1
|
Rahlff J, Westmeijer G, Weissenbach J, Antson A, Holmfeldt K. Surface microlayer-mediated virome dissemination in the Central Arctic. MICROBIOME 2024; 12:218. [PMID: 39449105 PMCID: PMC11515562 DOI: 10.1186/s40168-024-01902-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Aquatic viruses act as key players in shaping microbial communities. In polar environments, they face significant challenges such as limited host availability and harsh conditions. However, due to the restricted accessibility of these ecosystems, our understanding of viral diversity, abundance, adaptations, and host interactions remains limited. RESULTS To fill this knowledge gap, we studied viruses from atmosphere-close aquatic ecosystems in the Central Arctic and Northern Greenland. Aquatic samples for virus-host analysis were collected from ~60 cm depth and the submillimeter surface microlayer (SML) during the Synoptic Arctic Survey 2021 on icebreaker Oden in the Arctic summer. Water was sampled from a melt pond and open water before undergoing size-fractioned filtration, followed by genome-resolved metagenomic and cultivation investigations. The prokaryotic diversity in the melt pond was considerably lower compared to that of open water. The melt pond was dominated by a Flavobacterium sp. and Aquiluna sp., the latter having a relatively small genome size of 1.2 Mb and the metabolic potential to generate ATP using the phosphate acetyltransferase-acetate kinase pathway. Viral diversity on the host fraction (0.2-5 µm) of the melt pond was strikingly limited compared to that of open water. From the 1154 viral operational taxonomic units (vOTUs), of which two-thirds were predicted bacteriophages, 17.2% encoded for auxiliary metabolic genes (AMGs) with metabolic functions. Some AMGs like glycerol-3-phosphate cytidylyltransferase and ice-binding like proteins might serve to provide cryoprotection for the host. Prophages were often associated with SML genomes, and two active prophages of new viral genera from the Arctic SML strain Leeuwenhoekiella aequorea Arc30 were induced. We found evidence that vOTU abundance in the SML compared to that of ~60 cm depth was more positively correlated with the distribution of a vOTU across five different Arctic stations. CONCLUSIONS The results indicate that viruses employ elaborate strategies to endure in extreme, host-limited environments. Moreover, our observations suggest that the immediate air-sea interface serves as a platform for viral distribution in the Central Arctic. Video Abstract.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Marks TJ, Rowland IR. The Diversity of Bacteriophages in Hot Springs. Methods Mol Biol 2024; 2738:73-88. [PMID: 37966592 DOI: 10.1007/978-1-0716-3549-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.
Collapse
Affiliation(s)
- Timothy J Marks
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA.
| | - Isabella R Rowland
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA
| |
Collapse
|
4
|
Kim M, Cha IT, Lee KE, Li M, Park SJ. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Microbiol Spectr 2023; 11:e0100323. [PMID: 37594286 PMCID: PMC10655711 DOI: 10.1128/spectrum.01003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Members of the genus Flavobacterium are widely distributed and produce various polysaccharide-degrading enzymes. Many species in the genus have been isolated and characterized. However, few studies have focused on marine isolates or fish pathogens, and in-depth genomic analyses, particularly comparative analyses of isolates from different habitat types, are lacking. Here, we isolated 20 strains of the genus from various environments in South Korea and sequenced their full-length genomes. Combined with published sequence data, we examined genomic traits, evolution, environmental adaptation, and putative metabolic functions in total 187 genomes of isolated species in Flavobacterium categorized as marine, host-associated, and terrestrial including freshwater. A pangenome analysis revealed a correlation between genome size and coding or noncoding density. Flavobacterium spp. had high levels of diversity, allowing for novel gene repertories via recombination events. Defense-related genes only accounted for approximately 3% of predicted genes in all Flavobacterium genomes. While genes involved in metabolic pathways did not differ with respect to isolation source, there was substantial variation in genomic traits; in particular, the abundances of tRNAs and rRNAs were higher in the host-associdated group than in other groups. One genome in the host-associated group contained a Microviridae prophage closely related to an enterobacteria phage. The proteorhodopsin gene was only identified in four terrestrial strains isolated for this study. Furthermore, recombination events clearly influenced genomic diversity and may contribute to the response to environmental stress. These findings shed light on the high genetic variation in Flavobacterium and functional roles in diverse ecosystems as a result of their metabolic versatility. IMPORTANCE The genus Flavobacterium is a diverse group of bacteria that are found in a variety of environments. While most species of this genus are harmless and utilize organic substrates such as proteins and polysaccharides, some members may play a significant role in the cycling for organic substances within their environments. Nevertheless, little is known about the genomic dynamics and/or metabolic capacity of Flavobacterium. Here, we found that Flavobacterium species may have an open pangenome, containing a variety of diverse and novel gene repertoires. Intriguingly, we discovered that one genome (classified into host-associated group) contained a Microviridae prophage closely related to that of enterobacteria. Proteorhodopsin may be expressed under conditions of light or oxygen pressure in some strains isolated for this study. Our findings significantly contribute to the understanding of the members of the genus Flavobacterium diversity exploration and will provide a framework for the way for future ecological characterizations.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, South Korea
| |
Collapse
|
5
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Abundance and activity of sympagic viruses near the Western Antarctic Peninsula. Polar Biol 2022. [DOI: 10.1007/s00300-022-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages. mBio 2022; 13:e0065122. [PMID: 35532161 PMCID: PMC9239159 DOI: 10.1128/mbio.00651-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments.
Collapse
|
8
|
Bartlau N, Wichels A, Krohne G, Adriaenssens EM, Heins A, Fuchs BM, Amann R, Moraru C. Highly diverse flavobacterial phages isolated from North Sea spring blooms. THE ISME JOURNAL 2022; 16:555-568. [PMID: 34475519 PMCID: PMC8776804 DOI: 10.1038/s41396-021-01097-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
It is generally recognized that phages are a mortality factor for their bacterial hosts. This could be particularly true in spring phytoplankton blooms, which are known to be closely followed by a highly specialized bacterial community. We hypothesized that phages modulate these dense heterotrophic bacteria successions following phytoplankton blooms. In this study, we focused on Flavobacteriia, because they are main responders during these blooms and have an important role in the degradation of polysaccharides. A cultivation-based approach was used, obtaining 44 lytic flavobacterial phages (flavophages), representing twelve new species from two viral realms. Taxonomic analysis allowed us to delineate ten new phage genera and ten new families, from which nine and four, respectively, had no previously cultivated representatives. Genomic analysis predicted various life styles and genomic replication strategies. A likely eukaryote-associated host habitat was reflected in the gene content of some of the flavophages. Detection in cellular metagenomes and by direct-plating showed that part of these phages were actively replicating in the environment during the 2018 spring bloom. Furthermore, CRISPR/Cas spacers and re-isolation during two consecutive years suggested that, at least part of the new flavophages are stable components of the microbial community in the North Sea. Together, our results indicate that these diverse flavophages have the potential to modulate their respective host populations.
Collapse
Affiliation(s)
- Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Biologische Anstalt Helgoland, Heligoland, Germany
| | - Georg Krohne
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Anneke Heins
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
9
|
Genome Study of a Novel Virulent Phage vB_SspS_KASIA and Mu-like Prophages of Shewanella sp. M16 Provides Insights into the Genetic Diversity of the Shewanella Virome. Int J Mol Sci 2021; 22:ijms222011070. [PMID: 34681734 PMCID: PMC8541194 DOI: 10.3390/ijms222011070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Shewanella is a ubiquitous bacterial genus of aquatic ecosystems, and its bacteriophages are also isolated from aquatic environments (oceans, lakes, ice, and wastewater). In this study, the isolation and characterization of a novel virulent Shewanella phage vB_SspS_KASIA and the identification of three prophages of its host, Shewanella sp. M16, including a mitomycin-inducible Mu-like siphovirus, vB_SspS_MuM16-1, became the starting point for comparative analyses of phages infecting Shewanella spp. and the determination of their position among the known bacterial viruses. A similarity networking analysis revealed the high diversity of Shewanella phages in general, with vB_SspS_KASIA clustering exclusively with Colwellia phage 9A, with which it forms a single viral cluster composed of two separate viral subclusters. Furthermore, vB_SspS_MuM16-1 presented itself as being significantly different from the phages deposited in public databases, expanding the diversity of the known Mu-like phages and giving potential molecular markers for the identification of Mu-like prophages in bacterial genomes. Moreover, the functional analysis performed for vB_SspS_KASIA suggested that, despite the KASIA host, the M16 strain grows better in a rich medium and at 30 °C the phage replication cycle seems to be optimal in restrictive culture conditions mimicking their natural environment, the Zloty Stok gold and arsenic mine.
Collapse
|
10
|
Viruses in Extreme Environments, Current Overview, and Biotechnological Potential. Viruses 2021; 13:v13010081. [PMID: 33430116 PMCID: PMC7826561 DOI: 10.3390/v13010081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.
Collapse
|
11
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
12
|
Kreienbaum M, Dörrich AK, Brandt D, Schmid NE, Leonhard T, Hager F, Brenzinger S, Hahn J, Glatter T, Ruwe M, Briegel A, Kalinowski J, Thormann KM. Isolation and Characterization of Shewanella Phage Thanatos Infecting and Lysing Shewanella oneidensis and Promoting Nascent Biofilm Formation. Front Microbiol 2020; 11:573260. [PMID: 33072035 PMCID: PMC7530303 DOI: 10.3389/fmicb.2020.573260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023] Open
Abstract
Species of the genus Shewanella are widespread in nature in various habitats, however, little is known about phages affecting Shewanella sp. Here, we report the isolation of phages from diverse freshwater environments that infect and lyse strains of Shewanella oneidensis and other Shewanella sp. Sequence analysis and microscopic imaging strongly indicate that these phages form a so far unclassified genus, now named Shewanella phage Thanatos, which can be positioned within the subfamily of Tevenvirinae (Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Caudovirales; Myoviridae; Tevenvirinae). We characterized one member of this group in more detail using S. oneidensis MR-1 as a host. Shewanella phage Thanatos-1 possesses a prolate icosahedral capsule of about 110 nm in height and 70 nm in width and a tail of about 95 nm in length. The dsDNA genome exhibits a GC content of about 34.5%, has a size of 160.6 kbp and encodes about 206 proteins (92 with an annotated putative function) and two tRNAs. Out of those 206, MS analyses identified about 155 phage proteins in PEG-precipitated samples of infected cells. Phage attachment likely requires the outer lipopolysaccharide of S. oneidensis, narrowing the phage's host range. Under the applied conditions, about 20 novel phage particles per cell were produced after a latent period of approximately 40 min, which are stable at a pH range from 4 to 12 and resist temperatures up to 55°C for at least 24 h. Addition of Thanatos to S. oneidensis results in partial dissolution of established biofilms, however, early exposure of planktonic cells to Thanatos significantly enhances biofilm formation. Taken together, we identified a novel genus of Myophages affecting S. oneidensis communities in different ways.
Collapse
Affiliation(s)
- Maximilian Kreienbaum
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja K Dörrich
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Nicole E Schmid
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tabea Leonhard
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Hager
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Brenzinger
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Hahn
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Matthias Ruwe
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Efficiency of phage cocktail to reduce Salmonella Typhimurium on chicken meat during low temperature storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA, Ross RP, Hill C. Isolation of a Novel Jumbo Bacteriophage Effective Against Klebsiella aerogenes. Front Med (Lausanne) 2020; 7:67. [PMID: 32185177 PMCID: PMC7058600 DOI: 10.3389/fmed.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing levels of bacterial resistance to many common and last resort antibiotics has increased interest in finding new treatments. The low rate of approval of new antibiotics has led to the search for new and alternative antimicrobial compounds. Bacteriophages (phages) are bacterial viruses found in almost every environment. Phage therapy was historically investigated to control bacterial infections and is still in use in Georgia and as a treatment of last resort. Phage therapy is increasingly recognized as an alternative antimicrobial treatment for antibiotic resistant pathogens. A novel lytic Klebsiella aerogenes phage N1M2 was isolated from maize silage. Klebsiella aerogenes, a member of the ESKAPE bacterial pathogens, is an important target for new antimicrobial therapies. Klebsiella aerogenes can form biofilms on medical devices which aids its environmental persistence and for this reason we tested the effect of phage N1M2 against biofilms. Phage N1M2 successfully removed a pre-formed Klebsiella aerogenes biofilm. Biofilm assays were also carried out with Staphylococcus aureus and Phage K. Phage K successfully removed a preformed Staphylococcus aureus biofilm. Phage N1M2 and Phage K in combination were significantly better at removing a mixed community biofilm of Klebsiella aerogenes and Staphylococcus aureus than either phage alone.
Collapse
Affiliation(s)
- Rhea Lewis
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
|
16
|
Surgucheva NA, Filippova SN, Kulikov EE, Brushkov AV, Rogov VV. Phage Particles in Ground Arctic Ice. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719020164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Luhtanen AM, Eronen-Rasimus E, Oksanen HM, Tison JL, Delille B, Dieckmann GS, Rintala JM, Bamford DH. The first known virus isolates from Antarctic sea ice have complex infection patterns. FEMS Microbiol Ecol 2019; 94:4898008. [PMID: 29481638 DOI: 10.1093/femsec/fiy028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023] Open
Abstract
Viruses are recognized as important actors in ocean ecology and biogeochemical cycles, but many details are not yet understood. We participated in a winter expedition to the Weddell Sea, Antarctica, to isolate viruses and to measure virus-like particle abundance (flow cytometry) in sea ice. We isolated 59 bacterial strains and the first four Antarctic sea-ice viruses known (PANV1, PANV2, OANV1 and OANV2), which grow in bacterial hosts belonging to the typical sea-ice genera Paraglaciecola and Octadecabacter. The viruses were specific for bacteria at the strain level, although OANV1 was able to infect strains from two different classes. Both PANV1 and PANV2 infected 11/15 isolated Paraglaciecola strains that had almost identical 16S rRNA gene sequences, but the plating efficiencies differed among the strains, whereas OANV1 infected 3/7 Octadecabacter and 1/15 Paraglaciecola strains and OANV2 1/7 Octadecabacter strains. All the phages were cold-active and able to infect their original host at 0°C and 4°C, but not at higher temperatures. The results showed that virus-host interactions can be very complex and that the viral community can also be dynamic in the winter-sea ice.
Collapse
Affiliation(s)
- Anne-Mari Luhtanen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | | | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jean-Louis Tison
- Laboratoire de Glaciologie, DGES, Université Libre de Bruxelles, Belgium
| | - Bruno Delille
- Unité d'Océanographie Chimique, Université de Liège, Belgium
| | - Gerhard S Dieckmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Zablocki O, van Zyl L, Trindade M. Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles 2018; 22:827-837. [PMID: 30121708 DOI: 10.1007/s00792-018-1052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Bacterial viruses ("phages") play important roles in the regulation and evolution of microbial communities in most ecosystems. Terrestrial hot springs typically contain thermophilic bacterial communities, but the diversity and impacts of its associated viruses ("thermophilic phages") are largely unexplored. Here, we provide a taxonomic overview of phages that have been isolated strictly from terrestrial hot springs around the world. In addition, we placed 17 thermophilic phage genomes in a global phylogenomic context to detect evolutionary patterns. Thermophilic phages have diverse morphologies (e.g., tailed, filamentous), unique virion structures (e.g., extremely long tailed siphoviruses), and span five taxonomic families encompassing strictly thermophilic phage genera. Within the phage proteomic tree, six thermophilic phage-related clades were identified, with evident genomic relatedness between thermophilic phages and archaeal viruses. Moreover, whole proteome analyses showed clustering between phages that infect distinct host phyla, such as Firmicutes and Deinococcus-Thermus. The potential for discovery of novel phage-host systems in terrestrial hot springs remain mostly untapped, thus additional emphasis on thermophilic phages in ecological prospecting is encouraged to gain insights into the microbial population dynamics of these environments.
Collapse
Affiliation(s)
- Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Leonardo van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
19
|
Xiang Y, Wang S, Li J, Wei Y, Zhang Q, Lin L, Ji X. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland. Can J Microbiol 2017; 64:183-190. [PMID: 29253355 DOI: 10.1139/cjm-2017-0572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the "kidneys of the Earth", wetlands play important roles as biodiversity reservoirs, in water purification, and in flood control. In this study, 2 lytic cold-active bacteriophages, named VW-6S and VW-6B, infecting Pseudomonas fluorescens W-6 cells from the Napahai plateau wetland in China were isolated and characterized. Electron microscopy showed that both VW-6S and VW-6B had an icosahedral head (66.7 and 61.1 nm, respectively) and a long tail (8.3 nm width × 233.3 nm length and 11.1 nm width × 166.7 nm length, respectively). The bacteriophages VW-6S and VW-6B were classified as Siphoviridae and had an approximate genome size of 30-40 kb. The latent and burst periods of VW-6S were 60 and 30 min, whereas those of VW-6B were 30 and 30 min, respectively. The optimal pH values for the bacteriophages VW-6S and VW-6B were 8.0 and 10.0, respectively, and their activity decreased rapidly at temperatures higher than 60 °C. These cold-active bacteriophages provide good materials for further study of cold-adaptation mechanisms and interaction with the host P. fluorescens.
Collapse
Affiliation(s)
- Yingying Xiang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.,b Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650031, China
| | - Shuang Wang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiankai Li
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunlin Wei
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Zhang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lianbing Lin
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuling Ji
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
20
|
Maat DS, Biggs T, Evans C, van Bleijswijk JDL, van der Wel NN, Dutilh BE, Brussaard CPD. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses. Viruses 2017; 9:v9060134. [PMID: 28574420 PMCID: PMC5490811 DOI: 10.3390/v9060134] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).
Collapse
Affiliation(s)
- Douwe S Maat
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Tristan Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Claire Evans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
- Ocean Biogeochemistry & Ecosystems Research Group, National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK.
| | - Judith D L van Bleijswijk
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
21
|
Gao Y, Liu Q, Wang M, Zhao G, Jiang Y, Malin G, Gong Z, Meng X, Liu Z, Lin T, Li Y, Shao H. Characterization and Genome Sequence of Marine Alteromonas gracilis Phage PB15 Isolated from the Yellow Sea, China. Curr Microbiol 2017; 74:821-826. [PMID: 28424938 DOI: 10.1007/s00284-017-1251-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
A novel marine Alteromonas gracilis siphovirus, phage PB15, was isolated from the surface water of the Yellow Sea in August 2015. It has a head diameter of 58 ± 5 nm head and a contractile tail approximately 105 ± 10 nm in length, and overall, the morphology suggests that PB15 belongs to the family Siphoviridae. PB15 phage is stable at over the temperature range 0-60 °C. The best MOI of these phage was 0.1, and infectivity decreased above 60 °C. The results suggest that phage is stable at pH value ranging between 3.0 and 11.0. Chloroform test shows that PB15 is not a lipid-containing phage. A one-step growth curve with a strain of A. gracilis gave a latent period of 16 min and rise period of 24 min and burst size of 60 PFU/cell. Genomic analysis of PB15 reveals a genome size of 37,333 bp with 45.52% G+C content, and 61 ORFs. ORF sequences accounted for 30.36% of the genome sequence. There is no obvious similarity between PB15 and other known phages by genomic comparison using the BLASTN tool in the NCBI database.
Collapse
Affiliation(s)
- Yu Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Guihua Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xue Meng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tongtong Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yutong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
22
|
Isolation and Characterization of the Lytic Cold-Active Bacteriophage MYSP06 from the Mingyong Glacier in China. Curr Microbiol 2016; 72:120-127. [PMID: 26500034 DOI: 10.1007/s00284-015-0926-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
As unique ecological systems, glaciers are characterized by low temperatures and low nutrient levels, which allow them to be considered as “living fossils” for the purpose of researching the evolution of life and the environmental evolution of the earth. Glaciers are also natural microbial “reservoirs”. In this work, a lytic cold-active bacteriophage designated MYSP06 was isolated from Janthinobacterium sp. MYB06 from the Mingyong Glacier in China, and its major characteristics were determined. Electron microscopy revealed that bacteriophage MYSP06 had an isometric head (74 nm) and a long tail (10 nm in width, 210 nm in length). It was classified as a Siphoviridae with an approximate genome size of 65–70 kb. A one-step growth curve revealed that the latent and burst periods were 95 and 65 min, respectively, with an average burst size of 16 bacteriophage particles per infected cell. The bacteriophage particles (100 %) adsorbed to the host cells within 10 min after infection. Moreover, the pH value and thermal stability of bacteriophage MYSP06 were also investigated. The maximum stability of the bacteriophage was observed at the optimal pH 7.0, and the bacteriophage became completely unstable at the extremely alkaline pH 11.0; however, it was comparatively stable at the acidic alkaline pH 6.0. As MYSP06 is a cold-active bacteriophage with a lower production temperature, its characterization and its relationship with its host Janthinobacterium sp. MYB06 deserve further study.
Collapse
|
23
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
24
|
Ji X, Zhang C, Fang Y, Zhang Q, Lin L, Tang B, Wei Y. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 2015; 30:52-8. [PMID: 25680445 DOI: 10.1007/s12250-014-3529-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Senčilo A, Luhtanen AM, Saarijärvi M, Bamford DH, Roine E. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions. Environ Microbiol 2014; 17:3628-41. [PMID: 25156651 DOI: 10.1111/1462-2920.12611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
Abstract
Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection.
Collapse
Affiliation(s)
- Ana Senčilo
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Anne-Mari Luhtanen
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Finnish Environmental Institute, Marine Research Center, Erik Palménin Aukio 1, Helsinki, FI-00560, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin Tie 260, Hanko, 10900, Finland
| | - Mikko Saarijärvi
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Elina Roine
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| |
Collapse
|
26
|
Mojica KDA, Brussaard CPD. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol 2014; 89:495-515. [PMID: 24754794 DOI: 10.1111/1574-6941.12343] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host infection and mortality, viruses affect microbial population dynamics, community composition, genetic evolution, and biogeochemical cycling. However, the field of marine viral ecology is currently limited by a lack of data regarding how different environmental factors regulate virus dynamics and host-virus interactions. The goal of the present minireview was to contribute to the evolution of marine viral ecology, through the assimilation of available data regarding the manner and degree to which environmental factors affect viral decay and infectivity as well as influence latent period and production. Considering the ecological importance of viruses in the marine ecosystem and the increasing pressure from anthropogenic activity and global climate change on marine systems, a synthesis of existing information provides a timely framework for future research initiatives in viral ecology.
Collapse
Affiliation(s)
- Kristina D A Mojica
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| | | |
Collapse
|
27
|
Luhtanen AM, Eronen-Rasimus E, Kaartokallio H, Rintala JM, Autio R, Roine E. Isolation and characterization of phage-host systems from the Baltic Sea ice. Extremophiles 2013; 18:121-30. [PMID: 24297705 DOI: 10.1007/s00792-013-0604-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C. Ten phage isolates were successfully plaque purified and eight of them were chosen for particle purification to analyze their morphology and structural proteins. Phage 1/32 infecting an isolate affiliated to phylum Bacteroidetes (Flavobacterium sp.) is a siphovirus and six phages infecting isolates affiliated to γ-Proteobacteria (Shewanella sp.) hosts were myoviruses. Cross titrations between the hosts showed that all studied phages are host specific. Phage solutions, host growth and phage infection were tested in different temperatures revealing phage temperature tolerance up to 45 °C, whereas phage infection was in most of the cases retarded above 15 °C. This study is the first to report isolation and cultivation of ice bacteria and cold-active phages from the Baltic Sea ice.
Collapse
|
28
|
Peng X, Xu H, Jones B, Chen S, Zhou H. Silicified virus-like nanoparticles in an extreme thermal environment: implications for the preservation of viruses in the geological record. GEOBIOLOGY 2013; 11:511-526. [PMID: 24102946 DOI: 10.1111/gbi.12052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
Biofilms that grow around Gumingquan hot spring (T = 71 °C, pH = 9.2) in the Rehai geothermal area, Tengchong, China, are formed of various cyanobacteria, Firmicutes, Aquificae, Thermodesulfobacteria, Desulfurococcales, and Thermoproteales. Silicified virus-like nanoparticles, 40-200 nm in diameter, are common inside the microbial cells and the extracellular polymeric substances around the cells. These nanoparticles, which are formed of a core encased by a silica cortex, are morphologically akin to known viruses and directly comparable to silicified virus-like particles that were produced in biofilms cultured in the laboratory. The information obtained from examination of the natural and laboratory-produced samples suggests that viruses can be preserved by silicification, especially while they are still encased in their host cells. These results expand our views of virus-host mineral interaction in extreme thermal environments and imply that viruses can be potentially preserved and identified in the geological record.
Collapse
Affiliation(s)
- X Peng
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China; Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | | | | | | | | |
Collapse
|
29
|
An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 2013; 17:601-10. [PMID: 23674353 PMCID: PMC3691474 DOI: 10.1007/s00792-013-0543-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Colwellia is a genus of mostly psychrophilic halophilic Gammaproteobacteria frequently isolated from polar marine sediments and sea ice. In exploring the capacity of Colwellia psychrerythraea 34H to survive and grow in the liquid brines of sea ice, we detected a duplicated 37 kbp genomic island in its genome based on the abnormally high G + C content. This island contains an operon encoding for heterotetrameric sarcosine oxidase and is located adjacent to several genes used in the serial demethylation of glycine betaine, a compatible solute commonly used for osmoregulation, to dimethylglycine, sarcosine, and glycine. Molecular clock inferences of important events in the adaptation of C. psychrerythraea 34H to compatible solute utilization reflect the geological evolution of the polar regions. Validating genomic predictions, C. psychrerythraea 34H was shown to grow on defined media containing either choline or glycine betaine, and on a medium with sarcosine as the sole organic source of carbon and nitrogen. Growth by 8 of 9 tested Colwellia species on a newly developed sarcosine-based defined medium suggested that the ability to catabolize glycine betaine (the catabolic precursor of sarcosine) is likely widespread in the genus Colwellia. This capacity likely provides a selective advantage to Colwellia species in cold, salty environments like sea ice, and may have contributed to the ability of Colwellia to invade these extreme niches.
Collapse
|
30
|
Colangelo-Lillis JR, Deming JW. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions. Extremophiles 2012; 17:99-114. [PMID: 23224375 DOI: 10.1007/s00792-012-0497-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/01/2012] [Indexed: 01/21/2023]
Abstract
The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.
Collapse
Affiliation(s)
- Jesse R Colangelo-Lillis
- School of Oceanography and Astrobiology Program, University of Washington, Box 355351, Seattle, WA 98195, USA.
| | | |
Collapse
|
31
|
|
32
|
Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol 2011; 77:7868-72. [PMID: 21890667 DOI: 10.1128/aem.05574-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacteria and their phages were isolated from Finnish freshwaters and fish farms. Emphasis was placed on finding phages infecting the fish pathogen Flavobacterium columnare for use as phage therapy agents. The host ranges of the flavobacterial phages varied, phages infecting F. columnare being more host specific than the other phages.
Collapse
|
33
|
Prestel E, Salamitou S, DuBow MS. An examination of the bacteriophages and bacteria of the Namib desert. J Microbiol 2008; 46:364-72. [PMID: 18758725 DOI: 10.1007/s12275-008-0007-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Bacteria and their viruses (called bacteriophages, or phages), have been found in virtually every ecological niche on Earth. Arid regions, including their most extreme form called deserts, represent the single largest ecosystem type on the Earth's terrestrial surface. The Namib desert is believed to be the oldest (80 million years) desert. We report here an initial analysis of bacteriophages isolated from the Namib desert using a combination of electron microscopy and genomic approaches. The virus-like particles observed by electron microscopy revealed 20 seemingly different phage-like morphologies and sizes belonging to the Myoviridae and Siphoviridae families of tailed phages. Pulsed-field gel electrophoresis revealed a majority of phage genomes of 55-65 kb in length, with genomes of approximately 200, 300, and 350 kb also observable. Sample sequencing of cloned phage DNA fragments revealed that approximately 50% appeared to be of bacterial origin. Of the remaining DNA sequences, approximately 50% displayed no significant match to any sequence in the databases. The majority of the 16S rDNA sequences amplified from DNA extracted from the sand displayed considerable (94-98%) homology to members of the Firmicutes, and in particular to members of the genus Bacillus, though members of the Bacteroidetes, Planctomycetes, Chloroflexi, and delta-Proteobacteria groups were also observed.
Collapse
Affiliation(s)
- Eric Prestel
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms, Université Paris-Sud 11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 409, 91405 Orsay, France
| | | | | |
Collapse
|
34
|
|
35
|
Säwström C, Lisle J, Anesio AM, Priscu JC, Laybourn-Parry J. Bacteriophage in polar inland waters. Extremophiles 2008; 12:167-75. [PMID: 18188502 DOI: 10.1007/s00792-007-0134-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 12/07/2007] [Indexed: 11/30/2022]
Abstract
Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.
Collapse
Affiliation(s)
- Christin Säwström
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 981 07 Abisko, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED. Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 2007; 189:5108-18. [PMID: 17483221 PMCID: PMC1951883 DOI: 10.1128/jb.00401-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the -33 consensus element, -7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal -33/-7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis sigma(ABfr) consensus -33/-7 promoter elements but lacked similarity to the E. coli sigma(70) promoter elements. The length of the spacer separating the -33 and -7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
37
|
Chen S, Bagdasarian M, Kaufman MG, Walker ED. Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 2006; 73:1089-100. [PMID: 17189449 PMCID: PMC1828668 DOI: 10.1128/aem.01577-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed techniques for the genetic manipulation of Flavobacterium species and used it to characterize several promoters found in these bacteria. Our studies utilized Flavobacterium hibernum strain W22, an environmental strain we isolated from tree hole habitats of mosquito larvae. Plasmids from F. hibernum strain W22 were more efficiently (approximately 1,250-fold) transferred by electroporation into F. hibernum strain W22 than those isolated from Escherichia coli, thus indicating that an efficient restriction barrier exists between these species. The strong promoter, tac, functional in proteobacteria, did not function in Flavobacterium strains. Therefore, a promoter-trap plasmid, pSCH03, containing a promoterless gfpmut3 gene was constructed. A library of 9,000 clones containing chromosomal fragments of F. hibernum strain W22 in pSCH03 was screened for their ability to drive expression of the promoterless gfpmut3 gene. Twenty strong promoters were used for further study. The transcription start points were determined from seven promoter clones by the 5' rapid amplification of cDNA ends technique. Promoter consensus sequences from Flavobacterium were identified as TAnnTTTG and TTG, where n is any nucleotide, centered approximately 7 and 33 bp upstream of the transcription start site, respectively. A putative novel ribosome binding site consensus sequence is proposed as TAAAA by aligning the 20-bp regions upstream of the translational start site in 25 genes. Our primary results demonstrate that at least some promoter and ribosome binding site motifs of Flavobacterium strains are unusual within the bacterial domain and suggest an early evolutionary divergence of this bacterial group. The techniques presented here allow for more detailed genetics-based studies and analyses of Flavobacterium species in the environment.
Collapse
Affiliation(s)
- S Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
38
|
Borriss M, Lombardot T, Glöckner FO, Becher D, Albrecht D, Schweder T. Genome and proteome characterization of the psychrophilic Flavobacterium bacteriophage 11b. Extremophiles 2006; 11:95-104. [PMID: 16932843 DOI: 10.1007/s00792-006-0014-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Virion DNA of bacteriophage 11b (Phi11b), which infects a psychrophilic Flavobacterium isolate from Arctic sea-ice, was determined to consist of 36,012 bp. With 30.6% its GC content corresponds to that of host-genus species and is the lowest of all phages of Gram-negative bacteria sequenced so far. Similarities of several of 65 predicted ORFs, genome organization and phylogeny suggest an affiliation to 'mesophilic' nonmarine siphoviruses, e.g. to bacteriophages SPP1 and HK97. Early genes presumably encode an essential recombination factor (ERF), a single strand binding (SSB) protein, an endonuclease, and a DNA methylase. The late gene segment is likely to contain a terminase, portal, minor head, protease and a major capsid gene. Five ORFs exhibited similarities to Bacteroidetes species and seem to reflect the host specificity of the phage. Among PAGE-separated virion proteins that were identified by MALDI-ToF mass spectrometry are the portal, the major capsid, and a putative conserved tail protein. The Phi11b genome is the first to be described of a cultivated virus infecting a psychrophilic host as well as a Bacteroidetes bacterium.
Collapse
Affiliation(s)
- Michael Borriss
- Institute of Marine Biotechnology, W.-Rathenau-Str. 49a, 17489, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
We describe a model based on diffusion theory and the temperature-dependent mechanism of brine concentration in sea ice to argue that, if viruses partition with bacteria into sea-ice brine inclusions, contact rates between the two can be higher in winter sea ice than in seawater, increasing the probability of infection and possible virus production. To examine this hypothesis, we determined viral and bacterial concentrations in select winter sea-ice horizons using epifluorescence microscopy. Viral concentrations ranged from 1.6 to 82 x 10(6) ml(-1) of brine volume of the ice, with highest values in brines from coldest (-24 to -31 degrees C) ice horizons. Calculated virus-bacteria contact rates in underlying -1 degrees C seawater were similar to those in brines of -11 degrees C ice but up to 600 times lower than those in ice brines at or below -24 degrees C. We then incubated native bacterial and viral assemblages from winter sea ice for 8 days in brine at a temperature (-12 degrees C) and salinity ( approximately 160 psu) near expected in situ values, monitoring their concentrations microscopically. While different cores yielded different results, consistent with known spatial heterogeneity in sea ice, these experiments provided unambiguous evidence for viral persistence and production, as well as for bacterial growth, in -12 degrees C brine.
Collapse
Affiliation(s)
- Llyd E Wells
- School of Oceanography, University of Washington, Seattle, 98195-7940, USA.
| | | |
Collapse
|
40
|
Abstract
Over the past 50 years there has been much effort invested in the investigation of the ecology of sea ice. Sea ice is an ephemeral feature of the Arctic and Southern Oceans and smaller water bodies such as the Baltic and Caspian Seas. The semisolid ice matrix provides a range of habitats in which a diverse range of microbial organisms thrive. In the past 5 years there has been considerable steps forward in sea-ice research, in particular regarding the analysis of sea-ice microstructure and the investigation of the diversity and adaptation of microbial communities. These studies include: (i) controlled simulated and in situ studies on a micrometer scale to unravel the dynamic of the microhabitat with consequences for the organisms; (ii) the introduction of molecular approaches to uncover the diversity of uncultured still unknown microorganisms; and (iii) studies into the molecular adaptation of selected model organisms to the extreme environment. This minireview presents some of the most recent findings from sea-ice studies within the framework of these aims.
Collapse
Affiliation(s)
- Thomas Mock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | | |
Collapse
|
41
|
Huston AL, Methe B, Deming JW. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol 2004; 70:3321-8. [PMID: 15184127 PMCID: PMC427748 DOI: 10.1128/aem.70.6.3321-3328.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited database on cold-active extracellular proteases from marine bacteria was expanded by successful purification and initial biochemical and structural characterization of a family M1 aminopeptidase (designated ColAP) produced by the marine psychrophile Colwellia psychrerythraea strain 34H. The 71-kDa enzyme displayed a low optimum temperature (19 degrees C) and narrow pH range (pH 6 to 8.5) for activity and greater thermolability than other extracellular proteases. Sequencing of the gene encoding ColAP revealed a predicted amino acid sequence with the highest levels of identity (45 to 55%) to M1 aminopeptidases from mesophilic members of the gamma subclass of the Proteobacteria and the next highest levels of identity (35 to 36%) to leukotriene A(4) hydrolases from mammalian sources. Compared to mesophilic homologs, ColAP had structural differences thought to increase the flexibility for activity in the cold; for example, it had fewer proline residues, fewer ion pairs, and a lower hydrophobic residue content. In addition to intrinsic properties that determine enzyme activity and stability, we also investigated effects of extracellular polymeric substances (EPS) from spent culture medium of strain 34H on ColAP activity at an environmentally relevant temperature (0 degrees C) and at 45 degrees C (the maximum temperature for activity). In both cases, ColAP stability increased significantly in the presence of EPS, indicating the importance of considering environmentally relevant extrinsic factors when enzyme structure and function are investigated.
Collapse
Affiliation(s)
- Adrienne L Huston
- University of Washington School of Oceanography, Seattle, Washington 98195,USA.
| | | | | |
Collapse
|