1
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
2
|
Finch AJ, Kim JR. Thermophilic Proteins as Versatile Scaffolds for Protein Engineering. Microorganisms 2018; 6:microorganisms6040097. [PMID: 30257429 PMCID: PMC6313779 DOI: 10.3390/microorganisms6040097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/18/2023] Open
Abstract
Literature from the past two decades has outlined the existence of a trade-off between protein stability and function. This trade-off creates a unique challenge for protein engineers who seek to introduce new functionality to proteins. These engineers must carefully balance the mutation-mediated creation and/or optimization of function with the destabilizing effect of those mutations. Subsequent research has shown that protein stability is positively correlated with "evolvability" or the ability to support mutations which bestow new functionality on the protein. Since the ultimate goal of protein engineering is to create and/or optimize a protein's function, highly stable proteins are preferred as potential scaffolds for protein engineering. This review focuses on the application potential for thermophilic proteins as scaffolds for protein engineering. The relatively high inherent thermostability of these proteins grants them a great deal of mutational robustness, making them promising scaffolds for various protein engineering applications. Comparative studies on the evolvability of thermophilic and mesophilic proteins have strongly supported the argument that thermophilic proteins are more evolvable than mesophilic proteins. These findings indicate that thermophilic proteins may represent the scaffold of choice for protein engineering in the future.
Collapse
Affiliation(s)
- Anthony J Finch
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
3
|
Torrents de la Peña A, Sanders RW. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Retrovirology 2018; 15:63. [PMID: 30208933 PMCID: PMC6134781 DOI: 10.1186/s12977-018-0445-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order to survive in extreme environmental conditions.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021 USA
| |
Collapse
|
4
|
Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nat Microbiol 2018; 3:270-280. [PMID: 29463925 DOI: 10.1038/s41564-017-0106-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Khan M, Sathya TA. Extremozymes from metagenome: Potential applications in food processing. Crit Rev Food Sci Nutr 2017; 58:2017-2025. [PMID: 28605203 DOI: 10.1080/10408398.2017.1296408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.
Collapse
Affiliation(s)
- Mahejibin Khan
- a CSIR-Central Food Technological Research Institute-Resource Centre Lucknow , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| | - T A Sathya
- b CSIR-Central Food Technological Research Institute , Mysore , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
6
|
Miller DV, Brown AM, Xu H, Bevan DR, White RH. Purine salvage inMethanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase. Proteins 2016; 84:828-40. [DOI: 10.1002/prot.25033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Danielle V. Miller
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Anne M. Brown
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Huimin Xu
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - David R. Bevan
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Robert H. White
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| |
Collapse
|
7
|
Prediction of the determinants of thermal stability by linear discriminant analysis: the case of the glutamate dehydrogenase protein family. J Theor Biol 2014; 357:160-8. [PMID: 24853273 DOI: 10.1016/j.jtbi.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/21/2022]
Abstract
Little is known about the determinants of thermal stability in individual protein families. Most of the knowledge on thermostability comes, in fact, from comparative analyses between large, and heterogeneous, sets of thermo- and mesophilic proteins. Here, we present a multivariate statistical approach aimed to detect signature sequences for thermostability in a single protein family. It was applied to the glutamate dehydrogenase (GDH) family, which is a good model for investigating this peculiar process. The structure of GDH consists of six subunits, each of them organized into two domains. Formation of ion-pair networks on the surface of the protein subunits, or increase in the inter-subunit hydrophobic interactions, have been suggested as important factors for explaining stability at high temperatures. However, identification of the amino acid changes that are involved in this process still remains elusive. Our approach consisted of a linear discriminant analysis on a set of GDH sequences from Archaea and Bacteria (33 thermo- and 36 mesophilic GDHs). It led to detection of 3 amino acid clusters as the putative determinants of thermal stability. They were localized at the subunit interface or in close proximity to the binding site of the NAD(P)(+) coenzyme. Analysis within the clusters led to prediction of 8 critical amino acid sites. This approach could have a wide utility, in the ligth of the notion that each protein family seems to adopt its own strategy for achieving thermostability.
Collapse
|
8
|
Greenbaum BD, Kumar P, Libchaber A. Using first passage statistics to extract environmentally dependent amino acid correlations. PLoS One 2014; 9:e101665. [PMID: 25000191 PMCID: PMC4084998 DOI: 10.1371/journal.pone.0101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
In this work, we study the first passage statistics of amino acid primary sequences, that is the probability of observing an amino acid for the first time at a certain number of residues away from a fixed amino acid. By using this rich mathematical framework, we are able to capture the background distribution for an organism, and infer lengths at which the first passage has a probability that differs from what is expected. While many features of an organism's genome are due to natural selection, others are related to amino acid chemistry and the environment in which an organism lives, constraining the randomness of genomes upon which selection can further act. We therefore use this approach to infer amino acid correlations, and then study how these correlations vary across a wide range of organisms under a wide range of optimal growth temperatures. We find a nearly universal exponential background distribution, consistent with the idea that most amino acids are globally uncorrelated from other amino acids in genomes. When we are able to extract significant correlations, these correlations are reliably dependent on optimal growth temperature, across phylogenetic boundaries. Some of the correlations we extract, such as the enhanced probability of finding, for the first time, a cysteine three residues away from a cysteine or glutamic acid two residues away from an arginine, likely relate to thermal stability. However, other correlations, likely appearing on alpha helical surfaces, have a less clear physiochemical interpretation and may relate to thermal stability or unusual metabolic properties of organisms that live in a high temperature environment.
Collapse
Affiliation(s)
- Benjamin D. Greenbaum
- Departments of Medicine, Division of Hematology and Medical Oncology, and Pathology, and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America
- * E-mail:
| | - Pradeep Kumar
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
- Department of Physics, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Albert Libchaber
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
9
|
Pedone E, Fiorentino G, Pirone L, Contursi P, Bartolucci S, Limauro D. Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles 2014; 18:723-31. [DOI: 10.1007/s00792-014-0652-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/27/2014] [Indexed: 11/28/2022]
|
10
|
Wijma HJ, Floor RJ, Jekel PA, Baker D, Marrink SJ, Janssen DB. Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel 2014; 27:49-58. [PMID: 24402331 PMCID: PMC3893934 DOI: 10.1093/protein/gzt061] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 11/24/2022] Open
Abstract
The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed using sampling of backbone conformational space, which tripled the number of experimentally stabilizing disulfide bridges. Next, orthogonal in silico screening steps were used to remove chemically unreasonable mutations and mutations that are predicted to increase protein flexibility. The resulting library of 64 variants was experimentally screened, which revealed 21 (pairs of) stabilizing mutations located both in relatively rigid and in flexible areas of the enzyme. Finally, combining 10-12 of these confirmed mutations resulted in multi-site mutants with an increase in apparent melting temperature from 50 to 85°C, enhanced catalytic activity, preserved regioselectivity and a >250-fold longer half-life. The developed Framework for Rapid Enzyme Stabilization by Computational libraries (FRESCO) requires far less screening than conventional directed evolution.
Collapse
Affiliation(s)
- Hein J. Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Robert J. Floor
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter A. Jekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Siewert J. Marrink
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department of Biophysical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Balasco N, Esposito L, De Simone A, Vitagliano L. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Sci 2014; 22:1016-23. [PMID: 23661276 DOI: 10.1002/pro.2279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, I-80134, Italy
| | | | | | | |
Collapse
|
12
|
Bošnjak I, Bojović V, Šegvić-Bubić T, Bielen A. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank. Protein Eng Des Sel 2014; 27:65-72. [PMID: 24407015 DOI: 10.1093/protein/gzt063] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (<200 amino acids) this correlation is negative. Medium-sized proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.
Collapse
Affiliation(s)
- I Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
13
|
Bisht SC, Joshi GK, Haque S, Mishra PK. Cryotolerance strategies of Pseudomonads isolated from the rhizosphere of Himalayan plants. SPRINGERPLUS 2013; 2:667. [PMID: 24363982 PMCID: PMC3868706 DOI: 10.1186/2193-1801-2-667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
Abstract
The cold stress biology of psychrotrophic Pseudomonas strains isolated from the rhizosphere of Himalayan plants have been explored to evaluate their cryotolerance characteristcs. Pseudomonas strains were examined for stress metabolites, viz., exopolysaccharide (EPS) production, intracellular sugar, polyols and amino acid content, ice nucleation activity, and their freezing survival at -10 and -40°C, respectively. High freezing survival was observed for the Pseudomonas strains that were grown at 4°C prior to their freezing at -10 or -40°C. Increased EPS production was noticed when Pseudomonas strains were grown at lower temperatures, i.e., 4 and 15°C, in comparison with their optimal growth temperature of 28°C. All Pseudomonas strains showed low level of type-III class ice nucleation activity at -10°C after 96 h. Considerable differences were noticed in accumulated contents of various intracellular sugars, polyols, amino acids for all Pseudomonas strains when they grown at two different temperatures, i.e., 4 and 28°C, respectively. The unusual complement of stress protectants especially, raffinose, cysteine and aspartic acid that accumulated in the bacterial cells at low temperature was novel and intriguing finding of this study. The finding that raffinose is a key metabolite accumulated at low temperature is an exciting discovery, and to the best of our information this is first report ever signifying its role in bacterial cold tolerance.
Collapse
Affiliation(s)
- Shekhar Chandra Bisht
- Department of Biotechnology, HNB Garhwal University (A Central University), Srinagar, 246174 Uttarakhand India
| | - Gopal Kishna Joshi
- Department of Biotechnology, HNB Garhwal University (A Central University), Srinagar, 246174 Uttarakhand India
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Pankaj Kumar Mishra
- Microbiology & Chemistry Lab, Vivekananda Institute of Hill Agriculture, (ICAR), Almora, 263601 Uttarakhand India
| |
Collapse
|
14
|
Heinemann J, Hamerly T, Maaty WS, Movahed N, Steffens JD, Reeves BD, Hilmer JK, Therien J, Grieco PA, Peters JW, Bothner B. Expanding the paradigm of thiol redox in the thermophilic root of life. Biochim Biophys Acta Gen Subj 2013; 1840:80-5. [PMID: 23962628 DOI: 10.1016/j.bbagen.2013.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The current paradigm of intracellular redox chemistry maintains that cells establish a reducing environment maintained by a pool of small molecule and protein thiol to protect against oxidative damage. This strategy is conserved in mesophilic organisms from all domains of life, but has been confounded in thermophilic organisms where evidence suggests that intracellular proteins have abundant disulfides. METHODS Chemical labeling and 2-dimensional gel electrophoresis were used to capture disulfide bonding in the proteome of the model thermophile Sulfolobus solfataricus. The redox poise of the metabolome was characterized using both chemical labeling and untargeted liquid chromatography mass spectrometry. Gene annotation was undertaken using support vector machine based pattern recognition. RESULTS Proteomic analysis indicated the intracellular protein thiol of S. solfataricus was primarily in the disulfide form. Metabolic characterization revealed a lack of reduced small molecule thiol. Glutathione was found primarily in the oxidized state (GSSG), at relatively low concentration. Combined with genetic analysis, this evidence shows that pathways for synthesis of glutathione do exist in the archaeal domain. CONCLUSIONS In observed thermophilic organisms, thiol abundance and redox poise suggest that this system is not directly utilized for protection against oxidative damage. Instead, a more oxidized intracellular environment promotes disulfide bonding, a critical adaptation for protein thermostability. GENERAL SIGNIFICANCE Based on the placement of thermophilic archaea close to the last universal common ancestor in rRNA phylogenies, we hypothesize that thiol-based redox systems are derived from metabolic pathways originally tasked with promoting protein stability.
Collapse
Affiliation(s)
- Joshua Heinemann
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The role of disulfide bond in hyperthermophilic endocellulase. Extremophiles 2013; 17:593-9. [PMID: 23624891 PMCID: PMC3691470 DOI: 10.1007/s00792-013-0542-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022]
Abstract
The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.
Collapse
|
16
|
Balsera M, Uberegui E, Susanti D, Schmitz RA, Mukhopadhyay B, Schürmann P, Buchanan BB. Ferredoxin:thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria. PLANTA 2013; 237:619-635. [PMID: 23223880 DOI: 10.1007/s00425-012-1803-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
Uncovered in studies on photosynthesis 35 years ago, redox regulation has been extended to all types of living cells. We understand a great deal about the occurrence, function, and mechanism of action of this mode of regulation, but we know little about its origin and its evolution. To help fill this gap, we have taken advantage of available genome sequences that make it possible to trace the phylogenetic roots of members of the system that was originally described for chloroplasts-ferredoxin, ferredoxin:thioredoxin reductase (FTR), and thioredoxin as well as target enzymes. The results suggest that: (1) the catalytic subunit, FTRc, originated in deeply rooted microaerophilic, chemoautotrophic bacteria where it appears to function in regulating CO(2) fixation by the reverse citric acid cycle; (2) FTRc was incorporated into oxygenic photosynthetic organisms without significant structural change except for addition of a variable subunit (FTRv) seemingly to protect the Fe-S cluster against oxygen; (3) new Trxs and target enzymes were systematically added as evolution proceeded from bacteria through the different types of oxygenic photosynthetic organisms; (4) an oxygenic type of regulation preceded classical light-dark regulation in the regulation of enzymes of CO(2) fixation by the Calvin-Benson cycle; (5) FTR is not universally present in oxygenic photosynthetic organisms, and in certain early representatives is seemingly functionally replaced by NADP-thioredoxin reductase; and (6) FTRc underwent structural diversification to meet the ecological needs of a variety of bacteria and archaea.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Warnecke T. Loss of the DnaK-DnaJ-GrpE Chaperone System among the Aquificales. Mol Biol Evol 2012; 29:3485-95. [DOI: 10.1093/molbev/mss152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Liszka MJ, Clark ME, Schneider E, Clark DS. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu Rev Chem Biomol Eng 2012; 3:77-102. [DOI: 10.1146/annurev-chembioeng-061010-114239] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Elizabeth Schneider
- Department of Chemical and Biomolecular Engineering,
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720; , , ,
| | | |
Collapse
|
19
|
Boissier F, Georgescauld F, Moynié L, Dupuy JW, Sarger C, Podar M, Lascu I, Giraud MF, Dautant A. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus. Proteins 2012; 80:1658-68. [DOI: 10.1002/prot.24062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/23/2012] [Accepted: 02/06/2012] [Indexed: 12/19/2022]
|
20
|
Chen W, Li L, Du Z, Liu J, Reitter JN, Mills KV, Linhardt RJ, Wang C. Intramolecular disulfide bond between catalytic cysteines in an intein precursor. J Am Chem Soc 2012; 134:2500-3. [PMID: 22280304 DOI: 10.1021/ja211010g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a self-catalyzed and spontaneous post-translational process in which inteins excise themselves out of precursor proteins while the exteins are ligated together. We report the first discovery of an intramolecular disulfide bond between the two active-site cysteines, Cys1 and Cys+1, in an intein precursor composed of the hyperthermophilic Pyrococcus abyssi PolII intein and extein. The existence of this intramolecular disulfide bond is demonstrated by the effect of reducing agents on the precursor, mutagenesis, and liquid chromatography-mass spectrometry (LC-MS) with tandem MS (MS/MS) of the tryptic peptide containing the intramolecular disulfide bond. The disulfide bond inhibits protein splicing, and splicing can be induced by reducing agents such as tris(2-carboxyethyl)phosphine (TCEP). The stability of the intramolecular disulfide bond is enhanced by electrostatic interactions between the N- and C-exteins but is reduced by elevated temperature. The presence of this intramolecular disulfide bond may contribute to the redox control of splicing activity in hypoxia and at low temperature and point to the intriguing possibility that inteins may act as switches to control extein function.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Widespread disulfide bonding in proteins from thermophilic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:409156. [PMID: 21941460 PMCID: PMC3177088 DOI: 10.1155/2011/409156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 11/17/2022]
Abstract
Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.
Collapse
|
22
|
Lucchetti-Miganeh C, Goudenège D, Thybert D, Salbert G, Barloy-Hubler F. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase. BMC Microbiol 2011; 11:105. [PMID: 21575179 PMCID: PMC3116461 DOI: 10.1186/1471-2180-11-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.
Collapse
Affiliation(s)
- Céline Lucchetti-Miganeh
- CNRS UMR 6026, ICM, Equipe Sp@rte, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
23
|
Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2010; 192:1370-6. [PMID: 20061476 DOI: 10.1128/jb.01035-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thioredoxin reductase and a thioredoxin were purified to homogeneity from a cell extract of Thermotoga maritima. The thioredoxin reductase was a homodimeric flavin adenine dinucleotide (FAD)-containing protein with a subunit of 37 kDa estimated using SDS-PAGE, which was identified to be TM0869. The amino acid sequence of the enzyme showed high identities and similarities to those of typical bacterial thioredoxin reductases. Although the purified T. maritima thioredoxin reductase could not use thioredoxin from Spirulina as an electron acceptor, it used thioredoxin that was purified from T. maritima by monitoring the dithiothreitol-dependent reduction of bovine insulin. This enzyme also catalyzed the reduction of benzyl viologen using NADH or NADPH as an electron donor with apparent V(max) values of 1,111 +/- 35 micromol NADH oxidized min(-1)mg(-1) and 115 +/- 2.4 micromol NADPH oxidized min(-1)mg(-1), respectively. The apparent K(m) values were determined to be 89 +/- 1.1 microM, 73 +/- 1.6 microM, and 780 +/- 20 microM for benzyl viologen, NADH, and NADPH, respectively. Optimal pH values were determined to be 9.5 and 6.5 for NADH and NADPH, respectively. The enzyme activity increased along with the rise of temperature up to 95 degrees C, and more than 60% of the activity remained after incubation for 28 h at 80 degrees C. The purified T. maritima thioredoxin was a monomer with a molecular mass of 31 kDa estimated using SDS-PAGE and identified as TM0868, which exhibited both thioredoxin and thioltransferase activities. T. maritima thioredoxin and thioredoxin reductase together were able to reduce insulin or 5,5'-dithio-bis(2-nitrobenzoic acid) using NAD(P)H as an electron donor. This is the first thioredoxin-thioredoxin reductase system characterized from hyperthermophilic bacteria.
Collapse
|
24
|
Wouters MA, Fan SW, Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 2010; 12:53-91. [PMID: 19634988 DOI: 10.1089/ars.2009.2510] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30-40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redox-sensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.
Collapse
Affiliation(s)
- Merridee A Wouters
- Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | | | |
Collapse
|
25
|
Thangudu RR, Manoharan M, Srinivasan N, Cadet F, Sowdhamini R, Offmann B. Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families. BMC STRUCTURAL BIOLOGY 2008; 8:55. [PMID: 19111067 PMCID: PMC2628669 DOI: 10.1186/1472-6807-8-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 12/26/2008] [Indexed: 11/22/2022]
Abstract
Background Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.
Collapse
Affiliation(s)
- Ratna R Thangudu
- Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, BP 7151, 15 avenue René Cassin, 97715 Saint Denis Messag Cedex 09, La Réunion, France.
| | | | | | | | | | | |
Collapse
|
26
|
Ruggiero A, Masullo M, Ruocco MR, Grimaldi P, Lanzotti MA, Arcari P, Zagari A, Vitagliano L. Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: a thermostable protein with two functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:554-62. [PMID: 19110078 DOI: 10.1016/j.bbapap.2008.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Recent investigations have demonstrated that disulfide bridges may play a crucial role in the stabilization of proteins in hyperthermophilic organisms. A major role in the process of disulfide formation is played by ubiquitous proteins belonging to the thioredoxin superfamily, which includes thioredoxins (Trx), thioredoxin reductases (TrxR), and disulfide oxidases/isomerases (PDO/PDI). Here we report a characterization of the structure and stability of the TrxR (SsTrxRB3) isolated from the archaeon Sulfolobus solfataricus. This protein is particularly interesting since it is able to process different substrates (Trxs and PDO) and it is endowed with an additional NADH oxidase activity. The crystal structure of the wild-type enzyme, of its complex with NADP and of the C147A mutant provides interesting clues on the enzyme function. In contrast to what is observed for class II TrxRs, in the structure of the oxidized enzyme, the FAD binding site is occupied by a partially disordered NAD molecule. In the active site of the C147A mutant, which exhibits a marginal NADH oxidase activity, the FAD is canonically bound to the enzyme. Molecular modeling indicates that a FAD molecule can be accommodated in the site of the reduced SsTrxRB3. Depending on the oxidation state, SsTrxRB3 can bind a different cofactor in its active site. This peculiar feature has been related to its dual activity. Denaturation experiments followed by circular dichroism indicate that electrostatic interactions play an important role in the stabilization of this thermostable protein. The analysis of the enzyme 3D-structure has also provided insights into the bases of SsTrxRB3 stability.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
28
|
Structures and functional implications of an AMP-binding cystathionine beta-synthase domain protein from a hyperthermophilic archaeon. J Mol Biol 2008; 380:181-92. [PMID: 18513746 DOI: 10.1016/j.jmb.2008.04.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase domains are found in a myriad of proteins from organisms across the tree of life and have been hypothesized to function as regulatory modules that sense the energy charge of cells. Here we characterize the structure and stability of PAE2072, a dimeric tandem cystathionine beta-synthase domain protein from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Crystal structures of the protein in unliganded and AMP-bound forms, determined at resolutions of 2.10 and 2.35 A, respectively, reveal remarkable conservation of key functional features seen in the gamma subunit of the eukaryotic AMP-activated protein kinase. The structures also confirm the presence of a suspected intermolecular disulfide bond between the two subunits that is shown to stabilize the protein. Our AMP-bound structure represents a first step in investigating the function of a large class of uncharacterized prokaryotic proteins. In addition, this work extends previous studies that have suggested that, in certain thermophilic microbes, disulfide bonds play a key role in stabilizing intracellular proteins and protein-protein complexes.
Collapse
|