conclusion, both hASC and DFAT populations derived from AT have a high differentiation capacity and thus may have applications in regenerative medicine.
Collapse
|
29
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
30
|
Bastami F, Paknejad Z, Jafari M, Salehi M, Rezai Rad M, Khojasteh A. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:481-491. [PMID: 28024612 DOI: 10.1016/j.msec.2016.10.084] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/15/2023]
Abstract
Fabrication of an ideal scaffold having proper composition, physical structure and able to have sustained release of growth factors still is challenging for bone tissue engineering. Current study aimed to design an appropriate three-dimensional (3-D) scaffold with suitable physical characteristics, including proper compressive strength, degradation rate, porosity, and able to sustained release of bone morphogenetic protein-2 (BMP2), for bone tissue engineering. A highly porous 3-D β-tricalcium phosphate (β-TCP) scaffolds, inside of which two perpendicular canals were created, was fabricated using foam-casting technique. Then, scaffolds were coated with gelatin layer. Next, BMP2-loaded chitosan (CS) nanoparticles were dispersed into collagen hydrogel and filled into the scaffold canals. Physical characteristics of fabricated constructs were evaluated. Moreover, the capability of given construct for bone regeneration has been evaluated in vitro in interaction with human buccal fat pad-derived stem cells (hBFPSCs). The results showed that gelatin-coated TCP scaffold with rhBMP2 delivery system not only could act as a mechanically and biologically compatible framework, but also act as an osteoinductive graft by sustained delivering of rhBMP2 in a therapeutic window for differentiation of hBFPSCs towards the osteoblast lineage. The proposed scaffold model can be suggested for delivering of cells and other growth factors such as vascular endothelial growth factor (VEGF), alone or in combination, for future investigations.
Collapse
Affiliation(s)
- Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maissa Jafari
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Shah M, George RL, Evancho-Chapman MM, Zhang G. Current challenges in dedifferentiated fat cells research. Organogenesis 2016; 12:119-127. [PMID: 27322672 DOI: 10.1080/15476278.2016.1197461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.
Collapse
Affiliation(s)
- Mickey Shah
- a Integrated Bioscience Program , The University of Akron , Akron , OH , USA.,b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| | - Richard L George
- c Department of Surgery , Summa Health System , Akron , OH , USA.,d Department of Surgery , Northeast Ohio Medical University , Rootstown , OH , USA
| | | | - Ge Zhang
- b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| |
Collapse
|
32
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
33
|
Akita D, Kano K, Saito-Tamura Y, Mashimo T, Sato-Shionome M, Tsurumachi N, Yamanaka K, Kaneko T, Toriumi T, Arai Y, Tsukimura N, Matsumoto T, Ishigami T, Isokawa K, Honda M. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration. Front Physiol 2016; 7:50. [PMID: 26941649 PMCID: PMC4763019 DOI: 10.3389/fphys.2016.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.
Collapse
Affiliation(s)
- Daisuke Akita
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University Fujisawa, Japan
| | - Yoko Saito-Tamura
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Juntendo University Tokyo, Japan
| | - Momoko Sato-Shionome
- Department of Pediatric Dentistry, School of Dentistry, Nihon University Tokyo, Japan
| | - Niina Tsurumachi
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | | | | | - Taku Toriumi
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | | | - Naoki Tsukimura
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, School of Medicine, Nihon University Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Keitaro Isokawa
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University Nagoya, Japan
| |
Collapse
|
34
|
Khojasteh A, Sadeghi N. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg 2016; 45:864-71. [PMID: 26846793 DOI: 10.1016/j.ijom.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/19/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Stem cell therapy for the treatment of bone defects is an alternative or adjunct to autologous bone grafting. This study assessed the efficacy of buccal fat pad-derived stem cells (BFPSCs) with iliac bone block grafting for the treatment of extensive human alveolar ridge defects. Eight patients with extensive jaw atrophy were selected for this study. The jaws were reconstructed with non-vascularized anterior iliac crest bone blocks. Gaps between the blocks were filled with freeze-dried bone granules and covered with a collagen membrane. In the test group (n=4), these granules were seeded with BFPSCs. Cone beam computed tomography scans were used to assess the amount of new bone formed at six sites in each patient. Trephine biopsies of 2-mm were also taken from the graft site during implant placement for histomorphometric analysis. The mean bone width change at the graft site was greater in the test group than in the control group (3.94±1.62mm vs. 3.01±0.89mm). New bone formation was 65.32% in the test group versus 49.21% in the control group. The application of BFPSCs in conjunction with iliac bone block grafts may increase the amount of new bone formation and decrease secondary bone resorption in extensively atrophic jaws.
Collapse
Affiliation(s)
- A Khojasteh
- Dental Research Centre, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, University of Antwerp, Antwerp, Belgium.
| | - N Sadeghi
- Dental Research Centre, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Jumabay M, Boström KI. Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 2015; 7:1202-1214. [PMID: 26640620 PMCID: PMC4663373 DOI: 10.4252/wjsc.v7.i10.1202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.
Collapse
|
36
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|
37
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015. [PMID: 26392396 DOI: 10.1007/s.00784-015-1601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
38
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015; 20:1181-91. [PMID: 26392396 DOI: 10.1007/s00784-015-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
39
|
Shah FS, Li J, Dietrich M, Wu X, Hausmann MG, LeBlanc KA, Wade JW, Gimble JM. Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization. Cells Tissues Organs 2015; 200:204-11. [PMID: 26089088 DOI: 10.1159/000430088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 11/19/2022] Open
Abstract
The emerging field of regenerative medicine has identified adipose tissue as an abundant source of stromal/stem cells for tissue engineering applications. Therefore, we have compared the differentiation and immunophenotypic features of adipose-derived stromal/stem cells (ASC) isolated from either omental or subcutaneous adipose depots. Human tissue samples were obtained from bariatric and plastic surgical practices at a university-affiliated teaching hospital and a private practice, respectively, with informed patient consent. Primary cultures of human ASC were isolated from adipose specimens within 24 h of surgery and culture expanded in vitro. The passaged ASC were induced to undergo adipogenic or osteogenic differentiation as assessed by histochemical methods or evaluated for surface antigen expression profiles by flow cytometry. ASC yields per unit weight of tissue were comparable between omental and subcutaneous depots. At passage 0, the immunophenotype of omental and subcutaneous ASC were not significantly different with the exception of CD105 and endoglin, a component of the transforming growth factor β receptor. The adipogenic differentiation of omental ASC was less robust than that of subcutaneous ASC based on in vitro histochemical and PCR assays. Although the yield and immunophenotype of ASC from omental adipose depots resembled that of subcutaneous ASC, omental ASC displayed significantly reduced adipogenic differentiation capacity following chemical induction. Further studies are necessary to evaluate and optimize the differentiation function of omental ASC in vitro and in vivo. Pending such analyses, omental ASC should not be used interchangeably with subcutaneous ASC for regenerative medical applications.
Collapse
|
40
|
Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, Matsumoto N. Supplementation of Strontium to a Chondrogenic Medium Promotes Chondrogenic Differentiation of Human Dedifferentiated Fat Cells. Tissue Eng Part A 2015; 21:1695-704. [DOI: 10.1089/ten.tea.2014.0282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Naoya Okita
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | | | - Wen Liao
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Eiko Azumi
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | | | | |
Collapse
|
41
|
Lessard J, Côté JA, Lapointe M, Pelletier M, Nadeau M, Marceau S, Biertho L, Tchernof A. Generation of human adipose stem cells through dedifferentiation of mature adipocytes in ceiling cultures. J Vis Exp 2015:52485. [PMID: 25867041 PMCID: PMC4401230 DOI: 10.3791/52485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - André Tchernof
- IUCPQ Research Center; CHU de Québec Research Center; Laval University;
| |
Collapse
|