1
|
Wang Q, Zhang J, Liang J, Wang Y, Ren C, Chen X, Cheng D, Zhang H, Liu H. Genomic Insights into Selenate Reduction by Anaerobacillus Species. Microorganisms 2025; 13:659. [PMID: 40142551 PMCID: PMC11944866 DOI: 10.3390/microorganisms13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Selenium (Se), a potentially toxic trace element, undergoes complex biogeochemical cycling in the environment, largely driven by microbial activity. The reduction in selenate or selenite to elemental selenium is an environmentally beneficial process, as it decreases both Se toxicity and mobility. This reduction is catalyzed by enzymes encoded by various related genes. The link between Se reduction gene clusters and specific taxonomic groups is significant for elucidating the ecological roles and processes of Se reduction in diverse environments. In this study, a new species of Se-reducing microorganism belonging to the genus Anaerobacillus was isolated from a mining site. A comparative analysis of the growth characteristics reveals that Anaerobacillus species exhibit notable metabolic versatility, particularly in their fermentation abilities and utilization of diverse electron donors and acceptors. Genome analysis identified a diverse array of gene clusters associated with selenate uptake (sul, pst), selenate reduction (ser), and selenite reduction (hig, frd, trx, and bsh). Since selenate reduction is the first crucial step in Se reduction, genes linked to selenate reductase are the focus. The serA gene clusters analysis suggests that the serA gene is highly conserved across Anaerobacillus species. The surrounding genes of serA show significant variability in both presence and gene size. This evolutionary difference in coenzyme utilization and serA regulation suggests distinct survival strategies among Anaerobacillus species. This study offers insights into Se bio-transformations and the adaptive strategies of Se-reducing microorganisms.
Collapse
Affiliation(s)
- Qidong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
- School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| | - Jinhui Liang
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan 250101, China;
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chongyang Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huanxin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Xu R, Kolton M, Tao W, Sun X, Su P, Huang D, Zhang M, Yang Z, Guo Z, Gao H, Wang Q, Li B, Chen C, Sun W. Anaerobic selenite-reducing bacteria and their metabolic potentials in Se-rich sediment revealed by the combination of DNA-stable isotope probing, metagenomic binning, and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131834. [PMID: 37327607 DOI: 10.1016/j.jhazmat.2023.131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium (Se) in aquatic environments, particularly in reducing the toxicity and bioavailability of selenite (Se(IV)). This study aimed to identify putative Se(IV)-reducing bacteria (SeIVRB) and investigate the genetic mechanisms underlying Se(IV) reduction in anoxic Se-rich sediment. Initial microcosm incubation confirmed that Se(IV) reduction was driven by heterotrophic microorganisms. DNA stable-isotope probing (DNA-SIP) analysis identified Pseudomonas, Geobacter, Comamonas, and Anaeromyxobacter as putative SeIVRB. High-quality metagenome-assembled genomes (MAGs) affiliated with these four putative SeIVRB were retrieved. Annotation of functional gene indicated that these MAGs contained putative Se(IV)-reducing genes such as DMSO reductase family, fumarate and sulfite reductases. Metatranscriptomic analysis of active Se(IV)-reducing cultures revealed significantly higher transcriptional levels of genes associated with DMSO reductase (serA/PHGDH), fumarate reductase (sdhCD/frdCD), and sulfite reductase (cysDIH) compared to those in cultures not amended with Se(IV), suggesting that these genes played important roles in Se(IV) reduction. The current study expands our knowledge of the genetic mechanisms involved in less-understood anaerobic Se(IV) bio-reduction. Additinally, the complementary abilities of DNA-SIP, metagenomics, and metatranscriptomics analyses are demonstrated in elucidating the microbial mechanisms of biogeochemical processes in anoxic sediment.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Wan Tao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Pingzhou Su
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Duanyi Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Miaomiao Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
3
|
Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Farahat MG. Biosynthesis of Novel Tellurium Nanorods by Gayadomonas sp. TNPM15 Isolated from Mangrove Sediments and Assessment of Their Impact on Spore Germination and Ultrastructure of Phytopathogenic Fungi. Microorganisms 2023; 11:microorganisms11030558. [PMID: 36985132 PMCID: PMC10053417 DOI: 10.3390/microorganisms11030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient, eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs) have attracted growing attention due to their unique properties in biomedicine, electronics, and other industrial applications. The current investigation addresses the green synthesis of TeNPs using a newly isolated mangrove-associated bacterium, Gayadomonas sp. TNPM15, and their impact on the phytopathogenic fungi Fusarium oxysporum and Alternaria alternata. The biogenic TeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR). The results of TEM revealed the intracellular biosynthesis of rod-shaped nanostructures with a diameter range from 15 to 23 nm and different lengths reaching up to 243 nm. Furthermore, the successful formation of tellurium nanorods was verified by SEM-EDX, and the XRD pattern revealed their crystallinity. In addition, the FTIR spectrum provided evidence for the presence of proteinaceous capping agents. The bioinspired TeNPs exhibited obvious inhibitory effect on the spores of both investigated phytopathogens accomplished with prominent ultrastructure alternations, as evidenced by TEM observations. The biogenic TeNPs impeded spore germination of F. oxysporum and A. alternata completely at 48.1 and 27.6 µg/mL, respectively. Furthermore, an increase in DNA and protein leakage was observed upon exposure of fungal spores to the biogenic TeNPs, indicating the disruption of membrane permeability and integrity. Besides their potent influence on fungal spores, the biogenic TeNPs demonstrated remarkable inhibitory effects on the production of various plant cell wall-degrading enzymes. Moreover, the cytotoxicity investigations revealed the biocompatibility of the as-prepared biogenic TeNPs and their low toxicity against the human skin fibroblast (HSF) cell line. The biogenic TeNPs showed no significant cytotoxic effect towards HSF cells at concentrations up to 80 μg/mL, with a half-maximal inhibitory concentration (IC50) value of 125 μg/mL. The present work spotlights the antifungal potential of the biogenic TeNPs produced by marine bacterium against phytopathogenic fungi as a promising candidate to combat fungal infections.
Collapse
Affiliation(s)
- Mohamed N. Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: or (M.N.A.E.-G.); (M.G.F.)
| | - Salwa A. Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shereen M. Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Reham M. Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed G. Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed City 12588, Egypt
- Correspondence: or (M.N.A.E.-G.); (M.G.F.)
| |
Collapse
|
4
|
Alonso‐Fernandes E, Fernández‐Llamosas H, Cano I, Serrano‐Pelejero C, Castro L, Díaz E, Carmona M. Enhancing tellurite and selenite bioconversions by overexpressing a methyltransferase from
Aromatoleum
sp. CIB. Microb Biotechnol 2022; 16:915-930. [PMID: 36366868 PMCID: PMC10128142 DOI: 10.1111/1751-7915.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pollution by metalloids, e.g., tellurite and selenite, is of serious environmental concern and, therefore, there is an increasing interest in searching for ecologically friendly solutions for their elimination. Some microorganisms are able to reduce toxic tellurite/selenite into less toxic elemental tellurium (Te) and selenium (Se). Here, we describe the use of the environmentally relevant β-proteobacterium Aromatoleum sp. CIB as a platform for tellurite elimination. Aromatoleum sp. CIB was shown to tolerate 0.2 and 0.5 mM tellurite at aerobic and anaerobic conditions, respectively. Furthermore, the CIB strain was able to reduce tellurite into elemental Te producing rod-shaped Te nanoparticles (TeNPs) of around 200 nm length. A search in the genome of Aromatoleum sp. CIB revealed the presence of a gene, AzCIB_0135, which encodes a new methyltransferase that methylates tellurite and also selenite. AzCIB_0135 orthologs are widely distributed in bacterial genomes. The overexpression of the AzCIB_0135 gene both in Escherichia coli and Aromatoleum sp. CIB speeds up tellurite and selenite removal, and it enhances the production of rod-shaped TeNPs and spherical Se nanoparticles (SeNPs), respectively. Thus, the overexpression of a methylase becomes a new genetic strategy to optimize bacterial catalysts for tellurite/selenite bioremediation and for the programmed biosynthesis of metallic nanoparticles of biotechnological interest.
Collapse
Affiliation(s)
- Elena Alonso‐Fernandes
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Helga Fernández‐Llamosas
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Irene Cano
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Cristina Serrano‐Pelejero
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Laura Castro
- Department of Material Science and Metallurgical Engineering, Facultad de Químicas Universidad Complutense de Madrid Madrid Spain
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| |
Collapse
|
5
|
Zhang X, Wang L, Zeng T, Liu Y, Wang G, Liu J, Wang A. The removal of selenite and cadmium by immobilized biospheres: Efficiency, mechanisms and bacterial community. ENVIRONMENTAL RESEARCH 2022; 211:113025. [PMID: 35278470 DOI: 10.1016/j.envres.2022.113025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, a complex bacterial consortium was enriched from a typical Pb-Zn mine area and immobilized by sodium alginate to form biospheres, which were used for treatment of selenite (Se(IV))- and cadmium (Cd(II))-containing wastewater without external carbon source. Batch experiments showed that the maximum Se(IV) removal efficiency was 92.36% under the optimal conditions of an initial pH of 5, dosage of 5 g/L, initial Se(IV) concentration of 7.9 mg/L and reaction time of 168 h. Subsequently, more than 99% of 11.2 mg/L Cd(II) was removed by the biospheres within 10 h. Physicochemical characterization showed that reduction and adsorption were the main mechanisms for Se(IV) and Cd(II) removal, respectively. During the removal process, selenium and CdSe nanoparticles were formed. Bacterial community analysis showed the dominant bacterial genera changed after treatment of Se(IV)- and Cd(II)-containing wastewater. Additionally, 16S rRNA gene function prediction results showed that amino acid transport, carbohydrate transport, ion transport and metabolism were the dominant gene functions. The present study provides a potential way for the biological treatment of Se(IV)- and Cd(II)-containing wastewater using immobilized biospheres without external carbon source in short-term.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Jinxiang Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
6
|
Pandey G, Bajpai S. Accessing the environmental impact of tellurium metal. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Tellurium is gaining technical significance because of being a vital constituent for the growth of green-energy products and technologies. Owing to its unique property of interchangeable oxidation states it has a tricky though interesting chemistry with basically unidentified environmental effects. The understanding of environmental actions of tellurium has significant gaps for instance, its existence and effects in various environmental sections related to mining, handling and removal and disposal methods. To bridge this gap it is required to assess its distinctive concentrations in the environment together with proper knowledge of its environmental chemistry. This in turn significantly requires developing systematic diagnostic schemes which are sensitive enough to present statistics in the concentrations which are environmentally relevant. The broad assessment of available statistics illustrates that tellurium is being found in a very scarce concentrations in various environmental sections. Very less information is available for the presence and effects of tellurium in air and natural water resources. Various soil and lake sediment analysis statistics indicate towards the presence of tellurium in soil owing to release of dust, ash and slag during mining and manufacturing practices. Computing the release and behavior of tellurium in environment needs a thorough assessment of its anthropogenic life cycle which in turn will facilitate information about its existing and prospective release in the environment, and will aid to handle the metal more sensibly.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Chemistry SRM Institiute of Science and Technology , Delhi NCR Campus , Modinagar 201204, Ghaziabad , Uttar Pradesh , India
| | - Sangeeta Bajpai
- Applied Sciences , Amity University - Lucknow Campus , Malhour , Lucknow , 227028 , Uttar Pradesh , India
| |
Collapse
|
7
|
He Y, Guo J, Song Y, Chen Z, Lu C, Han Y, Li H, Hou Y. Te(IV) bioreduction in the sulfur autotrophic reactor: Performance, kinetics and synergistic mechanism. WATER RESEARCH 2022; 214:118216. [PMID: 35228038 DOI: 10.1016/j.watres.2022.118216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A laboratory-scale sulfur autotrophic reactor (SAR) was first constructed for treating tellurite [Te(IV)] wastewater. The SAR had excellent Te(IV) bioreduction efficiency (90-96%) at 5-30 mg/L and conformed to the First-order kinetic model. The Te(IV) bioreduction was elaborated deeply from extracellular polymeric substances (EPS) functions, microbial metabolic activity, key enzyme activity, microbial community succession and quorum sensing. Te(IV) stimulated the increase of redox substances in EPS and the improved cell membrane permeability led to the increase of electron transport system activity. Catalase and reduced nicotinamide adenine dinucleotide (NADH) alleviated the oxidative stress caused by Te(IV) toxicity to maintain metabolic activity. The increase of sulfur dioxygenase activity (SDO) suggested that more ATP produced by sulfur oxidation might provide energy for various physiological activities. Meanwhile, nitrate reductase (NAR), nitrite reductase (NIR) and sulfide: quinone oxidoreductase (SQR) played an active role in sulfur oxidation and Te(IV) bioreduction. Combined with the above results and dynamic succession of three functional microbial communities, a synergistic mechanism was proposed to explain the excellent performance of SAR. This work provided a promising strategy for Te(IV) wastewater treatment process and Te(IV) bioreduction mechanism.
Collapse
Affiliation(s)
- Yue He
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
8
|
Wang D, Rensing C, Zheng S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126684. [PMID: 34339989 DOI: 10.1016/j.jhazmat.2021.126684] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium is an essential trace element for humans, animals and microorganisms. Microbial transformations, in particular, selenium dissimilatory reduction and bioremediation applications have received increasing attention in recent years. This review focuses on multiple Se-reducing pathways under anaerobic and aerobic conditions, and the phylogenetic clustering of selenium reducing enzymes that are involved in these processes. It is emphasized that a selenium reductase may have more than one metabolic function, meanwhile, there are several Se(VI) and/or Se(IV) reduction pathways in a bacterial strain. It is noted that Se(IV)-reducing efficiency is inconsistent with Se(IV) resistance in bacteria. Moreover, we discussed the links of selenium transformations to biogeochemical cycling of other elements, roles of Se-reducing bacteria in soil, plant and digestion system, and the possibility of using functional genes involved in Se transformation as biomarker in different environments. In addition, we point out the gaps and perspectives both on Se transformation mechanisms and applications in terms of bioremediation, Se fortification or dietary supplementation.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Fujita D, Tobe R, Tajima H, Anma Y, Nishida R, Mihara H. Genetic analysis of tellurate reduction reveals the selenate/tellurate reductase genes ynfEF and the transcriptional regulation of moeA by NsrR in Escherichia coli. J Biochem 2021; 169:477-484. [PMID: 33136147 DOI: 10.1093/jb/mvaa120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
Several bacteria can reduce tellurate into the less toxic elemental tellurium, but the genes responsible for this process have not yet been identified. In this study, we screened the Keio collection of single-gene knockouts of Escherichia coli responsible for decreased tellurate reduction and found that deletions of 29 genes, including those for molybdenum cofactor (Moco) biosynthesis, iron-sulphur biosynthesis, and the twin-arginine translocation pathway resulted in decreased tellurate reduction. Among the gene knockouts, deletions of nsrR, moeA, yjbB, ynbA, ydaS and yidH affected tellurate reduction more severely than those of other genes. Based on our findings, we determined that the ynfEF genes, which code for the components of the selenate reductase YnfEFGH, are responsible for tellurate reduction. Assays of several molybdoenzymes in the knockouts suggested that nsrR, yjbB, ynbA, ydaS and yidH are essential for the activities of molybdoenzymes in E. coli. Furthermore, we found that the nitric oxide sensor NsrR positively regulated the transcription of the Moco biosynthesis gene moeA. These findings provided new insights into the complexity and regulation of Moco biosynthesis in E. coli.
Collapse
Affiliation(s)
- Daiki Fujita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hirotaka Tajima
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukari Anma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Nishida
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
10
|
Goff JL, Boyanov MI, Kemner KM, Yee N. The role of cysteine in tellurate reduction and toxicity. Biometals 2021; 34:937-946. [PMID: 34255250 DOI: 10.1007/s10534-021-00319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
The tellurium oxyanion tellurate is toxic to living organisms even at low concentrations; however, its mechanism of toxicity is poorly understood. Here, we show that exposure of Escherichia coli K-12 to tellurate results in reduction to elemental tellurium (Te[0]) and the formation of intracellular reactive oxygen species (ROS). Toxicity assays performed with E. coli indicated that pre-oxidation of the intracellular thiol pools increases cellular resistance to tellurate-suggesting that intracellular thiols are important in tellurate toxicity. X-ray absorption spectroscopy experiments demonstrated that cysteine reduces tellurate to elemental tellurium. This redox reaction was found to generate superoxide anions. These results indicate that tellurate reduction to Te(0) by cysteine is a source of ROS in the cytoplasm of tellurate-exposed cells.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, 1113, Sofia, Bulgaria.,Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
11
|
Staicu LC, Barton LL. Selenium respiration in anaerobic bacteria: Does energy generation pay off? J Inorg Biochem 2021; 222:111509. [PMID: 34118782 DOI: 10.1016/j.jinorgbio.2021.111509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 01/03/2023]
Abstract
Selenium (Se) respiration in bacteria was revealed for the first time at the end of 1980s. Although thermodynamically-favorable, energy-dense and documented in phylogenetically-diverse bacteria, this metabolic process appears to be accompanied by a number of challenges and numerous unanswered questions. Selenium oxyanions, SeO42- and SeO32-, are reduced to elemental Se (Se0) through anaerobic respiration, the end product being solid and displaying a considerable size (up to 500 nm) at the bacterial scale. Compared to other electron acceptors used in anaerobic respiration (e.g. N, S, Fe, Mn, and As), Se is one of the few elements whose end product is solid. Furthermore, unlike other known bacterial intracellular accumulations such as volutin (inorganic polyphosphate), S0, glycogen or magnetite, Se0 has not been shown to play a nutritional or ecological role for its host. In the context of anaerobic respiration of Se oxyanions, biogenic Se0 appears to be a by-product, a waste that needs proper handling, and this raises the question of the evolutionary implications of this process. Why would bacteria use a respiratory substrate that is useful, in the first place, and then highly detrimental? Interestingly, in certain artificial ecosystems (e.g. upflow bioreactors) Se0 might help bacterial cells to increase their density and buoyancy and thus avoid biomass wash-out, ensuring survival. This review article provides an in-depth analysis of selenium respiration (model selenium respiring bacteria, thermodynamics, respiratory enzymes, and genetic determinants), complemented by an extensive discussion about the evolutionary implications and the properties of biogenic Se0 using published and original/unpublished results.
Collapse
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
13
|
Sato Y, Okano K, Kimura H, Honda K. TEMPURA: Database of Growth TEMPeratures of Usual and RAre Prokaryotes. Microbes Environ 2021; 35. [PMID: 32727974 PMCID: PMC7511790 DOI: 10.1264/jsme2.me20074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Growth temperature is one of the most representative biological parameters for characterizing living organisms. Prokaryotes have been isolated from various temperature environments and show wide diversity in their growth temperatures. We herein constructed a database of growth TEMPeratures of Usual and RAre prokaryotes (TEMPURA, http://togodb.org/db/tempura), which contains the minimum, optimum, and maximum growth temperatures of 8,639 prokaryotic strains. Growth temperature information is linked with taxonomy IDs, phylogenies, and genomic information. TEMPURA provides useful information to researchers working on biotechnological applications of extremophiles and their biomolecules as well as those performing fundamental studies on the physiological diversity of prokaryotes.
Collapse
Affiliation(s)
- Yu Sato
- International Center for Biotechnology, Osaka University
| | - Kenji Okano
- International Center for Biotechnology, Osaka University
| | - Hiroyuki Kimura
- Research Institute of Green Science and Technology, Shizuoka University.,Department of Geosciences, Faculty of Science, Shizuoka University
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University
| |
Collapse
|
14
|
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. Int J Mol Sci 2021; 22:989. [PMID: 33498184 PMCID: PMC7863925 DOI: 10.3390/ijms22030989] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
15
|
Abstract
'There's antimony, arsenic, aluminum, selenium, and hydrogen, and oxygen, and nitrogen and rhenium'-so begins 'The Elements' song (https://www.youtube.com/watch?v=AcS3NOQnsQM), whereby Tom Lehrer (Fig. 1) assiduously deconstructed the many painstaking decades of research effort by scores of scientists in assembling the Periodic Table as primarily based upon the atomic numbers of the elements. Lehrer instead opted for his imaginative rhyme, with its musical meter purloined from the patter song of Major General Stanley ("I am the Very Model of a Modern Major General') as in the Gilbert and Sullivan's operetta 'The Pirates of Penzance'. By some coincidence, however, three of the four named in the first stanza are Group 15 and 16 elements with which I have considerable microbiological research experience. Only one is missing (tellurium). Hence, by futzing with Lehrer's 'libretto' to suit my own needs for this issue of FEMS, I would pose the following introductory re-rearrangement: 'There's antimony, arsenic, selenium, tellurium, and cadmium, and chromium, and calcium and curium'. While this may (or may not) sit well with Mr Lehrer, who at the time of this writing is still living, I hope it does not cause further discomfiture to the collective eternal peace of Professor Dimitri Mendeleev, Sir William Schwenk Gilbert and Sir Arthur Sullivan. Nonetheless, I will use this preface to take departure for the primary subject of this manuscript, namely our efforts on selenium, which is where it all got started.
Collapse
Affiliation(s)
- Ronald S Oremland
- Emeritus Senior Scientist, United States Geological Survey, Menlo Park, CA 94025, USA
| |
Collapse
|
16
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|
17
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
19
|
Ghosh S, Mohapatra B, Satyanarayana T, Sar P. Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3-1 isolated from As-contaminated groundwater of Brahmaputra river basin, India. BMC Microbiol 2020; 20:256. [PMID: 32807097 PMCID: PMC7430025 DOI: 10.1186/s12866-020-01893-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microbe-mediated redox transformation of arsenic (As) leading to its mobilization has become a serious environmental concern in various subsurface ecosystems especially within the alluvial aquifers. However, detailed taxonomic and eco-physiological attributes of indigenous bacteria from As impacted aquifer of Brahmaputra river basin has remained under-studied. Results A newly isolated As-resistant and -transforming facultative anaerobic bacterium IIIJ3–1 from As-contaminated groundwater of Jorhat, Assam was characterized. Near complete 16S rRNA gene sequence affiliated the strain IIIJ3–1 to the genus Bacillus and phylogenetically placed within members of B. cereus sensu lato group with B. cereus ATCC 14579(T) as its closest relative with a low DNA-DNA relatedness (49.9%). Presence of iC17:0, iC15:0 fatty acids and menaquinone 7 corroborated its affiliation with B. cereus group, but differential hydroxy-fatty acids, C18:2 and menaquinones 5 & 6 marked its distinctiveness. High As resistance [Maximum Tolerable Concentration = 10 mM As3+, 350 mM As5+], aerobic As3+ (5 mM) oxidation, and near complete dissimilatory reduction of As 5+ (1 mM) within 15 h of growth designated its physiological novelty. Besides O2, cells were found to reduce As5+, Fe3+, SO42−, NO3−, and Se6+ as alternate terminal electron acceptors (TEAs), sustaining its anaerobic growth. Lactate was the preferred carbon source for anaerobic growth of the bacterium with As5+ as TEA. Genes encoding As5+ respiratory reductase (arr A), As3+ oxidase (aioB), and As3+ efflux systems (ars B, acr3) were detected. All these As homeostasis genes showed their close phylogenetic lineages to Bacillus spp. Reduction in cell size following As exposure exhibited the strain’s morphological response to toxic As, while the formation of As-rich electron opaque dots as evident from SEM-EDX possibly indicated a sequestration based As resistance strategy of strain IIIJ3–1. Conclusion This is the first report on molecular, taxonomic, and ecophysiological characterization of a highly As resistant, As3+ oxidizing, and dissimilatory As5+ reducing Bacillus sp. IIIJ3–1 from As contaminated sites of Brahmaputra river basin. The strain’s ability to resist and transform As along with its capability to sequester As within the cells demonstrate its potential in designing bioremediation strategies for As contaminated groundwater and other ecosystems.
Collapse
Affiliation(s)
- Soma Ghosh
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: CSIR- National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, 700107, India
| | - Balaram Mohapatra
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus (UDSC), New Delhi, 110021, India.,Presently affiliated to Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi, 110078, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
20
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|
21
|
Wang K, Zhang X, Kislyakov IM, Dong N, Zhang S, Wang G, Fan J, Zou X, Du J, Leng Y, Zhao Q, Wu K, Chen J, Baesman SM, Liao KS, Maharjan S, Zhang H, Zhang L, Curran SA, Oremland RS, Blau WJ, Wang J. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat Commun 2019; 10:3985. [PMID: 31484932 PMCID: PMC6726626 DOI: 10.1038/s41467-019-11898-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/29/2019] [Indexed: 11/26/2022] Open
Abstract
Elementary tellurium is currently of great interest as an element with potential promise in nano-technology applications because of the recent discovery regarding its three two-dimensional phases and the existence of Weyl nodes around its Femi level. Here, we report on the unique nano-photonic properties of elemental tellurium particles [Te(0)], as harvest from a culture of a tellurium-oxyanion respiring bacteria. The bacterially-formed nano-crystals prove effective in the photonic applications tested compared to the chemically-formed nano-materials, suggesting a unique and environmentally friendly route of synthesis. Nonlinear optical measurements of this material reveal the strong saturable absorption and nonlinear optical extinctions induced by Mie scattering over broad temporal and wavelength ranges. In both cases, Te-nanoparticles exhibit superior optical nonlinearity compared to graphene. We demonstrate that biological tellurium can be used for a variety of photonic applications which include their proof-of-concept for employment as ultrafast mode-lockers and all-optical switches.
Collapse
Affiliation(s)
- Kangpeng Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Xiaoyan Zhang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ivan M Kislyakov
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ningning Dong
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Saifeng Zhang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Gaozhong Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Jintai Fan
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiao Zou
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Quanzhong Zhao
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Kan Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianping Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Kang-Shyang Liao
- Institute for NanoEnergy, Department of Physics, University of Houston, Houston, TX, 77204, USA
| | - Surendra Maharjan
- Institute for NanoEnergy, Department of Physics, University of Houston, Houston, TX, 77204, USA
| | - Hongzhou Zhang
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Long Zhang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Seamus A Curran
- Institute for NanoEnergy, Department of Physics, University of Houston, Houston, TX, 77204, USA
| | | | - Werner J Blau
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Jun Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Laboratory of Laser and Infrared Materials, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. J Bacteriol 2019; 201:JB.00614-18. [PMID: 30642986 DOI: 10.1128/jb.00614-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a V max of 23 ± 2.5 μM min-1, and a k cat of 23 ± 2.68 s-1 These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.
Collapse
|
23
|
Kumar S, Singh H, Kaur M, Kaur L, Tanuku NRS, Pinnaka AK. Bacillus shivajii sp. nov., isolated from a water sample of Sambhar salt lake, India. Int J Syst Evol Microbiol 2018; 68:3463-3470. [PMID: 30207517 DOI: 10.1099/ijsem.0.003008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, rod-shaped, motile, spore-forming, strictly aerobic, alkali- and halo- tolerant bacterium, designated strain AK72T, was isolated from a water sample collected from Sambhar salt lake, Rajasthan, India. The colony appears circular, shiny, smooth, translucent or slightly pale in colour and convex with an entire margin after 48 h incubation at 37 °C with pH 9. Growth of the bacterium occurred at 10-42 °C (optimum, 25-37 °C), at salinities of 0.5-10 % (w/v) NaCl (optimum 3-5 % NaCl) and pH of 6-10 (optimum pH 9). Strain AK72T was positive for oxidase, catalase, nitrate reductase, phenylalanine deaminase, ornithine decarboxylase, aesculinase, lipase and urease activities. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 and the cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, three unidentified phospholipids and three unidentified lipids. The genomic DNA G+C content of the strain AK72T was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain AK72T was closely related to Bacillus cellulosilyticus (96.5 %) and Bacillus vedderi (96.3 %), but the novel strain AK72T formed a separate clade with Bacillus aurantiacus whereas B. cellulosilyticus and B. vedderi were clustered in a separate clade. The above data in combination with the phenotypic characteristics and phylogenetic data inferred that strain AK72T represents a novel species of the genus Bacillus, for which the name Bacillusshivajii sp. nov. is proposed. The type strain is AK72T (=MTCC 12636T=KCTC 33981T=JCM 32183T).
Collapse
Affiliation(s)
- Shekhar Kumar
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Harjodh Singh
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,3CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manpreet Kaur
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,3CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Lakhwinder Kaur
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Naga Radha Srinivas Tanuku
- 2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,4CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530017, India
| | - Anil Kumar Pinnaka
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India
| |
Collapse
|
24
|
Thalassorhabdus alkalitolerans gen. nov., sp. nov., a novel Bacillaceae member isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:2969-2976. [DOI: 10.1099/ijsem.0.002931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Goff J, Yee N. Tellurate enters Escherichia coli K-12 cells via the SulT-type sulfate transporter CysPUWA. FEMS Microbiol Lett 2018; 364:4597602. [PMID: 29126297 DOI: 10.1093/femsle/fnx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/04/2017] [Indexed: 11/14/2022] Open
Abstract
Soluble forms of tellurium are environmental contaminants that are toxic to microorganisms. While tellurite [Te(IV)] is a well-characterized antimicrobial agent, little is known about the interactions of tellurate [Te(VI)] with bacterial cells. In this study, we investigated the role of sulfate transporters in the uptake of tellurate in Escherichia coli K-12. Mutant strains carrying a deletion of the cysW gene in the CysPUWA sulfate transporter system accumulated less cellular tellurium and exhibited higher resistance to tellurate compared with the wild-type strain. Complementation of the mutation restored tellurate sensitivity and uptake. These results indicate that tellurate enters E. coli cells to cause toxic effects via the CysPUWA sulfate transporter.
Collapse
|
26
|
Singh H, Kaur M, Kaur L, Sharma S, Mishra S, Tanuku NRS, Pinnaka AK. Bacillus lacus sp. nov., isolated from a water sample of a salt lake in India. Int J Syst Evol Microbiol 2018; 68:801-809. [DOI: 10.1099/ijsem.0.002588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Harjodh Singh
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manpreet Kaur
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Lakhwinder Kaur
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Shivani Sharma
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sunita Mishra
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Naga Radha Srinivas Tanuku
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530017, India
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
| |
Collapse
|
27
|
Zonaro E, Piacenza E, Presentato A, Monti F, Dell'Anna R, Lampis S, Vallini G. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact 2017; 16:215. [PMID: 29183326 PMCID: PMC5704588 DOI: 10.1186/s12934-017-0826-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32−) and tellurite (TeO32−) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32− and 0.5 mM TeO32− to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32− and TeO32− bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32− bioreduction, while TeO32− bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. Conclusions In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.![]()
Collapse
Affiliation(s)
- Emanuele Zonaro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Elena Piacenza
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.,Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Alessandro Presentato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Francesca Monti
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Rossana Dell'Anna
- Micro Nano Facility, Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo (TN), Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
28
|
Ramos-Ruiz A, Wilkening JV, Field JA, Sierra-Alvarez R. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. JOURNAL OF HAZARDOUS MATERIALS 2017; 336:57-64. [PMID: 28472709 PMCID: PMC5607867 DOI: 10.1016/j.jhazmat.2017.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/21/2023]
Abstract
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL-1), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL-1). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions.
Collapse
Affiliation(s)
- Adriana Ramos-Ruiz
- Department of Chemical and Environmental Engineering, The University of Arizona, P. O. Box 210011, Tucson, AZ, 85721-0011, USA
| | - Jean V Wilkening
- Department of Chemical and Environmental Engineering, The University of Arizona, P. O. Box 210011, Tucson, AZ, 85721-0011, USA
| | - James A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, P. O. Box 210011, Tucson, AZ, 85721-0011, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P. O. Box 210011, Tucson, AZ, 85721-0011, USA.
| |
Collapse
|
29
|
Maltman C, Donald LJ, Yurkov V. Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 associated with the deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers. Arch Microbiol 2017; 199:1113-1120. [PMID: 28432382 DOI: 10.1007/s00203-017-1382-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022]
Abstract
Strain ER-Te-48 isolated from a deep-ocean hydrothermal vent tube worm is capable of resisting and reducing extremely high levels of tellurite, tellurate, and selenite, which are used for respiration anaerobically. Tellurite and tellurate reduction is accomplished by a periplasmic enzyme of 215 kDa comprised of 3 subunits (74, 42, and 25 kDa) in a 2:1:1 ratio. The optimum pH and temperature for activity is 8.0 and 35 °C, respectively. Tellurite reduction has a V max of 5.6 µmol/min/mg protein and a K m of 3.9 mM. In the case of the tellurate reaction, V max and K m were 2.6 µmol/min/mg protein and 2.6 mM, respectively. Selenite reduction is carried out by another periplasmic enzyme with a V max of 2.8 µmol/min/mg protein, K m of 12.1 mM, and maximal activity at pH 6.0 and 38 °C. This protein is 165 kDa and comprised of 3 subunits of 98, 44, and 23 kDa in a 1:1:1 ratio.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
30
|
Mal J, Nancharaiah YV, Maheshwari N, van Hullebusch ED, Lens PNL. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:79-88. [PMID: 28043045 DOI: 10.1016/j.jhazmat.2016.12.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
Continuous removal of tellurite (TeO32-) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30°C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6g CODL-1d-1. After establishing efficient and stable COD removal, the reactor was fed with 10mg TeO32-L-1 for 42 d before increasing the influent concentration to 20mg TeO32-L-1. Tellurite removal (98 and 92%, respectively, from 10 and 20mg TeL-1) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.
Collapse
Affiliation(s)
- Joyabrata Mal
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai 400094, India
| | - Neeraj Maheshwari
- CNRS UMR 7338, BMBI University de Technologie Compiegne, 60200 Compiegne, France
| | - Eric D van Hullebusch
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Piet N L Lens
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere, Finland
| |
Collapse
|
31
|
Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K, Handzlik J, Jacob C. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? JOURNAL OF HAZARDOUS MATERIALS 2017; 324:22-30. [PMID: 26897703 DOI: 10.1016/j.jhazmat.2016.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Various bacteria, including diverse Staphylococci, reduce selenite to yield red selenium particles with diameters in the high nanometer to low micrometer range. Formation and accumulation of such particles in bacteria often results in cell death, triggered by a loss of thiols and formation of disruptive deposits inside the cell. Hence certain pathogenic bacteria are rather sensitive to the presence of selenite, whilst other organisms, such as small nematodes, do not employ this kind of nanotechnology, yet become affected by micromolar concentrations of such naturally generated materials. Selenium particles extracted from cultures of Staphylococcus carnosus and apparently stabilized by their natural protein coating, for instance, show considerable activity against the nematode Steinernema feltiae, Escherichia coli and Saccaromyces cerevisiae. Such natural nano- and micro-particles are also more active than mechanically generated selenium particles and may be applied as antimicrobial materials in Medicine and Agriculture.
Collapse
Affiliation(s)
| | - Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany; Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany; Department of Biotechnology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany
| | - Polina Denezhkin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany
| | - Ramona Schneider
- Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany
| | - Rainer Lilischkis
- Department of Information Technology and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Enrique Dominguez-Alvarez
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Karolina Witek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Cornelia Keck
- Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany.
| |
Collapse
|
32
|
Borghese R, Brucale M, Fortunato G, Lanzi M, Mezzi A, Valle F, Cavallini M, Zannoni D. Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus". JOURNAL OF HAZARDOUS MATERIALS 2017; 324:31-38. [PMID: 27863796 DOI: 10.1016/j.jhazmat.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/06/2023]
Abstract
The toxic oxyanion tellurite (TeO32-) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te0 in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te0 nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te0 to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents.
Collapse
Affiliation(s)
- Roberto Borghese
- Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Rome, Italy
| | | | - Massimiliano Lanzi
- Dept. of Industrial Chemistry "Toso Montanari", University of Bologna, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Rome, Italy
| | - Francesco Valle
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Bologna, Italy
| | | | - Davide Zannoni
- Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
33
|
Ramos-Ruiz A, Sesma-Martin J, Sierra-Alvarez R, Field JA. Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. WATER RESEARCH 2017; 108:189-196. [PMID: 27825682 PMCID: PMC5593269 DOI: 10.1016/j.watres.2016.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
According to the U.S. Department of Energy and the European Union, tellurium is a critical element needed for energy and defense technology. Thus methods are needed to recover tellurium from waste streams. The objectives of this study was to determine the feasibility of utilizing upflow anaerobic sludge bed (UASB) reactors to convert toxic tellurite (TeIV) oxyanions to non-toxic insoluble elemental tellurium (Te0) nanoparticles (NP) that are amendable to separation from aqueous effluents. The reactors were supplied with ethanol as the electron donating substrate to promote the biological reduction of TeIV. One reactor was additionally amended with the redox mediating flavonoid compound, riboflavin (RF), with the goal of enhancing the bioreduction of TeIV. Its performance was compared to a control reactor lacking RF. The continuous formation of Te0 NPs using the UASB reactors was found to be feasible and remarkably improved by the addition of RF. The presence of this flavonoid was previously shown to enhance the conversion rate of TeIV by approximately 11-fold. In this study, we demonstrated that this was associated with the added benefit of reducing the toxic impact of TeIV towards the methanogenic consortium in the UASB and thus enabled a 4.7-fold higher conversion rate of the chemical oxygen demand. Taken as a whole, this work demonstrates the potential of a methanogenic granular sludge to be applied as a bioreactor technology producing recoverable Te0 NPs in a continuous fashion.
Collapse
Affiliation(s)
- Adriana Ramos-Ruiz
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 21011, Tucson, AZ 85721, USA
| | - Juan Sesma-Martin
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 21011, Tucson, AZ 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 21011, Tucson, AZ 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 21011, Tucson, AZ 85721, USA.
| |
Collapse
|
34
|
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact 2016; 15:204. [PMID: 27978836 PMCID: PMC5157098 DOI: 10.1186/s12934-016-0602-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Tellurite (TeO32−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO32− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO32−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO32− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Results Aerobically grown BCP1 cells showed high tolerance towards TeO32− with a minimal inhibitory concentration (MIC) of 2800 μg/mL (11.2 mM). TeO32− consumption has been evaluated exposing the BCP1 strain to either 100 or 500 μg/mL of K2TeO3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K2TeO3 (conditioned growth). A complete consumption of TeO32− at 100 μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO32− at 500 μg/mL. However, a greater TeO32− consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO32− reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical–physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 μg/mL of K2TeO3) or the growth conditions (unconditioned or conditioned grown cells). Conclusions Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO32− during its growth under aerobic conditions. Moreover, compared to unconditioned BCP1 cells, TeO32−conditioned cells showed a higher oxyanion consumption rate (for 100 μg/mL of K2TeO3) or to consume greater amount of TeO32− (for 500 μg/mL of K2TeO3). TeO32− consumption by BCP1 cells led to the production of intracellular and not aggregated TeNRs embedded in an organic surrounding material. The high resistance of BCP1 to TeO32− along with its ability to produce Te-nanostructures supports the application of this microorganism as a possible eco-friendly nanofactory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0602-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Presentato
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Elena Piacenza
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Max Anikovskiy
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Unit of General and Applied Microbiology, Via Irnerio 42, Bologna, 40126, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Unit of General and Applied Microbiology, Via Irnerio 42, Bologna, 40126, Italy
| | - Raymond J Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
35
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
36
|
Louie TS, Giovannelli D, Yee N, Narasingarao P, Starovoytov V, Göker M, Klenk HP, Lang E, Kyrpides NC, Woyke T, Bini E, Häggblom MM. High-quality draft genome sequence of Sedimenticola selenatireducens strain AK4OH1 T, a gammaproteobacterium isolated from estuarine sediment. Stand Genomic Sci 2016; 11:66. [PMID: 27721915 PMCID: PMC5052931 DOI: 10.1186/s40793-016-0191-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/31/2016] [Indexed: 11/10/2022] Open
Abstract
Sedimenticola selenatireducens strain AK4OH1T (= DSM 17993T = ATCC BAA-1233T) is a microaerophilic bacterium isolated from sediment from the Arthur Kill intertidal strait between New Jersey and Staten Island, NY. S. selenatireducens is Gram-negative and belongs to the Gammaproteobacteria. Strain AK4OH1T was the first representative of its genus to be isolated for its unique coupling of the oxidation of aromatic acids to the respiration of selenate. It is a versatile heterotroph and can use a variety of carbon compounds, but can also grow lithoautotrophically under hypoxic and anaerobic conditions. The draft genome comprises 4,588,530 bp and 4276 predicted protein-coding genes including genes for the anaerobic degradation of 4-hydroxybenzoate and benzoate. Here we report the main features of the genome of S. selenatireducens strain AK4OH1T.
Collapse
Affiliation(s)
- Tiffany S Louie
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| | - Donato Giovannelli
- Institute of Earth, Ocean, and Atmospheric Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ USA ; Institute of Marine Science, ISMAR, National Research Council of Italy, CNR, Ancona, Italy ; Institute for Advanced Studies, Program in Interdisciplinary Studies, Princeton, NJ USA
| | - Nathan Yee
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| | - Priya Narasingarao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany ; Newcastle University, School of Biology, Newcastle upon Tyne, UK
| | - Elke Lang
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Elisabetta Bini
- Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ USA ; Present address: Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
37
|
Borghese R, Brucale M, Fortunato G, Lanzi M, Mezzi A, Valle F, Cavallini M, Zannoni D. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. JOURNAL OF HAZARDOUS MATERIALS 2016; 309:202-209. [PMID: 26894294 DOI: 10.1016/j.jhazmat.2016.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700 nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents.
Collapse
Affiliation(s)
- Roberto Borghese
- Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Rome, Italy
| | | | - Massimiliano Lanzi
- Dept. of Industrial Chemistry "Toso Montanari", University of Bologna, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Rome, Italy
| | - Francesco Valle
- Institute for the Study of Nanostructured Materials (CNR-ISMN), Bologna, Italy
| | | | - Davide Zannoni
- Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
38
|
Gonzalez-Gil G, Lens PNL, Saikaly PE. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres. Front Microbiol 2016; 7:571. [PMID: 27199909 PMCID: PMC4844624 DOI: 10.3389/fmicb.2016.00571] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se(0)), insights into the microbial community structure and synthesis of Se(0) within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se(0) (nano)spheres, with some cells having high numbers of intracellular Se(0) spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se(0) spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se(0) spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se(0) spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se(0) spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se(0) spheres. In view of these and previous findings, a schematic model for the synthesis of Se(0) spheres by the microorganisms inhabiting the granular sludge is proposed.
Collapse
Affiliation(s)
- Graciela Gonzalez-Gil
- Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water EducationDelft, Netherlands
| | - Piet N L Lens
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education Delft, Netherlands
| | - Pascal E Saikaly
- Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| |
Collapse
|
39
|
Maltman C, Walter G, Yurkov V. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLoS One 2016; 11:e0149812. [PMID: 26914590 PMCID: PMC4767881 DOI: 10.1371/journal.pone.0149812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Graham Walter
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
40
|
Ramos-Ruiz A, Field JA, Wilkening JV, Sierra-Alvarez R. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1492-500. [PMID: 26735010 PMCID: PMC4738100 DOI: 10.1021/acs.est.5b04074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This research focuses on the microbial recovery of elemental tellurium (Te(0)) from aqueous streams containing soluble tellurium oxyanions, tellurate (Te(VI)), and tellurite (Te(IV)). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te(0) nanoparticles (NPs) in sulfur-free medium. Te(IV) reduction was seven times faster than that of Te(VI), such that Te(IV) did not accumulate to a great extent during Te(VI) reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of Te(IV) reduction eleven-fold and also enhanced the fraction Te recovered as extracellular Te(0) NPs from 21% to 64%. Lawsone increased the rate of Te(VI) reduction five-fold, and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te(0) NPs, suggesting that NP production can be tailored for a particular application.
Collapse
|
41
|
Maltman C, Yurkov V. The Effect of Tellurite on Highly Resistant Freshwater Aerobic Anoxygenic Phototrophs and Their Strategies for Reduction. Microorganisms 2015; 3:826-38. [PMID: 27682119 PMCID: PMC5023272 DOI: 10.3390/microorganisms3040826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Six fresh water aerobic anoxygenic phototrophs (Erythromicrobium ezovicum, strain E1; Erythromicrobium hydrolyticum, E4(1); Erythromicrobium ramosum, E5; Erythromonas ursincola, KR99; Sandaracinobacter sibiricus, RB 16-17; and Roseococcus thiosulfatophilus, RB3) possessing high level resistance to TeO32− and the ability to reduce it to elemental Te were studied to understand their interaction with this highly toxic oxyanion. Tested organic carbon sources, pH, and level of aeration all had an impact on reduction. Physiological and metabolic responses of cells to tellurite varied among strains. In its presence, versus absence, cellular biomass either increased (KR99, 66.6% and E5, 21.2%) or decreased (RB3, 66.1%, E1, 57.8%, RB 16-17, 41.5%, and E4(1), 21.3%). The increase suggests a possible benefit from tellurite. Cellular ATP production was similarly affected, resulting in an increase (KR99, 15.2% and E5, 38.9%) or decrease (E4(1), 31.9%; RB 16-17, 48.8%; RB3, 55.9%; E1, 35.9%). Two distinct strategies to tellurite reduction were identified. The first, found in E4(1), requires de novo protein preparations as well as an undisturbed whole cell. The second strategy, in which reduction depended on a membrane associated constitutive reductase, was used by the remaining strains.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
42
|
Maltman C, Piercey-Normore MD, Yurkov V. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings. Extremophiles 2015; 19:1013-9. [PMID: 26254805 DOI: 10.1007/s00792-015-0776-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | |
Collapse
|
43
|
Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design. Molecules 2015; 20:13894-912. [PMID: 26263963 PMCID: PMC6331825 DOI: 10.3390/molecules200813894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.
Collapse
|
44
|
Abstract
In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, Delft, The Netherlands Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
| | - P N L Lens
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
45
|
Bajaj M, Winter J. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Microb Cell Fact 2014; 13:168. [PMID: 25425453 PMCID: PMC4254260 DOI: 10.1186/s12934-014-0168-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022] Open
Abstract
Background Selenium and Tellurium have many common chemical properties as both belong to group 16 of the periodic table. High toxicities of Se and Te oxyanions cause environmental problems in contaminated soils and waters. Three strains (C4, C6 and C7) of selenite reducing and nanoparticle forming aerobic bacteria which were isolated from agricultural soils of India containing high concentrations of Se were investigated after 3.5 months of freeze-storage for their resistance against the toxic oxyanion tellurite and its reduction to non toxic elemental form Te0 as well as nanoparticles formation. Results Strains C4, C6 and C7 reduced tellurite at maximum reduction rates of 2.3, 1.5 and 2.1 mg Te (IV)/L/d, respectively and produced extracellular Te0 nanospheres as revealed from SEM-EDX analysis. Production of extracellular Te nanospheres has been described seldom. Further, concurrent reduction of both selenite and tellurite by bacteria was examined as these toxic oxyanions are often present together in natural environments, mine tailings or wastewater from copper refining. Interestingly, bioreduction of 100 mg/L selenite in shake flasks was not much affected by the presence of 10 mg/L tellurite but tellurite reduction rate increased 13 fold with selenite in the medium. The concurrent reduction of these oxyanions resulted in rarely described bioformation of extracellular nanoparticles composed of both Se and Te, reported first time for aerobically growing heterotrophic non-halophilic bacterial cultures. Duganella violacienigra, the closely related strain to C4 was also found to be resistant to oxyanions of Se and Te. Conclusions Selenite reducing heterotrophic non-halophilic aerobic bacteria revived from 3.5 months freeze storage could successfully reduce toxic tellurite to non toxic elemental form and produced extracellular nanospheres during detoxification. Presence of relatively less toxic selenite in the medium triggers bioreduction of more toxic tellurite leading to formation of extracellular SeTe nanospheres which are sought by solar and optical recording media industry because of their excellent photovoltaic and optical properties. The bacterial cultures investigated in this study could be exploited commercially to remediate not only selenite and tellurite-contaminated soil and water but also for green synthesis of extracellular Se, Te and Se + Te nanospheres.
Collapse
Affiliation(s)
- Mini Bajaj
- Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, Karlsruhe Institute of Technology, Karlsruhe, 76133, Germany.
| | - Josef Winter
- Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, Karlsruhe Institute of Technology, Karlsruhe, 76133, Germany.
| |
Collapse
|
46
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
47
|
Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli. Res Microbiol 2014; 165:566-70. [DOI: 10.1016/j.resmic.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
|
48
|
Alavi S, Amoozegar MA, Khajeh K. Enzyme(s) responsible for tellurite reducing activity in a moderately halophilic bacterium, Salinicoccus iranensis strain QW6. Extremophiles 2014; 18:953-61. [PMID: 24984690 DOI: 10.1007/s00792-014-0665-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Oxyanions of tellurium, like tellurate (TeO4 (2-)) and tellurite (TeO3 (2-)), are highly toxic for most microorganisms. There are a few reports on the bacterial tellurite resistance mechanism(s). Salinicoccus iranensis, a Gram-positive halophilic bacterium, shows high tellurite resistance and NADH-dependent tellurite reduction activity in vitro. Since little is known regarding TeO3 (2-) resistance mechanisms in halophilic microorganisms, here one of the enzymatic reduction activities presented in this microorganism is investigated. To enhance the enzymatic activity during purification, the effect of different parameters including time, inoculation, different pHs, different tellurite concentrations and different salts were optimized. We also examined the tellurite removal rates by diethyldithiocarbamate (DDTC) during optimization. In the culture medium the optimum conditions obtained showed that at 30 h, 2 % inoculum, pH 7.5, without tellurite and with 5 % NaCl (w/v) the highest enzyme activity and tellurite removal were observed. Results of the purification procedure done by hydroxyapatite batch-mode, ammonium sulfate precipitation, followed by phenyl-Sepharose and Sephadex G-100 column chromatography, showed that the enzyme consisted of three subunits with molecular masses of 135, 63 and 57 kDa. In addition to tellurite reduction activity, the enzyme was able to reduce nitrate too. Our study extends the knowledge regarding this process in halophilic microorganisms. Besides, this approach may suggest an application for the organism or the enzyme itself to be used for bioremediation of polluted areas with different contaminants due to its nitrate reductase activity.
Collapse
Affiliation(s)
- Sana Alavi
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | | |
Collapse
|
49
|
Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 2014; 117:576-81. [DOI: 10.1016/j.jbiosc.2013.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
50
|
Zhai L, Ma Y, Xue Y, Ma Y. Bacillus alkalicola sp. nov., An Alkaliphilic, Gram-Positive Bacterium Isolated from Zhabuye Lake in Tibet, China. Curr Microbiol 2014; 69:311-6. [DOI: 10.1007/s00284-014-0576-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|