1
|
Yu D, Liu Y, Cai H, Huang W, Wu H, Yang P. Metagenomic investigation of bacterial laccases in a straw-amended soil. PeerJ 2025; 13:e19327. [PMID: 40313389 PMCID: PMC12045287 DOI: 10.7717/peerj.19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025] Open
Abstract
Background Bacterial laccases play a crucial role in the degradation of lignin and the turnover of soil organic matter. Their advantageous properties make them highly suitable for a wide range of industrial applications. However, the limited identification of these potential enzymes has impeded their full utilization. The straw-amended soil provides materials for the development of bacterial laccases. Methods Metagenomic sequencing of a straw-amended soil was conducted to explore novel bacterial laccases. The putative bacterial laccases were then screened using profile hidden Markov models for further analysis. The most abundant gene, lacS1, was heterologously expressed in Escherichia coli and the recombinant laccase was purified for enzymatic characterization. Results A total of 322 putative bacterial laccases were identified in the straw-amended soil. Among them, 45 sequences had less than 30% identity to any entries in the Carbohydrate-Active Enzyme database and only 4.66% were more than 75% similar to proteins in the NCBI environmental database, exhibiting their novelty. These enzymes were found across various bacterial orders, demonstrating substantial diversity. Phylogenetic analysis revealed a number of the bacterial laccase sequences clustered with homologs characterized by favorable enzymatic properties. Five full-length representative bacterial laccase genes were obtained by modified thermal asymmetric interlaced PCR. The laccase activity of lacS1 was validated. It was a mesophilic enzyme with alkaline stability and halotolerance, indicating its promise for industrial applications. Implications These findings highlight novel bacterial laccase resources with potential for industrial applications and enzyme engineering.
Collapse
Affiliation(s)
- Dali Yu
- Qilu Normal University, Jinan, Shandong, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Liu
- Qilu Normal University, Jinan, Shandong, China
| | - Hongying Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqiu Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Gao L, Jiang F, Zhang Z, Bao T, Zhu D, Wu X. Unlocking lignin valorization and harnessing lignin-based raw materials for bio-manufacturing. SCIENCE CHINA. LIFE SCIENCES 2025; 68:994-1009. [PMID: 39704933 DOI: 10.1007/s11427-024-2792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization. In contrast to chemical catalysts, biological enzymes show promise not only in selectively converting lignin components but also in seamlessly integrating into cellular structures, offering biocatalysis as a potentially efficient pathway for lignin enhancement. This review comprehensively summarizes cutting-edge biostrategies, ligninolytic enzymes, metabolic pathways, and lignin-degrading strains or consortia involved in lignin degradation, while critically evaluating the underlying mechanisms. Metabolic and genetic engineering play crucial roles in redirecting lignin and its derivatives towards metabolic pathways like the tricarboxylic acid cycle, opening up novel avenues for its valorization. Recent advancements in lignin valorization are scrutinized, highlighting key challenges and promising solutions. Furthermore, the review underscores the importance of innovative approaches, such as leveraging digital systems and synthetic biology, to unlock the commercial potential of lignin-derived raw materials as sustainable feedstocks. Artificial intelligence-driven technologies offer promise in overcoming current challenges and driving widespread adoption of lignin valorization, presenting an alternative to sugar-based feedstocks for bio-based manufacturing in the future. The utilization of available lignin residue for synthesis of high-value chemicals or energy, even alternative food, addresses various crises looming in the food-energy-water nexus.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Fangting Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Zhou X, Yu Z, Zhai K, Deng W, Zhuang L, Wang Y, Zhang Q, Zhou S. Thermophilic bacteria contributing to humus accumulation in hyperthermophilic aerobic fermentation of mushroom residue. BIORESOURCE TECHNOLOGY 2025; 418:131957. [PMID: 39647712 DOI: 10.1016/j.biortech.2024.131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
The purpose of this study is to clarify the roles of thermophilic bacteria in humification during hyperthermophilic composting (HTC) of organic wastes mainly composed of mushroom residue. Results showed that HTC with a long hyperthermophilic (>80°C) period lasting for 18 days produced 83 mg/g of humus in compost on day 27, significantly higher than that of thermophilic composting (TC, 9.7 mg/g). Machine learning models identified that the dominant thermophiles belonging to Bacillaceae, Sporolactobacillaceae, Thermaerobacteraceae, Paenibacillaceae families and the unique thermophiles (Thermus and Calditerricola) in HTC played important roles in accumulating stubborn and soluble humus including humic acid and fulvic acid. Hyperthermophilic fermentation not only recruited and enriched these thermophilic bacteria to rapidly degrade organic matter into bioavailable nutrients, but also upregulated the metabolic pathways relevant to the generation and oxidation of precursors including amino acids that would be polymerized into humus, thus efficiently converting organic waste into humus-rich compost.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China.
| | - Kaipeng Zhai
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Yueqiang Wang
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Qiang Zhang
- Fujian Zhiqing Ecological Environment Protection Co., Ltd., Fuqing 350307, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Miranda-Zaragoza B, Huerta-Miranda GA, García-García WI, Hernández-Álvarez E, Solano-Peralta A, Lee J, Strynadka N, Miranda-Hernández M, Rodríguez-Almazán C. Structure-Function Relationship of the β-Hairpin of Thermus thermophilus HB27 Laccase. Int J Mol Sci 2025; 26:735. [PMID: 39859450 PMCID: PMC11766367 DOI: 10.3390/ijms26020735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper. C1Tth-Lac showed a higher dependency on copper, increasing its activity by 1600-fold for syringaldazine (SGZ). All mutants presented a higher activity than Tth-Lac with phenolic substrates in the presence of copper. The position of the signal associated with CuT2 also changed, as shown in EPR spectra. Elucidation of the crystal structure of P1Tth-Lac mutant (PDB: 9CPM) showed that the partial deletion of the β-hairpin did not significantly affect the overall tertiary structure compared to the wild-type (PDB: 2xu9) nor the coordination of the four internally bound Cu atoms. Higher B-factors of the residues downstream of the deletion indicate increased flexibility (Q307, G308, P309, S310) that were otherwise more ordered in the Tth-Lac structure. Redox potential experiments on platinum electrodes have shown that all proteins have high redox potential, a finding that could have significant implications in the field of protein research.
Collapse
Affiliation(s)
- Beatriz Miranda-Zaragoza
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Guillermo A. Huerta-Miranda
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Wendy I. García-García
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Elizabeth Hernández-Álvarez
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico;
| | - Alejandro Solano-Peralta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico;
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.L.); (N.S.)
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.L.); (N.S.)
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Claudia Rodríguez-Almazán
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| |
Collapse
|
5
|
Tiwari A, Krisnawati DI, Widodo, Cheng TM, Kuo TR. Precision Thermostability Predictions: Leveraging Machine Learning for Examining Laccases and Their Associated Genes. Int J Mol Sci 2024; 25:13035. [PMID: 39684743 DOI: 10.3390/ijms252313035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Laccases, multi-copper oxidases, play pivotal roles in the oxidation of a variety of substrates, impacting numerous biological functions and industrial processes. However, their industrial adoption has been limited by challenges in thermostability. This study employed advanced computational models, including random forest (RF) regressors and convolutional neural networks (CNNs), to predict and enhance the thermostability of laccases. Initially, the RF model estimated melting temperatures with a training mean squared error (MSE) of 13.98, and while it demonstrated high training accuracy (93.01%), the test and validation MSEs of 48.81 and 58.42, respectively, indicated areas for model optimization. The CNN model further refined these predictions, achieving lower training and validation MSEs, thus demonstrating enhanced capability in discerning complex patterns within genomic sequences indicative of thermostability. The integration of these models not only improved prediction accuracy but also provided insights into the critical determinants of enzyme stability, thereby supporting their broader industrial application. Our findings underscore the potential of machine learning in advancing enzyme engineering, with implications for enhancing industrial enzyme stability.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia
| | - Widodo
- Sekolah Tinggi Teknologi Pomosda, Nganjuk 64483, East Java, Indonesia
| | - Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Takafuji Y, Fischer T, Miyazaki K, Honda K. Complete genome sequences of Thermus thermophilus strains isolated from Shirahama Hot Spring in Japan. Microbiol Resour Announc 2024; 13:e0031624. [PMID: 38990021 PMCID: PMC11320934 DOI: 10.1128/mra.00316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
We isolated six Thermus thermophilus strains from Shirahama Hot Spring in Japan. Complete genome sequences, determined by combining Oxford Nanopore long-read and Illumina short-read sequence data, revealed that they showed >99.9% average nucleotide identities with each other and approximately 97% to the genome of the type strain HB8T.
Collapse
Affiliation(s)
- Yuki Takafuji
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Tim Fischer
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Kentaro Miyazaki
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Suita, Osaka, Japan
| |
Collapse
|
7
|
Abdi Dezfouli R, Esmaeilidezfouli E. Optimizing laccase selection for enhanced outcomes: a comprehensive review. 3 Biotech 2024; 14:165. [PMID: 38817737 PMCID: PMC11133268 DOI: 10.1007/s13205-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Despite their widespread applications in sectors such as pulp and paper, textile, food and beverage, pharmaceuticals, and biofuel production, laccases encounter challenges related to their activity and stability under varying reaction conditions. This review accumulates data on the complex interplay between laccase characteristics and reaction conditions for maximizing their efficacy in diverse biotechnological processes. Benefits of organic media such as improved substrate selectivity and reaction control, and their risks such as enzyme denaturation and reduced activity are reported. Additionally, the effect of reaction conditions such as pH and temperature on laccase activity and stability are gathered and reported. Sources like Bacillus pumilus, Alcaligenes faecalis, Bacillus clausii, and Bacillus tequilensis SN4 are producing laccases that are both thermo-active and alkali-active. Additionally, changes induced by the presence of various substances within reaction media such as metals, inhibitors, and organic solvents are also reported. Bacillus pumilus and Bacillus licheniformis LS04 produce the most resistant laccases in this case. Finally, the remarkable laccases have been highlighted and the proper laccase source for each industrial application is suggested. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04015-5.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, 1411413137, Iran
| | - Ensieh Esmaeilidezfouli
- Microbial Biotechnology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Zhang K, Li J, Wang Z, Xie B, Xiong Z, Li H, Ahmed M, Fang F, Li J, Li X. Cloning, expression and application of a novel laccase derived from water buffalo ruminal lignin-degrading bacteria. Int J Biol Macromol 2024; 266:131109. [PMID: 38531520 DOI: 10.1016/j.ijbiomac.2024.131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Water buffalo is the only mammal found to degrade lignin so far, and laccase plays an indispensable role in the degradation of lignin. In this study, multiple laccase genes were amplified based on the water buffalo rumen derived lignin-degrading bacteria Bacillus cereus and Ochrobactrum pseudintermedium. Subsequently, the corresponding recombinant plasmids were transformed into E. coli expression system BL21 (DE3) for induced expression by Isopropyl-β-D-thiogalactopyranoside (IPTG). After preliminary screening, protein purification and enzyme activity assays, Lac3833 with soluble expression and high enzyme activity was selected to test its characteristics, especially the ability of lignin degradation. The results showed that the optimum reaction temperature of Lac3833 was 40 °C for different substrates. The relative activity of Lac3833 reached the highest at pH 4.5 and pH 5.5 when the substrates were ABTS or 2,6-DMP and guaiacol, respectively. Additionally, Lac3833 could maintain high enzyme activity in different temperatures, pH and solutions containing Na+, K+, Mg2+, Ca2+ and Mn2+. Importantly, compared to negative treatment, recombinant laccase Lac3833 treatment showed that it had a significant function in degrading lignin. In conclusion, this is a pioneering study to produce recombinant laccase with lignin-degrading ability by bacteria from water buffalo rumen, which will provide new insights for the exploitation of more lignin-degrading enzymes.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingfa Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bohan Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zixiang Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mehboob Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China.
| |
Collapse
|
9
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
10
|
Kang J, Shin J, Gray HB, Winkler JR. Resonance Raman spectra of blue copper proteins: Variable temperature spectra of Thermus thermophilus HB27 laccase. J Inorg Biochem 2023; 248:112362. [PMID: 37657184 PMCID: PMC10529995 DOI: 10.1016/j.jinorgbio.2023.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
The resonance Raman (rR) spectra of the oxidized type 1 copper active site (CuT1) in Thermus thermophilus HB27 laccase (Tth-lac) has been determined in the 20 to 80 °C temperature range using 633-nm excitation. The positions and relative intensities of rR peaks are virtually independent of temperature, indicating that CuT1 ligation is robust over the investigated range. The intensity-weighted average of Tth-lac Cu-SCys vibrations (<ν(Cu-SCys)>) = 423 cm-1) is higher than those of most cupredoxins but is comparable to those of other multicopper oxidases (MCOs). <ν(Cu-SCys)> values for Tth-lac and several CuT1 centers in cupredoxins and MCOs do not correlate well with Cu-SCys bond lengths but do exhibit systematic trends with redox thermodynamic properties. PROLOGUE: F. Ann Walker was a great scholar and dear friend. While at Columbia in the early 1960s, I (HBG) followed her graduate work at Brown on the effects of axial ligands on vanadyl ion EPR spectra. Dick Carlin, her thesis adviser, invited me to serve as external member of her thesis committee. I joined, made my way to Providence, met her just before the exam, and greatly admired (enjoyed!) her thoughtful responses to questions from physical chemists about metal-oxo electronic structures. Our friendship grew stronger over the years, enhanced by lively discussions of heme protein chemistry in San Francisco, Pasadena, Tucson, and at Gordon Research Conferences. Ann was a superstar in biological inorganic chemistry. She will be sorely missed but not forgotten.
Collapse
Affiliation(s)
- Janice Kang
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jieun Shin
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Cortés-Antiquera R, Márquez SL, Espina G, Sánchez-SanMartín J, Blamey JM. Recombinant expression and characterization of a new laccase, bioinformatically identified, from the Antarctic thermophilic bacterium Geobacillus sp. ID17. Extremophiles 2023; 27:18. [PMID: 37428266 DOI: 10.1007/s00792-023-01299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.
Collapse
Affiliation(s)
- Rodrigo Cortés-Antiquera
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Jenny M Blamey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile.
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.
| |
Collapse
|
12
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
13
|
Ullah A, Zhang Y, Liu C, Qiao Q, Shao Q, Shi J. Process intensification strategies for green solvent mediated biomass pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128394. [PMID: 36442603 DOI: 10.1016/j.biortech.2022.128394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Demonstrated to be highly effective for lignocellulosic biomass pretreatment, deep eutectic solvent (DES) has attracted increasing attention owing to its advantages of simple synthesis, relatively low chemical cost, and better biocompatibility as compared to certain ionic liquids. Here we provide a critical review of the status of the design/selection of DES for the pretreatment of biomass feedstocks with an emphasis on the process intensification strategies: 1) integration of microwave, ultrasound, and high solid extrusion for pretreating biomass, 2) one-pot DES pretreatment, enzymatic hydrolysis, and fermentation, 3) strategies for DES recycling and product recovery; and 4) recent progress on molecular simulations toward understanding the interactions between DES and biomass compounds such as lignin and cellulose. Lastly, we provide perspectives toward cost-effective, continuous, high-solid, environmental-benign, and industrial-relevant applications and point to future research directions to address the challenges associated with DES pretreatment.
Collapse
Affiliation(s)
- Ahamed Ullah
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Yuxuan Zhang
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Can Liu
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
14
|
Stevens JC, Shi J. Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Front Bioeng Biotechnol 2022; 10:880795. [PMID: 35757805 PMCID: PMC9213733 DOI: 10.3389/fbioe.2022.880795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL [C2C1Im][EtSO4], making it a desirable biocatalyst to be used for lignin valorization. In contrast to [C2C1Im][EtSO4], the biocompatibility of [C2C1Im][OAC] with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C2C1Im][OAc]. In this study, the enzyme surface charges were modified via acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement in laccase activity or stability in [C2C1Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc]- are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C2C1Im][OAc] toward M. thermophila laccase is likely not dependent upon the IL interacting with the enzyme surface.
Collapse
Affiliation(s)
- Joseph C Stevens
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Biochemical and Structural Properties of a High-Temperature-Active Laccase from Bacillus pumilus and Its Application in the Decolorization of Food Dyes. Foods 2022; 11:foods11101387. [PMID: 35626959 PMCID: PMC9141572 DOI: 10.3390/foods11101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
A novel laccase gene isolated from Bacillus pumilus TCCC 11568 was expressed, and the recombinant laccase (rLAC) displayed maximal activity at 80 °C and at pH 6.0 against ABTS. rLAC maintained its structural integrity at a high temperature (355 K) compared to its tertiary structure at a low temperature (325 K), except for some minor adjustments of certain loops. However, those adjustments were presumed to be responsible for the formation of a more open access aisle that facilitated the binding of ABTS in the active site, resulting in a shorter distance between the catalytic residue and the elevated binding energy. Additionally, rLAC showed good thermostability (≤70 °C) and pH stability over a wide range (3.0–10.0), and displayed high efficiency in decolorizing azo dyes that are applicable to the food industry. This work will improve our knowledge on the relationship of structure–function for thermophilic laccase, and provide a candidate for dye effluent treatment in the food industry.
Collapse
|
16
|
Chang F, Wu L, Xiong Z, Yang Y, Xia X, Wu Q, Ge C, Chen H. Light-induced expression of a novel marine laccase in Escherichia coli from Marinomonas profundimaris and its application in synthetic dye decolorization. Protein Expr Purif 2022; 197:106108. [DOI: 10.1016/j.pep.2022.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
17
|
Wang Z, Ren D, Yu H, Zhang S, Zhang X, Chen W. Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Chopra NK, Sondhi S. Cloning, expression and characterization of laccase from Bacillus licheniformis NS2324 in E. coli application in dye decolorization. Int J Biol Macromol 2022; 206:1003-1011. [PMID: 35337908 DOI: 10.1016/j.ijbiomac.2022.03.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Laccase gene from Bacillus licheniformis NS2324 was cloned and expressed in E. coli by using pUC 18 as cloning vector and pet 15b as expression vector. The purified recombinant laccase (rLacNS2324) showed a molecular mass of 66 KDa. The optimum pH and temperature for rLacNS2324 was found to be pH 8 and 40 °C respectively. The half life of rLacNS2324 at pH 7, 8 and 9 is 24 h. The half life of laccase at 45 °C is 8 h. Laccase activity was increased in the presence of Cu2+ (135.3%), Mn2+ (283.76%), and Co2+ (199.96%) at 5 mM of concentration, but inhibited to 17.01% in the presence of 5 mM Zn2+ ions. rLacNS2324 was found tolerant to NaCl and NaI. Among the inhibitors, it was found to be tolerant to EDTA, however, its activity was inhibited in the presence of sodium azide, dithiothreitol and β-mercapethanol. rLacNS2324 was able to decolorize a bromophenol blue by 85% and phenol red by 75% in 1 h without any mediator. Methylene blue was almost completely degraded (99.28% decolorization) by 10 IUml-1 of laccase at 40 °C, pH 8.0 and in time 4 h. Overall rLacNS2324 showed ability to be used industrially to decolorize dyes in an eco-friendly and cost effective way.
Collapse
Affiliation(s)
- Navleen Kaur Chopra
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sonica Sondhi
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, 140307 Mohali, Punjab, India.
| |
Collapse
|
19
|
Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. MATERIALS 2022; 15:ma15030953. [PMID: 35160893 PMCID: PMC8838035 DOI: 10.3390/ma15030953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/16/2023]
Abstract
Lignin is an important commercially produced polymeric material. It is used extensively in both industrial and agricultural activities. Recently, it has drawn much attention from the scientific community. It is abundantly present in nature and has significant application in the production of biodegradable materials. Its wide usage includes drug delivery, polymers and several forms of emerging lignin nanoparticles. The synthesis of lignin nanoparticles is carried out in a controlled manner. The traditional manufacturing techniques are costly and often toxic and hazardous to the environment. This review article highlights simple, safe, climate-friendly and ecological approaches to the synthesis of lignin nanoparticles. The changeable, complex structure and recalcitrant nature of lignin makes it challenging to degrade. Researchers have discovered a small number of microorganisms that have developed enzymatic and non-enzymatic metabolic pathways to use lignin as a carbon source. These microbes show promising potential for the biodegradation of lignin. The degradation pathways of these microbes are also described, which makes the study of biological synthesis much easier. However, surface modification of lignin nanoparticles is something that is yet to be explored. This review elucidates the recent advances in the biodegradation of lignin in the ecological system. It includes the current approaches, methods for modification, new applications and research for the synthesis of lignin and lignin nanoparticles. Additionally, the intricacy of lignin’s structure, along with its chemical nature, is well-described. This article will help increase the understanding of the utilization of lignin as an economical and alternative-resource material. It will also aid in the minimization of solid waste arising from lignin.
Collapse
|
20
|
Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview. Appl Biochem Biotechnol 2022; 194:2336-2356. [DOI: 10.1007/s12010-021-03781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
|
21
|
Roulling F, Godin A, Feller G. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie 2022; 194:118-126. [PMID: 34982982 DOI: 10.1016/j.biochi.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Cuproxidases form a subgroup of the blue multicopper oxidase family. They display disordered methionine-rich loops, not observable in most available crystal structures, which have been suggested to bind toxic Cu(I) ions before oxidation into less harmful Cu(II) by the core enzyme. We found that the location of the Met-rich regions is highly variable in bacterial cuproxidases, but always inserted in solvent exposed surface loops, at close proximity of the conserved T1 copper binding site. We took advantage of the large differences in loop length between cold-adapted, mesophilic and thermophilic oxidase homologs to unravel the function of the methionine-rich regions involved in copper detoxification. Using a newly developed anaerobic assay for cuprous ions, it is shown that the number of Cu(I) bound is nearly proportional to the loop lengths in these cuproxidases and to the number of potential Cu(I) ligands in these loops. In order to substantiate this relation, the longest loop in the cold-adapted oxidase was deleted, lowering bound extra Cu(I) from 9 in the wild-type enzyme to 2-3 Cu(I) in deletion mutants. These results demonstrate that methionine-rich loops behave as molecular octopus scavenging toxic cuprous ions in the periplasm and that these regions are essential components of bacterial copper resistance.
Collapse
Affiliation(s)
- Frédéric Roulling
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Amandine Godin
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium.
| |
Collapse
|
22
|
Complete Genome Resequencing of Thermus thermophilus Strain TMY by Hybrid Assembly of Long- and Short-Read Sequencing Technologies. Microbiol Resour Announc 2021; 10:e0097921. [PMID: 34792380 PMCID: PMC8601142 DOI: 10.1128/mra.00979-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complete genome resequencing was conducted for Thermus thermophilus strain TMY by hybrid assembly of Oxford Nanopore Technologies long-read and MGI short-read data. Errors in the previously reported genome sequence determined by PacBio technology alone were corrected, allowing for high-quality comparative genomic analysis of closely related T. thermophilus genomes.
Collapse
|
23
|
Sharma V, Pugazhenthi G, Vasanth D. Production and characterization of a novel thermostable laccase from Bacillus licheniformis VNQ and its application in synthesis of bioactive 1,4-naphthoquinones. J Biosci Bioeng 2021; 133:8-16. [PMID: 34629297 DOI: 10.1016/j.jbiosc.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Bacterial laccases have proven to be a potential biocatalyst for various industrial applications due to their remarkable catalytic and stability properties. In this study, a novel thermostable laccase was produced from the bacterium Bacillus licheniformis VNQ by submerged fermentation. The specific activity of crude and purified laccase was found to be 13.17 U mg-1 and 83.47 U mg-1, respectively. The enzyme possessed a molecular mass of ∼48 kDa when characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and pH for enzyme activity was determined to be 55°C and 5.0, respectively. The enzyme was considered to be thermo-tolerant as it possessed a half-life of 4 h at 70°C. The enzyme was utilized for the oxidative biotransformation of in situ synthesized p-quinones to biologically active compounds, 1,4-naphthoquinone and its derivative. The obtained products were characterized using nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A high yield of naphthoquinones (74.93 ± 1.2%) with 1,4-naphthoquinone (60.61 ± 1.0%), and its derivative 2-hydroxy-1,4-naphthoquinone (14.32 ± 0.2%) was obtained at the optimized reaction conditions.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Gopal Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dhakshinamoorthy Vasanth
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
24
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
25
|
Wang Z, Ren D, Jiang S, Yu H, Cheng Y, Zhang S, Zhang X, Chen W. The study of laccase immobilization optimization and stability improvement on CTAB-KOH modified biochar. BMC Biotechnol 2021; 21:47. [PMID: 34353307 PMCID: PMC8343897 DOI: 10.1186/s12896-021-00709-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. RESULTS In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78%. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40% of relative activity (4 °C, 30 days) and more than 50% of relative activity at pH 2.0-6.0. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1% of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min- 1) and higher t1/2 values (252.0 min) than the k value (0.00573 min- 1) and t1/2 values (121.0 min) of free laccase. CONCLUSIONS We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China. .,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Yaohui Cheng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
26
|
Bhatia S, Yadav SK. Novel catalytic potential of a hyperthermostable mono‑copper oxidase (LPMO-AOAA17) for the oxidation of lignin monomers and depolymerisation of lignin dimer in aqueous media. Int J Biol Macromol 2021; 186:563-573. [PMID: 34273339 DOI: 10.1016/j.ijbiomac.2021.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Lytic polysaccharide monooxygenase (LPMO) are mono‑copper enzymes known for the oxidative cleavage of recalcitrant polysaccharides with their intriguing and unique catalytic chemistry. Such impeccable oxidation potential has made them highly valuable in the enzymatic consortia for the degradation of ligno-cellulosic biomass. Bioinformatic analysis has revealed an unannotated LPMO gene in the genome of A. oryzae. Multiple sequence alignment showed the presence of conserved "histidine brace" of LPMO in the amino acid sequence of the enzyme. The enzyme, named as LPMO-AOAA17 was recombinantly expressed in E. coli BL21 and characterised for its substrate specificity. Recombinant enzyme did not show any characteristic cleavage of polysaccharides. However, it was found to be oxidising broad range of phenolic and non-phenolic monomers of lignin. Biochemical study revealed the optimum activity of LPMO-AOAA17 at pH 7 and was highly stable and active at 100 °C. The enzyme LPMO-AOAA17 was also observed to be stable after autoclaving at 121 °C and 15 psi. Thermal stability of the LPMO-AOAA17 was further confirmed through differential scanning calorimetry. GC-MS analysis has confirmed the catalysis of LPMO-AOAA17 for the depolymerisation of lignin dimer, guaicyl glycerol β-guaicyl ether into guaiacol. This study has first time documented the identification of a hyperthermostable LPMO for oxidative cleavage of β-O-4 linkage of lignin compounds to form aromatic products in aqueous media.
Collapse
Affiliation(s)
- Simran Bhatia
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
27
|
Miranda-Blancas R, Avelar M, Rodriguez-Arteaga A, Sinicropi A, Rudiño-Piñera E. The β-hairpin from the Thermus thermophilus HB27 laccase works as a pH-dependent switch to regulate laccase activity. J Struct Biol 2021; 213:107740. [PMID: 33962016 DOI: 10.1016/j.jsb.2021.107740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
The multi-copper oxidase from the hyper-thermophilic bacteria Thermus thermophilus (Tth-MCO), has been previously characterized and described as an example of a laccase with low catalytic properties, especially when it is compared with the activity of fungal laccases, but it is active at high temperatures. Structurally, Tth-MCO has a unique feature: a β-hairpin near the T1Cu site, which is not present in any other laccases deposited at the PDB. This β-hairpin has an expected crystallographic behavior in solvent-exposed areas of a crystallized protein: lack of electron density, high B-values and several crystalline contacts with neighboring crystallographic copies; however, its dynamical behavior in solution and its biological implications have not been described. Here, we describe four new Tth-MCO crystallographic structures, and the β-hairpin behavior has been analyzed by molecular dynamics simulations, considering the effect of pH and temperature. The β-hairpin new crystallographic conformations described here, together with their dynamics, were used to understand the pH-restrained laccase activity of Tth-MCO against substrates as syringaldazine. Remarkably, there are insertions in laccases from Thermus and Meiothermus genus, sharing the same position and a methionine-rich composition of the Tth-MCO β-hairpin. This unique high methionine content of the Tth-MCO β-hairpin is responsible to coordinate, Ag+1 and Hg+1 in oxidative conditions, but Cu+1 and Cu+2 are not coordinated in crystallographic experiments, regardless of the redox conditions; however, Ag+1 addition does not affect Tth-MCO laccase activity against syringaldazine. Here, we propose that the pH-dependent β-hairpin dynamical behavior could explain, at least in part, the inefficient laccase activity displayed by Tth-MCO in acidic pH values.
Collapse
Affiliation(s)
- R Miranda-Blancas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico; Instituto de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, 1001 Universidad Av., Cuernavaca, Morelos 62209, Mexico
| | - M Avelar
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - A Rodriguez-Arteaga
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico
| | - A Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - E Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
28
|
Complete Genome Sequences of Thermus thermophilus Strains HB5002 and HB5008, Isolated from Mine Hot Spring in Japan. Microbiol Resour Announc 2021; 10:10/16/e00272-21. [PMID: 33888507 PMCID: PMC8063650 DOI: 10.1128/mra.00272-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We isolated Thermus thermophilus strains HB5002 and HB5008 from Mine Hot Spring in Japan. Whole-genome sequencing revealed that they showed ∼100% average nucleotide identity to each other, ≥98.53% to the T. thermophilus strains originating from the same spot, but ≤97.64% to the T. thermophilus strains from geographically different places in Japan. We isolated Thermus thermophilus strains HB5002 and HB5008 from Mine Hot Spring in Japan. Whole-genome sequencing revealed that they showed ∼100% average nucleotide identity to each other, ≥98.53% to the T. thermophilus strains originating from the same spot but ≤97.64% to the T. thermophilus strains from geographically different places in Japan.
Collapse
|
29
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
30
|
Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation. Extremophiles 2021; 25:203-219. [PMID: 33768388 DOI: 10.1007/s00792-021-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Technological advances in the field of life sciences have led to discovery of organisms that live in harsh environmental conditions referred to as extremophiles. These organisms have adapted themselves to thrive in extreme habitat giving these organisms an advantage over conventional mesophilic organisms in various industrial applications. Extremozymes produced by these extremophiles have high tolerance to inhospitable environmental conditions making them an ideal enzyme system for various industrial processes. A notable application of these extremophiles and extremozymes is their use in the degradation of recalcitrant lignocellulosic biomass and application in biorefineries. For maximum utilization of the trapped carbon source from this obstinate biomass, pretreatment is a necessary step that requires various physiochemical and enzymatic treatments. From search for novel extremophiles and extremozymes to development of various genetic and protein engineering techniques, investigation on extremozymes with enhanced stability and efficiency is been done. Since extremozymes are easily calibrated to work under such conditions, they have become an emerging topic in the research field of biofuel production. The review discusses the various extremozymes that play an important role in lignocellulose degradation along with recent studies on their molecular and genetic evolution for industrial application and production of biofuels and various value-added products.
Collapse
|
31
|
Complete Genome Sequence of Thermus thermophilus Strain HB5018, Isolated from Mine Hot Spring in Japan. Microbiol Resour Announc 2021; 10:10/10/e00039-21. [PMID: 33707321 PMCID: PMC7953284 DOI: 10.1128/mra.00039-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We isolated Thermus thermophilus strain HB5018 from Mine Hot Spring in Japan, where the type strain HB8 was isolated nearly half a century ago. The complete genome sequence of HB5018 showed 99.1% average nucleotide identity with HB8, suggesting strict species conservation in the habitat over the past 50 years. We isolated Thermus thermophilus strain HB5018 from Mine Hot Spring in Japan, where the type strain HB8 was isolated nearly half a century ago. The complete genome sequence of HB5018 showed 99.1% average nucleotide identity with HB8, suggesting strict species conservation in the habitat over the past 50 years.
Collapse
|
32
|
Zhang Y, Dai Z, Zhang S, Yang X. The catalytic properties of Thermus thermophilus SG0.5JP17-16 laccase were regulated by the conformational dynamics of pocket loop 6. Biochim Biophys Acta Gen Subj 2021; 1865:129872. [PMID: 33588000 DOI: 10.1016/j.bbagen.2021.129872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Laccase is one member of the blue multicopper oxidase family. It can catalyze the oxidation of various substrates. The Thermus thermophilus SG0.5JP17-16 laccase (lacTT) is thermostable, pH-stable, and high tolerance to halides, and can decolorize the synthetic dyes. In lacTT, the function of the loop 6 constructing the substrate-binding pocket wasn't clear. METHODS The residues Asp394 and Asp396 located in loop 6, and were used to probe how the loop 6 influenced catalytic properties of the laccase. Site-directed mutagenesis was performed for two amino acids. Kinetic assay was utilized to characterize the catalytic efficiency of mutants. Mutants with different catalytic activities were used to decolorize the synthetic dyes to clarify the relationship between the catalytic efficiency and dye decolorization. Redox potential, structural and spectral analyses were performed to explain the differences in laccase activity between wild type and mutant enzymes. RESULTS D394M, D394E and D394R mutants with the lower laccase activity displayed a decreased decolorization efficiency, while D396A, D396M and D396E mutant enzymes with higher catalytic efficiency decolorized the synthetic dye more efficiently than the wild type enzyme. CONCLUSIONS The pocket loop 6 might experience a conformational dynamics. The D394 residue controlled this conformation change by amino acid interaction networks containing the D396 residue at the entrance of substrate channel. GENERAL SIGNIFICANCES These studies may provide clues to improve the activity of the laccase for the better use in industrial applications, and/or contribute to further understanding the mechanism of laccase oxidation on the substrate.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhuojun Dai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Shumin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
33
|
Mutations in the coordination spheres of T1 Cu affect Cu 2+-activation of the laccase from Thermus thermophilus. Biochimie 2021; 182:228-237. [PMID: 33535124 DOI: 10.1016/j.biochi.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.
Collapse
|
34
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
35
|
Espina G, Cáceres-Moreno P, Mejías-Navarrete G, Ji M, Sun J, Blamey JM. A novel and highly active recombinant spore-coat bacterial laccase, able to rapidly biodecolorize azo, triarylmethane and anthraquinonic dyestuffs. Int J Biol Macromol 2020; 170:298-306. [PMID: 33347931 DOI: 10.1016/j.ijbiomac.2020.12.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023]
Abstract
Laccases are enzymes able to catalyze the oxidation of a wide array of phenolic and non-phenolic compounds using oxygen as co-substrate and releasing water as by-product. They are well known to have wide substrate specificity and in recent years, have gained great biotechnological importance. To date, most well studied laccases are from fungal and mesophilic origin, however, enzymes from extremophiles possess an even greater potential to withstand the extreme conditions present in many industrial processes. This research work presents the heterologous production and characterization of a novel laccase from a thermoalkaliphilic bacterium isolated from a hot spring in a geothermal site. This recombinant enzyme exhibits remarkably high specific activity (>450,000 U/mg) at 70 °C, pH 6.0, using syringaldazine substrate, it is active in a wide range of temperature (20-90 °C) and maintains over 60% of its activity after 2 h at 60 °C. Furthermore, this novel spore-coat laccase is able to biodecolorize eight structurally different recalcitrant synthetic dyes (Congo red, methyl orange, methyl red, Coomassie brilliant blue R250, bromophenol blue, malachite green, crystal violet and Remazol brilliant blue R), in just 30 min at 40 °C in the presence of the natural redox mediator acetosyringone.
Collapse
Affiliation(s)
- Giannina Espina
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile.
| | | | | | - Minghua Ji
- Green Chemical Engineering Technology R&D Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Haike Road 99, Pudong, Shanghai 201210, China
| | - Junsong Sun
- Green Chemical Engineering Technology R&D Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Haike Road 99, Pudong, Shanghai 201210, China
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
36
|
Wang J, Chang F, Tang X, Li W, Yin Q, Yang Y, Hu Y. Bacterial laccase of Anoxybacillus ayderensis SK3-4 from hot springs showing potential for industrial dye decolorization. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01593-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Laccases are green biocatalysts that possess attractive for the treatment of resistant environmental pollutants and dye effluents.
Purpose
To exploit the laccase of Anoxybacillus ayderensis SK3-4 that possesses dye decolorization ability at room and higher temperature, we characterized the enzyme in considerable detail and investigated its ability to decolorize different dyes.
Results
A bacterial laccase gene designed as LacAn from Anoxybacillus ayderensis SK3-4 of hot springs was cloned and expressed in Escherichia coli. LacAn is a monomeric protein with a molecular weight of 29.8 kDa. The optimum pH and temperature for syringaldazine oxidation were 7.0 and 75 °C, respectively. LacAn was stable at pH values ranging from 6.5 to 8.5 above 65 °C. The enzyme activity was significantly enhanced by Cu2+ and Mg2+ but inhibited by Zn2+ and Fe2+. Furthermore, LacAn showed high decolorization capability toward five dyes (direct blue 6, acid black 1, direct green 6, direct black 19, and acid blue 93) in the absence of redox mediators. It also demonstrated a wide temperature range, and it can retain its high decolorization ability even at high temperatures.
Conclusions
These properties including better enzymatic properties and efficiency to decolorize dyes demonstrate that the bacterial laccase LacAn has potentials for further industrial applications.
Collapse
|
37
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Borges PT, Brissos V, Hernandez G, Masgrau L, Lucas MF, Monza E, Frazão C, Cordeiro TN, Martins LO. Methionine-Rich Loop of Multicopper Oxidase McoA Follows Open-to-Close Transitions with a Role in Enzyme Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Emanuele Monza
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
39
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
40
|
Li X, Liu D, Wu Z, Li D, Cai Y, Lu Y, Zhao X, Xue H. Multiple Tolerance and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus. J Microbiol Biotechnol 2020; 30:615-621. [PMID: 31986565 PMCID: PMC9728370 DOI: 10.4014/jmb.1910.10061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60°C with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.
Collapse
Affiliation(s)
- Xingxing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dongliang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhaowei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yifei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yao Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China,Department of Animal Science, McGill University, Quebec, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China,Corresponding author Phone: +86-29-87080899 Fax: +86-29-87080899 E-mail:
| |
Collapse
|
41
|
Jeon SJ, Park JH. Refolding, characterization, and dye decolorization ability of a highly thermostable laccase from Geobacillus sp. JS12. Protein Expr Purif 2020; 173:105646. [PMID: 32315700 DOI: 10.1016/j.pep.2020.105646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/27/2022]
Abstract
A putative laccase gene (lacG) from Geobacillus sp. JS12 was cloned and expressed as a fusion protein with six histidine residues in Escherichia coli BL21 (DE3) cells, and the protein was primarily found in inclusion bodies. The resulting insoluble proteins were solubilized with 6 M guanidine HCl and refolded using an on-column refolding procedure. Ni-chelation affinity chromatography found the laccase to be a 30 kDa monomeric protein. Spectrophotometry and electron paramagnetic resonance (EPR) analysis indicated LacG as a multi-copper oxidase, with the usual laccase copper sites, Type 1, 2, and 3 Cu(II). The optimum pH for enzymatic activity was 3.0, 6.0, and 6.5 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The recombinant protein displayed high thermostability, with a heat inactivation half-life of approximately 2 h at 95 °C, and an optimum temperature of 80 °C with 2,6-DMP. Catalytic efficiency (kcat/Km) showed that guaiacol and 2,6-DMP were highly oxidized by the enzyme. The enzymatic reaction was significantly enhanced by Co2+ and Mn2+, while activity was strongly inhibited in the presence of Fe2+, Zn2+, and thiol compounds. LacG decolorized 43% of Congo red and 14% of Malachite green, and the addition of ABTS as a redox mediator dramatically increased the dye decolorization efficiency.
Collapse
Affiliation(s)
- Sung-Jong Jeon
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea; Department of Smart-Biohealth, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Jong-Hun Park
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| |
Collapse
|
42
|
Granja-Travez RS, Persinoti GF, Squina FM, Bugg TDH. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 2020; 104:3305-3320. [PMID: 32088760 DOI: 10.1007/s00253-019-10318-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
Collapse
Affiliation(s)
- Rommel Santiago Granja-Travez
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| | | | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
43
|
Liu Y, Luo G, Ngo HH, Guo W, Zhang S. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. BIORESOURCE TECHNOLOGY 2020; 298:122511. [PMID: 31839492 DOI: 10.1016/j.biortech.2019.122511] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant aromatic polymers on the Earth, lignin has great potential to produce biofuels and aromatic chemicals due to their high carbon content and low oxygen content. Lignin-first biorefinery methods have attracted increasing attention recently for their high-value of aromatic chemicals, and high biofuels productivity from lignocellulosic wastes. Thermostable laccase has proven to be an excellent alternative catalyst in degrading lignin for its versatile catalytic abilities under industrial conditions and pollution-free by-products. Thermostable laccases can be found in native extreme environments or modified by biologically based technologies such as gene recombination expression and enzyme direct evolution. This review demonstrated thermostable laccases and their application in lignin degradation. Future research should focus more on the investigation of the reaction of thermostable laccases with lignin substrates.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
44
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
45
|
Shin J, Gray HB, Winkler JR. Stability/activity tradeoffs in Thermusthermophilus HB27 laccase. J Biol Inorg Chem 2020; 25:233-238. [PMID: 31970489 DOI: 10.1007/s00775-020-01754-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
We report the temperature dependence of the formal potential of type 1 copper (CuT1) in Thermusthermophilus HB27 laccase. Employing [Ru(NH3)4(bpy)](PF6)2 (0.505 vs. NHE) as the redox titrant, we found that the CuT12+/+ potential decreased from approximately 480 to 420 mV (vs. NHE) as the temperature was raised from 20 to 65 °C. Of importance is that the ΔSrc° of - 120 J mol-1 K-1 is substantially more negative than those for other blue copper proteins. We suggest that the highly unfavorable reduction entropy is attributable to CuT1 inaccessibility to the aqueous medium. Although the active site residues are buried, which is critical for maintaining thermostability, the flexibility around CuT1 is maintained, allowing enzyme activity at ambient temperature.
Collapse
Affiliation(s)
- Jieun Shin
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
46
|
Genome Sequence of Lignin-Degrading Arthrobacter sp. Strain RT-1, Isolated from Termite Gut and Rumen Fluid. Microbiol Resour Announc 2020; 9:9/3/e01442-19. [PMID: 31948970 PMCID: PMC6965588 DOI: 10.1128/mra.01442-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here, we report the genome sequence of Arthrobacter sp. strain RT-1, isolated from a cocktail of termite gut and rumen fluid. Strain RT-1 degrades a variety of lignin monomers and dimers as the growth substrates. The genome annotation predicted the genes necessary for the catabolism of lignin-derived aromatic compounds. Here, we report the genome sequence of Arthrobacter sp. strain RT-1, isolated from a cocktail of termite gut and rumen fluid. Strain RT-1 degrades a variety of lignin monomers and dimers as the growth substrates. The genome annotation predicted the genes necessary for the catabolism of lignin-derived aromatic compounds.
Collapse
|
47
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
48
|
Hitaishi VP, Clément R, Quattrocchi L, Parent P, Duché D, Zuily L, Ilbert M, Lojou E, Mazurenko I. Interplay between Orientation at Electrodes and Copper Activation of Thermus thermophilus Laccase for O2 Reduction. J Am Chem Soc 2019; 142:1394-1405. [DOI: 10.1021/jacs.9b11147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vivek Pratap Hitaishi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Romain Clément
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ludovica Quattrocchi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Philippe Parent
- Aix Marseille Univ, CNRS, CINAM UMR 7325, Campus de Luminy, 13288 Marseille, Cedex 09, France
| | - David Duché
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
| | - Lisa Zuily
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| |
Collapse
|
49
|
Stevens JC, Shi J. Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnol Adv 2019; 37:107418. [DOI: 10.1016/j.biotechadv.2019.107418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
|
50
|
Complete Genome Sequences of Thermus thermophilus Strains AA2-20 and AA2-29, Isolated from Arima Onsen in Japan. Microbiol Resour Announc 2019; 8:8/31/e00820-19. [PMID: 31371550 PMCID: PMC6675998 DOI: 10.1128/mra.00820-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated halophilic and thermophilic Thermus thermophilus strains AA2-20 and AA2-29 from nonvolcanic, oceanic Arima Onsen (hot spring) in Japan. Here, we report the complete genome sequences of these organisms to gain insights into halophilicity. We isolated halophilic and thermophilic Thermus thermophilus strains AA2-20 and AA2-29 from nonvolcanic, oceanic Arima Onsen (hot spring) in Japan. Here, we report the complete genome sequences of these organisms to gain insights into halophilicity.
Collapse
|