1
|
Veloso M, Waldisperg A, Arros P, Berríos-Pastén C, Acosta J, Colque H, Varas MA, Allende ML, Orellana LH, Marcoleta AE. Diversity, Taxonomic Novelty, and Encoded Functions of Salar de Ascotán Microbiota, as Revealed by Metagenome-Assembled Genomes. Microorganisms 2023; 11:2819. [PMID: 38004830 PMCID: PMC10673233 DOI: 10.3390/microorganisms11112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Salar de Ascotán is a high-altitude arsenic-rich salt flat exposed to high ultraviolet radiation in the Atacama Desert, Chile. It hosts unique endemic flora and fauna and is an essential habitat for migratory birds, making it an important site for conservation and protection. However, there is limited information on the resident microbiota's diversity, genomic features, metabolic potential, and molecular mechanisms that enable it to thrive in this extreme environment. We used long- and short-read metagenomics to investigate the microbial communities in Ascotán's water, sediment, and soil. Bacteria predominated, mainly Pseudomonadota, Acidobacteriota, and Bacteroidota, with a remarkable diversity of archaea in the soil. Following hybrid assembly, we recovered high-quality bacterial (101) and archaeal (6) metagenome-assembled genomes (MAGs), including representatives of two putative novel families of Patescibacteria and Pseudomonadota and two novel orders from the archaeal classes Halobacteriota and Thermoplasmata. We found different metabolic capabilities across distinct lineages and a widespread presence of genes related to stress response, DNA repair, and resistance to arsenic and other metals. These results highlight the remarkable diversity and taxonomic novelty of the Salar de Ascotán microbiota and its rich functional repertoire, making it able to resist different harsh conditions. The highly complete MAGs described here could serve future studies and bioprospection efforts focused on salt flat extremophiles, and contribute to enriching databases with microbial genome data from underrepresented regions of our planet.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Angie Waldisperg
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Joaquín Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Hazajem Colque
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Macarena A. Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Miguel L. Allende
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Luis H. Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany;
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| |
Collapse
|
2
|
Ramos-Tapia I, Salinas P, Núñez R, Cortez D, Soto J, Paneque M. Compositional Changes in Sediment Microbiota Are Associated with Seasonal Variation of the Water Column in High-Altitude Hyperarid Andean Lake Systems. Microbiol Spectr 2023; 11:e0520022. [PMID: 37102964 PMCID: PMC10269505 DOI: 10.1128/spectrum.05200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
The lacustrine systems of La Brava and La Punta, located in the Tilopozo sector in the extreme south of Salar de Atacama, are pristine high-altitude Andean lakes found along the central Andes of South America. This shallow ecosystem suffers from permanent evaporation, leading to falling water levels, causing it to recede or disappear during the dry season. This dynamic causes physicochemical changes in lakes, such as low nutrient availability, pH change, and dissolved metals, which can influence the composition of the microbial community. In this study, we used a metataxonomic approach (16S rRNA hypervariable regions V3 to V4) to characterize the sedimentary microbiota of these lakes. To understand how the water column affects and is structured in the microbiota of these lakes, we combined the analysis of the persistence of the water column through satellite images and physicochemical characterization. Our results show a significant difference in abiotic factors and microbiota composition between La Punta and La Brava lakes. In addition, microbiota analysis revealed compositional changes in the ecological disaggregation (main and isolated bodies) and antagonistic changes in the abundance of certain taxa between lakes. These findings are an invaluable resource for understanding the microbiological diversity of high Andean lakes using a multidisciplinary approach that evaluates the microbiota behavior in response to abiotic factors. IMPORTANCE In this study, we analyzed the persistence of the water column through satellite images and physicochemical characterization to investigate the composition and diversity in High Andean Lake Systems in a hyperarid environment. In addition to the persistence of the water column, this approach can be used to analyze changes in the morphology of saline accumulations and persistence of snow or ice; for example, for establishing variable plant cover over time and evaluating the microbiota associated with soils with seasonal changes in plants. This makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. In our case, it was used to study microorganisms capable of resisting desiccation and water restriction for a considerable period and adapting to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration.
Collapse
Affiliation(s)
- Ignacio Ramos-Tapia
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Pamela Salinas
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Reynaldo Núñez
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Donna Cortez
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Jorge Soto
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Manuel Paneque
- Laboratory of Bioenergy and Environmental Biotechnology, Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, La Pintana, Santiago, Chile
| |
Collapse
|
3
|
Guardia AE, Wagner A, Busalmen JP, Di Capua C, Cortéz N, Beligni MV. The draft genome of Andean Rhodopseudomonas sp. strain AZUL predicts genome plasticity and adaptation to chemical homeostasis. BMC Microbiol 2022; 22:297. [PMID: 36494611 PMCID: PMC9733117 DOI: 10.1186/s12866-022-02685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Characterization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identical to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separation at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that participate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioenergetic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute its niche.
Collapse
Affiliation(s)
- Aisha E. Guardia
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Agustín Wagner
- grid.10814.3c0000 0001 2097 3211Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan P. Busalmen
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Cecilia Di Capua
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Néstor Cortéz
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Beligni
- grid.412221.60000 0000 9969 0902Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
4
|
Acosta-Grinok M, Vázquez S, Guiliani N, Marín S, Demergasso C. Looking for the mechanism of arsenate respiration of Fusibacter sp. strain 3D3, independent of ArrAB. Front Microbiol 2022; 13:1029886. [PMID: 36532432 PMCID: PMC9751042 DOI: 10.3389/fmicb.2022.1029886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The literature has reported the isolation of arsenate-dependent growing microorganisms which lack a canonical homolog for respiratory arsenate reductase, ArrAB. We recently isolated an arsenate-dependent growing bacterium from volcanic arsenic-bearing environments in Northern Chile, Fusibacter sp. strain 3D3 (Fas) and studied the arsenic metabolism in this Gram-positive isolate. Features of Fas deduced from genome analysis and comparative analysis with other arsenate-reducing microorganisms revealed the lack of ArrAB coding genes and the occurrence of two arsC genes encoding for putative cytoplasmic arsenate reductases named ArsC-1 and ArsC-2. Interestingly, ArsC-1 and ArsC-2 belong to the thioredoxin-coupled family (because of the redox-active disulfide protein used as reductant), but they conferred differential arsenate resistance to the E. coli WC3110 ΔarsC strain. PCR experiments confirmed the absence of arrAB genes and results obtained using uncouplers revealed that Fas growth is linked to the proton gradient. In addition, Fas harbors ferredoxin-NAD+ oxidoreductase (Rnf) and electron transfer flavoprotein (etf) coding genes. These are key molecular markers of a recently discovered flavin-based electron bifurcation mechanism involved in energy conservation, mainly in anaerobic metabolisms regulated by the cellular redox state and mostly associated with cytoplasmic enzyme complexes. At least three electron-bifurcating flavoenzyme complexes were evidenced in Fas, some of them shared in conserved genomic regions by other members of the Fusibacter genus. These physiological and genomic findings permit us to hypothesize the existence of an uncharacterized arsenate-dependent growth metabolism regulated by the cellular redox state in the Fusibacter genus.
Collapse
Affiliation(s)
| | - Susana Vázquez
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina,Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Guiliani
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Antofagasta, Chile
| | - Sabrina Marín
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile
| | - Cecilia Demergasso
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile,Nucleus for the Study of Cancer at a Basic, Applied, and Clinical Level, Universidad Católica del Norte, Antofagasta, Chile,*Correspondence: Cecilia Demergasso,
| |
Collapse
|
5
|
Ghosh S, Mukherjee M, Roychowdhury T. Bacterial bio-mobilization and -sequestration of arsenic in contaminated paddy fields of West Bengal, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Vignale FA, Lencina AI, Stepanenko TM, Soria MN, Saona LA, Kurth D, Guzmán D, Foster JS, Poiré DG, Villafañe PG, Albarracín VH, Contreras M, Farías ME. Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes. MICROBIAL ECOLOGY 2022; 83:1-17. [PMID: 33730193 DOI: 10.1007/s00248-021-01725-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.
Collapse
Affiliation(s)
- Federico A Vignale
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Agustina I Lencina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Tatiana M Stepanenko
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Mariana N Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luis A Saona
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel Guzmán
- Centro de Biotecnología (CBT), Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón (UMSS), Cochabamba, Bolivia
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA
| | - Daniel G Poiré
- Centro de Investigaciones Geológicas (CIG), Universidad Nacional de La Plata (UNLP)-CONICET, La Plata, Argentina
| | - Patricio G Villafañe
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia H Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Centro Integral de Microscopía Electrónica (CIME)-CCT-CONICET, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | | | - María E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
7
|
Osman JR, Viedma P, Mendoza J, Fernandes G, DuBow MS, Cotoras D. Prokaryotic diversity and biogeochemical characteristics of field living and laboratory cultured stromatolites from the hypersaline Laguna Interna, Salar de Atacama (Chile). Extremophiles 2021; 25:327-342. [PMID: 33993356 DOI: 10.1007/s00792-021-01232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Stromatolites are organo-sedimentary structures found principally in seas and saline lakes that contain sheets of sediments and minerals formed by layers of microbial communities, which trap sediments and induce the precipitation of minerals.A living stromatolite from the alkaline Laguna Interna in the Salar de Atacama was collected and one of the fragments was deposited in an experimental aquarium for 18 months. We used Illumina sequencing of PCR-amplified V4 regions of 16S rRNA genes from total extracted DNA to identify the microbial populations. The chemical structure was studied using X-Ray Diffraction (XRD) and bench chemical methods. We found that members belonging to the Proteobacteria, Planctomycetes, Chloroflexi and Bacteroidetes phyla dominated the bacterial communities of the living and aquarium cultured samples. The potential metabolic functionality of the prokaryotic community reveals that sulfur, nitrogen, methane and carbon fixation metabolism functions are present in the samples. This study is the first to provide new insights into the prokaryotic community composition from this unusual aquatic desert site. Further studies will be helpful to obtain a better understanding of the biotic and abiotic mechanisms residing in stromatolites from Laguna Interna, as well as to have better knowledge about the formation of these biosignatures.
Collapse
Affiliation(s)
- Jorge R Osman
- Laboratorio de Microbiología y Biotecnología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont #964, Independencia, Santiago, Chile. .,Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile.
| | - Pabla Viedma
- Laboratorio de Microbiología y Biotecnología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont #964, Independencia, Santiago, Chile
| | - Jorge Mendoza
- Laboratorio de Química de Suelos, Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Gustavo Fernandes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Michael S DuBow
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay Campus CNRS, Bâtiment 21, Avenue de la Terasse, 91190, Gif-sur-Yvette, France
| | - Davor Cotoras
- Laboratorio de Microbiología y Biotecnología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont #964, Independencia, Santiago, Chile
| |
Collapse
|
8
|
Saona LA, Soria M, Durán-Toro V, Wörmer L, Milucka J, Castro-Nallar E, Meneses C, Contreras M, Farías ME. Phosphate-Arsenic Interactions in Halophilic Microorganisms of the Microbial Mat from Laguna Tebenquiche: from the Microenvironment to the Genomes. MICROBIAL ECOLOGY 2021; 81:941-953. [PMID: 33388944 DOI: 10.1007/s00248-020-01673-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a metalloid present in the earth's crust and widely distributed in the environment. Due to its high concentrations in the Andean valleys and its chemical similarity with phosphorus (P), its biological role in Andean Microbial Ecosystems (AMEs) has begun to be studied. The AMEs are home to extremophilic microbial communities that form microbial mats, evaporites, and microbialites inhabiting Andean lakes, puquios, or salt flats. In this work, we characterize the biological role of As and the effect of phosphate in AMEs from the Laguna Tebenquiche (Atacama Desert, Chile). Using micro X-ray fluorescence, the distribution of As in microbial mat samples was mapped. Taxonomic and inferred functional profiles were obtained from enriched cultures of microbial mats incubated under As stress and different phosphate conditions. Additionally, representative microorganisms highly resistant to As and able to grow under low phosphate concentration were isolated and studied physiologically. Finally, the genomes of the isolated Salicola sp. and Halorubrum sp. were sequenced to analyze genes related to both phosphate metabolism and As resistance. The results revealed As as a key component of the microbial mat ecosystem: (i) As was distributed across all sections of the microbial mat and represented a significant weight percentage of the mat (0.17 %) in comparison with P (0.40%); (ii) Low phosphate concentration drastically changed the microbial community in microbial mat samples incubated under high salinity and high As concentrations; (iii) Archaea and Bacteria isolated from the microbial mat were highly resistant to arsenate (up to 500 mM), even under low phosphate concentration; (iv) The genomes of the two isolates were predicted to contain key genes in As metabolism (aioAB and arsC/acr3) and the genes predicted to encode the phosphate-specific transport operon (pstSCAB-phoU) are next to the arsC gene, suggesting a functional relationship between these two elements.
Collapse
Affiliation(s)
- L A Saona
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | - M Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - V Durán-Toro
- Hydrothermal Geomicrobiology Group, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - L Wörmer
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
| | - J Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - E Castro-Nallar
- Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| | - C Meneses
- Centro de Biotecnología Vegetal (CBV), FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - M Contreras
- Centro de Ecología Aplicada, Santiago, Chile
| | - M E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
9
|
Physicochemical Parameters Affecting the Distribution and Diversity of the Water Column Microbial Community in the High-Altitude Andean Lake System of La Brava and La Punta. Microorganisms 2020; 8:microorganisms8081181. [PMID: 32756460 PMCID: PMC7464526 DOI: 10.3390/microorganisms8081181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/23/2022] Open
Abstract
Due to the low incidence of precipitation attributed to climate change, many high-altitude Andean lakes (HAALs) and lagoons distributed along the central Andes in South America may soon disappear. This includes La Brava–La Punta, a brackish lake system located south of the Salar de Atacama within a hyper-arid and halophytic biome in the Atacama Desert. Variations in the physicochemical parameters of the water column can induce changes in microbial community composition, which we aimed to determine. Sixteen sampling points across La Brava–La Punta were studied to assess the influence of water physicochemical properties on the aquatic microbial community, determined via 16S rRNA gene analysis. Parameters such as pH and the concentrations of silica, magnesium, calcium, salinity, and dissolved oxygen showed a more homogenous pattern in La Punta samples, whereas those from La Brava had greater variability; pH and total silica were significantly different between La Brava and La Punta. The predominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The genera Psychroflexus (36.85%), Thiomicrospira (12.48%), and Pseudomonas (7.81%) were more abundant in La Brava, while Pseudospirillum (20.73%) and Roseovarius (17.20%) were more abundant in La Punta. Among the parameters, pH was the only statistically significant factor influencing the diversity within La Brava lake. These results complement the known microbial diversity and composition in the HAALs of the Atacama Desert.
Collapse
|
10
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
11
|
Azua-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D, Fernández-Martínez MÁ, Fernández-Sampedro M, García-Descalzo L, García-Villadangos M, Martin-Redondo MP, Sánchez-García L, Wierzchos J, Parro V. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep 2018; 8:16706. [PMID: 30420604 PMCID: PMC6232106 DOI: 10.1038/s41598-018-35051-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
The hyperarid core of the Atacama Desert, the driest and oldest desert on Earth, has experienced a number of highly unusual rain events over the past three years, resulting in the formation of previously unrecorded hypersaline lagoons, which have lasted several months. We have systematically analyzed the evolution of the lagoons to provide quantitative field constraints of large-scale impacts of the rains on the local microbial communities. Here we show that the sudden and massive input of water in regions that have remained hyperarid for millions of years is harmful for most of the surface soil microbial species, which are exquisitely adapted to survive with meager amounts of liquid water, and quickly perish from osmotic shock when water becomes suddenly abundant. We found that only a handful of bacteria, remarkably a newly identified species of Halomonas, remain metabolically active and are still able to reproduce in the lagoons, while no archaea or eukaryotes were identified. Our results show that the already low microbial biodiversity of extreme arid regions greatly diminishes when water is supplied quickly and in great volumes. We conclude placing our findings in the context of the astrobiological exploration of Mars, a hyperarid planet that experienced catastrophic floodings in ancient times.
Collapse
Affiliation(s)
- A Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - A G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Department of Astronomy, Cornell University, Ithaca, 14853, NY, USA.
| | | | - C Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - D Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | | | | | | | - J Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - V Parro
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| |
Collapse
|
12
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
13
|
Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic. MICROBIAL ECOLOGY 2018; 76:695-705. [PMID: 29520450 DOI: 10.1007/s00248-018-1159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante's metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.
Collapse
Affiliation(s)
- Omar Federico Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - María Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Mariana Noelia Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Manuel Contreras
- Centro de Ecología Aplicada (CEA), Suecia 3304, 56-2-2741872, Ñuñoa, Santiago, Chile
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
| |
Collapse
|
14
|
Schiwitza S, Arndt H, Nitsche F. Four new choanoflagellate species from extreme saline environments: Indication for isolation-driven speciation exemplified by highly adapted Craspedida from salt flats in the Atacama Desert (Northern Chile). Eur J Protistol 2018; 66:86-96. [DOI: 10.1016/j.ejop.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
15
|
A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie van Leeuwenhoek 2018; 111:1403-1419. [PMID: 29748902 DOI: 10.1007/s10482-018-1087-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 10/16/2022]
Abstract
The endorheic basins of the Northern Chilean Altiplano contain saline lakes and salt flats. Two of the salt flats, Gorbea and Ignorado, have high acidic brines. The causes of the local acidity have been attributed to the occurrence of volcanic native sulfur, the release of sulfuric acid by oxidation, and the low buffering capacity of the rocks in the area. Understanding the microbial community composition and available energy in this pristine ecosystem is relevant in determining the origin of the acidity and in supporting the rationale of conservation policies. Besides, a comparison between similar systems in Australia highlights key microbial components and specific ones associated with geological settings and environmental conditions. Sediment and water samples from the Salar de Gorbea were collected, physicochemical parameters measured and geochemical and molecular biological analyses performed. A low diversity microbial community was observed in brines and sediments dominated by Actinobacteria, Algae, Firmicutes and Proteobacteria. Most of the constituent genera have been reported to be either sulfur oxidizing microorganisms or ones having the potential for sulfur oxidation given available genomic data and information drawn from the literature on cultured relatives. In addition, a link between sulfur oxidation and carbon fixation was observed. In contrast, to acid mine drainage communities, Gorbea microbial diversity is mainly supported by chemolithoheterotrophic, facultative chemolithoautotrophic and oligotrophic sulfur oxidizing populations indicating that microbial activity should also be considered as a causative agent of local acidity.
Collapse
|
16
|
Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB, Poiré D, Novoa F, Visscher PT. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS One 2017; 12:e0186867. [PMID: 29140980 PMCID: PMC5687714 DOI: 10.1371/journal.pone.0186867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022] Open
Abstract
Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithifying microbial mats, microbialites, and rhizome-associated concretions were compared to each other and their diversity was related to their environmental conditions. All the ecosystems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia, Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typically an important primary producer in microbial mats, were relatively insignificant or absent. This suggests that other microorganisms, and possibly novel pathways unique to this system, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active production and respiration. The mineralogy composition was calcium carbonate (as aragonite) and increased from mats to microbialites and rhizome-associated concretions. Halite was also present. Further analyses were performed on representative microbial mats and microbialites by layer. Different taxonomic compositions were observed in the upper layers, with Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain previously uncharacterized community metabolisms, some of which may be contributing to net mineral precipitation. Further work on these sites might reveal novel organisms and metabolisms of biotechnological interest.
Collapse
Affiliation(s)
- Maria Eugenia Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
- * E-mail:
| | - Maria Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Kimberley L. Gallagher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | | | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Ana Beatriz Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Daniel Poiré
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet, La Plata, Argentina
| | - Fernando Novoa
- Centro de Ecología Aplicada (CEA), Ñuñoa, Santiago, Chile
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
- Australian Centre for Astrobiology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Serrano AE, Escudero LV, Tebes-Cayo C, Acosta M, Encalada O, Fernández-Moroso S, Demergasso C. First draft genome sequence of a strain from the genus Fusibacter isolated from Salar de Ascotán in Northern Chile. Stand Genomic Sci 2017; 12:43. [PMID: 28770028 PMCID: PMC5525254 DOI: 10.1186/s40793-017-0252-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Fusibacter sp. 3D3 (ATCC BAA-2418) is an arsenate-reducing halotolerant strain within the Firmicutes phylum, isolated from the Salar de Ascotán, a hypersaline salt flat in Northern Chile. This high-Andean closed basin is an athalassohaline environment located at the bottom of a tectonic basin surrounded by mountain range, including some active volcanoes. This landscape can be an advantageous system to explore the effect of salinity on microorganisms that mediate biogeochemical reactions. Since 2000, microbial reduction of arsenic has been evidenced in the system, and the phylogenetic analysis of the original community plus the culture enrichments has revealed the predominance of Firmicutes phylum. Here, we describe the first whole draft genome sequence of an arsenic-reducing strain belonging to the Fusibacter genus showing the highest 16S rRNA gene sequence similarity (98%) with Fusibacter sp. strain Vns02. The draft genome consists of 57 contigs with 5,111,250 bp and an average G + C content of 37.6%. Out of 4780 total genes predicted, 4700 genes code for proteins and 80 genes for RNAs. Insights from the genome sequence and some microbiological features of the strain 3D3 are available under Bioproject accession PRJDB4973 and Biosample SAMD00055724. The release of the genome sequence of this strain could contribute to the understanding of the arsenic biogeochemistry in extreme environments.
Collapse
Affiliation(s)
- Antonio E Serrano
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Lorena V Escudero
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| | - Cinthya Tebes-Cayo
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Mauricio Acosta
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Olga Encalada
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | | | - Cecilia Demergasso
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| |
Collapse
|
18
|
Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 2017; 7:1024. [PMID: 28432307 PMCID: PMC5430908 DOI: 10.1038/s41598-017-00896-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Collapse
Affiliation(s)
- Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Ariel Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Omar F Ordoñez
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Virginia H Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina.
| |
Collapse
|
19
|
Chen Z, Wang Y, Jiang X, Fu D, Xia D, Wang H, Dong G, Li Q. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1684-1694. [PMID: 27616712 DOI: 10.1016/j.scitotenv.2016.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 05/25/2023]
Abstract
Microbially-mediated arsenic (As) metabolism and iron (Fe) bioreduction from sediments play crucial roles in global As/Fe cycle, and their mobilization is associated with the various effects within the alliance of "mediator-bacteria-DOM (Dissolved Organic Matter)". The gradient levels (0.05, 0.10 and 1.00mM) of sodium anthraquinone-2,6-disulphonate (AQDS) as a mediator were investigated for their impact on reductive dissolution of As(V) and Fe(III) from arsenic-rich sediment. For the overall performance of AQDS-mediated reductive dissolution on As(V) and Fe(III), a more positive effect resulting from 0.05mM AQDS was observed compared to 0.10mM, whereas an inhibitory effect was observed with 1.00mM. Compared to the biotic supplementation with acetate as electron donors, approximately 13- and 6-fold increased levels of As(III) were released with 0.05 and 0.10mM, respectively, compared to 1.00mM AQDS (107.51μg/L), and approximately 4- and 3-fold increased Fe(II) levels (40.72mg/L) were observed during the same conditions. Multiple-dynamic effects of "bacteria-AQDS-DOM", which result from AQDS, shifted the microbial community and synchronously derived terrestrial DOM, which potentially changes the DOM substrate and complex formation of As(III)-Fe(II)-humic DOM. High-throughput sequencing results indicated an increase in the abundance of metal-reducing bacteria (e.g., Bacillus (>16%), Lactococcus (>13%), Pseudomonas (>4%) and Geobacter (>3%)) when supplemented with 0.05 and 0.10mM of AQDS. However, a boost increasing the abundance of metal oxidizing bacteria was observed with Alicyclobacillus (>16%), Burkholderia (>7%), and Bradyrhizobium (>5%) upon supplementation with 1.00mM AQDS. These novel insights have profound environmental implications and significance in terms of engineering, not only for understanding the cycle of As/Fe in sediment biochemical processes but for considering future alternative bioremediation treatments.
Collapse
Affiliation(s)
- Zheng Chen
- Environmental Science Research Center, College of the Environment and Ecology, Xiamen University, Xiamen, PR China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China.
| | - Xiuli Jiang
- Environmental Science Research Center, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Dun Fu
- Environmental Science Research Center, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Dong Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Guowen Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; College of Resources and Chemical Engineering, Sanming University, Sanming, PR China
| | - Qingbiao Li
- Environmental Science Research Center, College of the Environment and Ecology, Xiamen University, Xiamen, PR China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; College of Chemistry and Life Science, Quanzhou Normal University, Quanzhou, PR China.
| |
Collapse
|
20
|
Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 2016; 7:1284. [PMID: 27597845 PMCID: PMC4992683 DOI: 10.3389/fmicb.2016.01284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.
Collapse
Affiliation(s)
- Ana B Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Maria C Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Pieter T Visscher
- Department of Marine Sciences, University of ConnecticutGroton, CT, USA; Australian Centre for Astrobiology, University of New South WalesSydney, NSW, Australia
| | | | | | - Daniel G Poire
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet La Plata, Argentina
| | - Molly M Patterson
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla Sevilla, Spain
| | - Maria E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| |
Collapse
|
21
|
Albarracín VH, Gärtner W, Farias ME. Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochem Photobiol 2015; 92:14-28. [PMID: 26647770 DOI: 10.1111/php.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
High-altitude Andean lakes (HAAL) are a treasure chest for microbiological research in South America. Their indigenous microbial communities are exposed to extremely high UV irradiation and to multiple chemical extremes (Arsenic, high salt content, alkalinity). Microbes are found both, free-living or associated into microbial mats with different degrees of mineralization and lithification, including unique modern stromatolites located at 3570 m above sea level. Characterization of these polyextremophilic microbes began only recently, employing morphological and phylogenetic methods as well as high-throughput sequencing and proteomics approach. Aside from providing a general overview on microbial communities, special attention is given to various survival strategies; HAAL's microbes present a complex system of shared genetic and physiological mechanisms (UV-resistome) based on UV photoreceptors and stress sensors with their corresponding response regulators, UV avoidance and protection strategies, damage tolerance and UV damage repair. Molecular information will be provided for what is, so far the most studied HAAL molecule, a CPD-Class I photolyase from Acinetobacter Ver3 (Laguna Verde, 4400 m). This work further proposes some strategies that make an appeal for the preservation of HAAL, a highly fragile environment that offers promising and ample research possibilities.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - María Eugenia Farias
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
22
|
Albarracín VH, Kurth D, Ordoñez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farías ME. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. Front Microbiol 2015; 6:1404. [PMID: 26733008 PMCID: PMC4679917 DOI: 10.3389/fmicb.2015.01404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called "High-Altitude Andean Lakes" (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern-though quite imperfect-analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.
Collapse
Affiliation(s)
- Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de TucumánTucumán, Argentina
- Centro Integral de Microscopía Electrónica, Universidad Nacional de Tucumán, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Omar F. Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Eduardo Luccini
- CONICET Centro de Excelencia en Productos y Procesos de la Provincia de CórdobaCórdoba, Argentina
- Facultad de Química e Ingeniería, Pontificia Universidad Católica ArgentinaRosario, Argentina
| | - Graciela M. Salum
- Instituto de Física Rosario, CONICET Universidad Nacional de RosarioRosario, Argentina
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
| | - Ruben D. Piacentini
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de RosarioRosario, Argentina
| | - María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| |
Collapse
|
23
|
Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 2014; 18:311-29. [DOI: 10.1007/s00792-013-0617-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/05/2013] [Indexed: 02/01/2023]
|
24
|
Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS One 2013; 8:e78890. [PMID: 24205341 PMCID: PMC3815024 DOI: 10.1371/journal.pone.0078890] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022] Open
Abstract
The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.
Collapse
|
25
|
Davolos D, Pietrangeli B. A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 96:1-9. [PMID: 23870163 DOI: 10.1016/j.ecoenv.2013.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 05/08/2023]
Abstract
Latium, a region in central Italy, is known for its extensive volcanic areas that make a significant contribution to the arsenic (As) contamination of freshwater environments, even though some degree of As water pollution may be caused by human activities. The information available on indigenous As-resistant prokaryotes in aquatic environments of Latium is, however, still limited. In this study, we describe new bacteria that are resistant to arsenic toxicity and were isolated from the surface waters of Lake Vico and the Sacco River, two groundwater systems in Latium, as well as from bottled natural mineral water from the same region. The 16S rRNA gene sequence analysis for the As-resistant strains in lake and river waters points to a prevalence of β- and γ-Proteobacteria, while α-Proteobacteria, Firmicutes and Bacteroidetes are represented to a lesser extent. By contrast, solely γ-Proteobacteria were isolated from groundwater samples. The presence of Actinobacteria was documented exclusively in bottled mineral water. In addition, we conducted a DNA sequence-based study on the gene codifying arsB, an As(III) efflux membrane protein pump related to arsenic resistance, for all the As-resistant bacterial isolates. A phylogenetic analysis was carried out on the newly sequenced 16S rRNA genes and arsB in the present study as well as on an additional 16S rRNA/arsB dataset we obtained previously from Lake Albano, from the Tiber and from a well in Bassano Romano located in Latium (Davolos and Pietrangeli, 2011). Overall, the phylogenetic diversity of As-resistant bacteria in underground water was very limited if compared with lentic and lotic waters. Lastly, our molecular data support the hypothesis that the horizontal gene transfer of ars in As-containing freshwater environments is not limited to closely-related genomes, but also occurs between bacteria that are distant from an evolutionary viewpoint, thereby indicating that such genetic events may be considered a source of microbial resistance to arsenic-toxicity.
Collapse
Affiliation(s)
- Domenico Davolos
- INAIL-Research, Certification, Verification Area, Department of Productive Plants and Human Settlements (DIPIA), Via Urbana, 167, 00184 Rome, Italy.
| | | |
Collapse
|