1
|
Rivero M, Gutiérrez-Cacciabue D, Rajal VB, Irazusta VP. Factorial designs are accurate tools to pick up the most promising extremophiles for future biosurfactant production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178193. [PMID: 39721534 DOI: 10.1016/j.scitotenv.2024.178193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
In this study, five strains previously isolated from black liquor (BL) and vinasse (V) were tested to assess the most promising regarding its capacity of biosurfactant production. For that, four factorial designs of two factors at two levels (22) were run for each strain. Selected factors were the production time and the composition media, while the surface tension reduction and optical density were the responses variables. Production media prepared just with V or BL exhibited minimal biosurfactant production, while better results were achieved when media were formulated with nutrient broth (NB), olive oil (Oo), and a percentage of V or BL. Result showed that Bacillus sp. b1 reported the highest surface tension reduction (29.39 mN/m and OD = 8.7) using 5 % BL, 5 g/l NB and 11.5 g/l Oo during 2 to 4 days followed by Lactobacillus sp. a1 (19.47 mN/m and OD = 10.87) using 1 % V, 1 g/l NB and 2.5 g/l Oo during 2 to 4 days. The other strains also showed promising results (Alkalihalobacillus sp. b2: 16.91 mN/m; Pichia sp. a6: 13.8 mN/m; Lactobacillus sp. a5: 13.66 mN/m). This study provides crucial insights regarding the ability of these particular extremophiles strains of producing biosurfactants with the hope of optimizing the process and be able to scale up the production. This will be a huge step towards the development of environmentally friendly bioproduct which can eventually compete with synthetic surfactants.
Collapse
Affiliation(s)
- Mariano Rivero
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Argentina
| | - Dolores Gutiérrez-Cacciabue
- Instituto de Ingeniería Civil y Medio Ambiente Salta (ICMASa), CONICET, UNSa; Facultad de Ingeniería, UNSa, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ingeniería, UNSa, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina.
| |
Collapse
|
2
|
Tavares J, Paixão SM, Silva TP, Alves L. New Insights on Gordonia alkanivorans Strain 1B Surface-Active Biomolecules: Gordofactin Properties. Molecules 2024; 30:1. [PMID: 39795060 PMCID: PMC11720751 DOI: 10.3390/molecules30010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, Gordonia alkanivorans strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer. This study focuses on the characterization of the properties of the lipoglycopeptide BSs/BEs produced by strain 1B, henceforth referred to as gordofactin, to better understand its potential and future applications. Strain 1B was cultivated in a chemostat using fructose as a carbon source to stimulate gordofactin production, and different purification methods were tested. The most purified sample, designated as extracted gordofactin, after lyophilization, presented a specific emulsifying activity of 9.5 U/mg and a critical micelle concentration of 13.5 mg/L. FT-IR analysis revealed the presence of basic hydroxyl, carboxyl, ether, amine/amide functional groups, and alkyl aliphatic chains, which is consistent with its lipoglycopeptide nature (60% lipids, 19.6% carbohydrates, and 9% proteins). Gordofactin displayed remarkable stability and retained emulsifying activity across a broad range of temperatures (30 °C to 80 °C) and pH (pH 3-12). Moreover, a significant tolerance of gordofactin emulsifying activity (EA) to a wide range of NaCl concentrations (1 to 100 g/L) was demonstrated. Although with a great loss of EA in the presence of NaCl concentrations above 2.5%, gordofactin could still tolerate up to 100 g/L NaCl, maintaining about 16% of its initial EA for up to 7 days. Furthermore, gordofactin exhibited growth inhibition against both Gram-positive and Gram-negative bacteria, and it demonstrated concentration-dependent free radical scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (IC50 ≈ 1471 mg/L). These promising features emphasize the robustness and potential of gordofactin as an eco-friendly BS/BE alternative to conventional surfactants/emulsifiers for different industrial applications.
Collapse
Affiliation(s)
- João Tavares
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- RCM2+–Centro de Investigação em Gestão de Ativos e Engenharia de Sistemas, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
3
|
Dowaidar M. Synthetic biology of metabolic cycles for Enhanced CO 2 capture and Sequestration. Bioorg Chem 2024; 153:107774. [PMID: 39260160 DOI: 10.1016/j.bioorg.2024.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
In most organisms, the tri-carboxylic acid cycle (TCA cycle) is an essential metabolic system that is involved in both energy generation and carbon metabolism. Its uni-directionality, however, restricts its use in synthetic biology and carbon fixation. Here, it is describing the use of the modified TCA cycle, called the Tri-carboxylic acid Hooked to Ethylene by Enzyme Reactions and Amino acid Synthesis, the reductive tricarboxylic acid branch/4-hydroxybutyryl-CoA/ethylmalonyl-CoA/acetyl-CoA (THETA) cycle, in Escherichia coli for the purposes of carbon fixation and amino acid synthesis. Three modules make up the THETA cycle: (1) pyruvate to succinate transformation, (2) succinate to crotonyl-CoA change, and (3) crotonyl-CoA to acetyl-CoA and pyruvate change. It is presenting each module's viability in vivo and showing how it integrates into the E. coli metabolic network to support growth on minimal medium without the need for outside supplementation. Enzyme optimization, route redesign, and heterologous expression were used to get over metabolic roadblocks and produce functional modules. Furthermore, the THETA cycle may be improved by including components of the Carbon-Efficient Tri-Carboxylic Acid Cycle (CETCH cycle) to improve carbon fixation. THETA cycle's promise as a platform for applications in synthetic biology and carbon fixation.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
4
|
Itelson L, Merav M, Haymi S, Carmeli S, Ilan M. Diversity and Activity of Bacteria Cultured from a Cup-The Sponge Calyx nicaeensis. Mar Drugs 2024; 22:440. [PMID: 39452848 PMCID: PMC11509412 DOI: 10.3390/md22100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. Calyx nicaeensis is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East Mediterranean specimens of mesophotic C. nicaeensis have never been studied. Moreover, no research has inspected its associated bacteria. Thus, we studied the sponge's bacterial diversity and examined bacterial interspecific interactions in search of a promising antibacterial candidate. Such novel antimicrobial agents are needed since extensive antibiotic use leads to bacterial drug resistance. Bacteria cultivation yielded 90 operational taxonomic units (OTUs). A competition assay enabled the testing of interspecific interactions between the cultured OTUs. The highest-ranked antagonistic bacterium, identified as Paenisporosarcina indica (previously never found in marine or cold habitats), was mass cultured, extracted, and separated using size exclusion and reversed-phase chromatographic methods, guided by antibacterial activity. A pure compound was isolated and identified as 3-oxy-anteiso-C15-fatty acid-lichenysin. Five additional active compounds await final cleaning; however, they are lichenysins and surfactins. These are the first antibacterial compounds identified from either the C. nicaeensis sponge or P. indica bacterium. It also revealed that the genus Bacillus is not an exclusive producer of lichenysin and surfactin.
Collapse
Affiliation(s)
- Lynne Itelson
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Mayan Merav
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Shai Haymi
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Micha Ilan
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
5
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
6
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
7
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
8
|
Albasri HM, Almohammadi AA, Alhhazmi A, Bukhari DA, Waznah MS, Mawad AMM. Production and characterization of rhamnolipid biosurfactant from thermophilic Geobacillus stearothermophilus bacterium isolated from Uhud mountain. Front Microbiol 2024; 15:1358175. [PMID: 38873141 PMCID: PMC11173098 DOI: 10.3389/fmicb.2024.1358175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications. Materials and methods In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of rhlAB. The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated. Results and discussion The isolated HA-1 was identified as Geobacillus stearothermophilus strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat (Triticum aestivum) growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic G. stearothermophilus is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.
Collapse
Affiliation(s)
- Hibah M. Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa A. Almohammadi
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Areej Alhhazmi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Duaa A. Bukhari
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Valdez-Nuñez LF, Rivera-Jacinto MA. Thermophilic bacteria from Peruvian hot springs with high potential application in environmental biotechnology. ENVIRONMENTAL TECHNOLOGY 2024; 45:1420-1435. [PMID: 36356186 DOI: 10.1080/09593330.2022.2143293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Hot springs are extreme environments in which well-adapted microorganisms with biotechnological applications can thrive naturally. These thermal environments across Peruvian territory have, until now, remained poorly investigated. In this study, two hot springs, El Tragadero and Quilcate, located in Cajamarca (Peru) were selected in order to investigate the biotechnological potential of indigenous thermophilic bacteria. Enrichment and isolation processes were carried out using microbial mats, sediments, biofilms, and plastic polymers as samples. Screening for biosurfactants and siderophores production, as well as for polyethylene terephthalate (PET) hydrolysis was done using culture-dependent techniques. After molecular identification, Bacillus was found as the most abundant genus in both hot springs. Bacillus velezensis was found producing biosurfactants under high-level temperature. Anoxybacillus species (A. salavatliensis and A. gonensis) are here reported as siderophore-producing bacteria for the first time. Additionally, Brevibacillus and the less-known bacterium Tistrella mobilis were found demonstrating PET hydrolysis activity. Our study provides the first report of thermophilic bacteria isolated from Peruvian hot springs with biotechnological potential for the bioremediation of oil-, metal- and plastic-polluted environments.
Collapse
Affiliation(s)
- Luis Felipe Valdez-Nuñez
- Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Marco A Rivera-Jacinto
- Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Universidad Nacional de Cajamarca, Cajamarca, Peru
| |
Collapse
|
10
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
11
|
Sundaram T, Govindarajan RK, Vinayagam S, Krishnan V, Nagarajan S, Gnanasekaran GR, Baek KH, Rajamani Sekar SK. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front Microbiol 2024; 15:1357302. [PMID: 38374917 PMCID: PMC10876000 DOI: 10.3389/fmicb.2024.1357302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Vasumathi Krishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Virudhunagar, India
| | - Shankar Nagarajan
- Department of Biomedical Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | | |
Collapse
|
12
|
Valdez S, de la Vega FV, Pairazaman O, Castellanos R, Esparza M. Hyperthermophile diversity microbes in the Calientes geothermal field, Tacna, Peru. Braz J Microbiol 2023; 54:2927-2937. [PMID: 37801222 PMCID: PMC10689642 DOI: 10.1007/s42770-023-01117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400 m above sea level in Tacna Region, Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was taken by sampling of sediment and water (pH 7.3-7.6). The hyperthermophile diversity was determined by PCR, DGGE, and DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity and reveal the possibility to develop new biotechnological applications based on the kind of environments.
Collapse
Affiliation(s)
- Silvia Valdez
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Fabián Veliz de la Vega
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaiso-Chile Av. Brasil 2085, Valparaíso, Chile.
| | - Omar Pairazaman
- Laboratorio Regional de Salud Pública (Diresa), Cajamarca, Perú
| | - Roberto Castellanos
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Mario Esparza
- Universidad Privada Antenor Orrego, Facultad de Medicina Humana, Laboratorio de Genética, Reproducción y Biología Molecular, Trujillo, Perú
| |
Collapse
|
13
|
Muthukumar B, Nandini MS, Elumalai P, Balakrishnan M, Satheeshkumar A, AlSalhi MS, Devanesan S, Parthipan P, Rajasekar A, Malik T. Enhancement of cell migration and wound healing by nano-herb ointment formulated with biosurfactant, silver nanoparticles and Tridax procumbens. Front Microbiol 2023; 14:1225769. [PMID: 37601383 PMCID: PMC10434256 DOI: 10.3389/fmicb.2023.1225769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION Ointments are generally used as a therapeutic agent for topical medication or transdermal drug delivery, such as wound healing and skin lesions. METHODS In this study, Tridax procumbens plant extract (0.7 g/mL) was used to prepare herbal-infused oil as the oil phase and gelatin-stabilized silver nanoparticle (G-AgNPs) (0.3 g/mL) as the aqueous phase. To blend the oil and aqueous phases, rhamnolipid biosurfactant with a critical micelle concentration of 55 mg/L from strain Pseudomonas aeruginosa PP4 has been used for herb ointment preparation. The average size of the synthesized G-AgNPs was observed between 10-30 nm and confirmed as spherical-shaped particles by TEM analysis. Subsequently, GC-MS and FTIR characterization are used to confirm herb ointment's chemical and functional characteristics. RESULTS Based on the antibacterial studies, the highest microbial growth inhibition was observed for herb ointment, about 19.5 mm for the pathogen Staphylococcus aureus at the concentration of 100 μg/mL, whereas 15.5 mm was obtained for Escherichia coli, respectively. In addition, the minimum inhibitory concentration (MIC) assay showed negligible bacterial growth at 100 μg/mL for S. aureus and E. coli, respectively. Moreover, the cell viability assay for herb ointment exhibited low cytotoxic activity at higher concentrations (100 μg/mL) in Vero cell lines. In this study, wound scratch assay showed a significant cell migration rate (90 ± 2%) in 3 days of incubation than the control (62 ± 2%). DISCUSSION As a result, the biosurfactant-based nano-topical herb ointment revealed a low cytotoxic and higher cell migration capacity. Altogether, these findings highlighted the utility of this herb ointment in therapeutic applications such as wound healing.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, India
| | - M. S. Nandini
- Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Punniyakotti Elumalai
- Green Laboratory, Microbiology and Environmental Toxicology Laboratory, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai, Tamilnadu, India
| | - Muthuraj Balakrishnan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Azhargarsamy Satheeshkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, India
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
14
|
Chavarria-Quicaño E, Contreras-Jácquez V, Carrillo-Fasio A, De la Torre-González F, Asaff-Torres A. Native Bacillus paralicheniformis isolate as a potential agent for phytopathogenic nematodes control. Front Microbiol 2023; 14:1213306. [PMID: 37588888 PMCID: PMC10425774 DOI: 10.3389/fmicb.2023.1213306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Phytopathogenic nematodes (PPNs) are responsible for substantial damages within agricultural crops worldwide which can be controlled employing beneficial microorganisms and/or their metabolites in an ecofriendly way. Nevertheless, the success of the control regards not only on the virulence of the strains or the toxicity of their metabolites but also on their ability to colonize and remain in the rhizospheric environment, particularly in those crops affected by abiotic stresses promoted by the climate change. Consequently, the bioprospection of beneficial microorganisms able to control PPNs and to thrive in adverse conditions has attracted attention. On this way, deserts are perfect ecological niches to isolate microorganisms adapted to harsh enviroments. The purpose of this research was to isolate and characterize bacteria from rhizospheric soil samples collected in the Northwestern Desert of Mexico with potential for PPNs control. As first screening, secretomes of each isolate were tested in vitro for nematicidal activity (NA). Then, activities from secretomes and endospores from the selected isolate were confirmed in vivo assays. From 100 thermotolerant isolates, the secretome of the isolate identified as Bacillus paralicheniformis TB197 showed the highest NA (>95%) against Meloidogyne incognita, both in vitro and in vivo tests, suppressing infections caused by M. enterolobii in tomato crops, too. In open field tests, the endospores of TB197 strain showed a reduction of 81% in the infection severity caused by M. enterolobii (p ≤ 0.05), while the galling index (GI) was reduced 84% (p ≤ 0.05) in tomato greenhouse-tests. Also, a reduction of the root necrosis (81%) caused by Radopholus similis in banana plantations (p ≤ 0.05), compared to the control was observed. Owing to their efficacy in controlling PPNs infections, the endospores and secondary metabolites of B. paralicheniformis TB197 strain could be used in bionematicidal formulations.
Collapse
Affiliation(s)
- Estefany Chavarria-Quicaño
- Laboratory of Industrial Biotechnology, Department of Food Science, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Victor Contreras-Jácquez
- Laboratory of Industrial Biotechnology, Department of Food Science, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Armando Carrillo-Fasio
- Laboratory of Nematology, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | | | - Ali Asaff-Torres
- Laboratory of Industrial Biotechnology, Department of Food Science, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| |
Collapse
|
15
|
Li JY, Liu YF, Zhou L, Gang HZ, Liu JF, Sun GZ, Wang WD, Yang SZ, Mu BZ. Structural Diversity of the Lipopeptide Biosurfactant Produced by a Newly Isolated Strain, Geobacillus thermodenitrifcans ME63. ACS OMEGA 2023; 8:22150-22158. [PMID: 37360472 PMCID: PMC10286266 DOI: 10.1021/acsomega.3c02194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The genus Geobacillus is active in degradation of hydrocarbons in thermophilic and facultative environments since it was first reported in 1920. Here, we report a new strain, Geobacillus thermodenitrificans ME63, isolated from an oilfield with the ability of producing the biosurfactant. The composition, chemical structure, and surface activity of the biosurfactant produced by G. thermodenitrificans ME63 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight ion mass spectrometry, and surface tensiometer. The biosurfactant produced by strain ME63 was identified as surfactin with six variants, which is one of the representative family of lipopeptide biosurfactants. The amino acid residue sequence in the peptide of this surfactin is N-Glu → Leu → Leu → Val → Leu → Asp → Leu-C. The critical micelle concentration (CMC) of the surfactin is 55 mg L-1, and the surface tension at CMC is 35.9 mN m-1, which is promising in bioremediation and oil recovery industries. The surface activity and emulsification properties of biosurfactants produced by G. thermodenitrificans ME63 showed excellent resistance to temperature changes, salinity changes, and pH changes.
Collapse
Affiliation(s)
- Jia-Yi Li
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Hong-Ze Gang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Jin-Feng Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Daqing
Huali Biotechnology Co., Ltd, Daqing, Heilongjiang 163511, China
| | - Gang-Zheng Sun
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Wei-Dong Wang
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Shi-Zhong Yang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Satari L, Iglesias A, Porcar M. The Microbiome of Things: Appliances, Machines, and Devices Hosting Artificial Niche-Adapted Microbial Communities. Microorganisms 2023; 11:1507. [PMID: 37375009 PMCID: PMC10304627 DOI: 10.3390/microorganisms11061507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
As it is the case with natural substrates, artificial surfaces of man-made devices are home to a myriad of microbial species. Artificial products are not necessarily characterized by human-associated microbiomes; instead, they can present original microbial populations shaped by specific environmental-often extreme-selection pressures. This review provides a detailed insight into the microbial ecology of a range of artificial devices, machines, and appliances, which we argue are specific microbial niches that do not necessarily fit in the "build environment" microbiome definition. Instead, we propose here the Microbiome of Things (MoT) concept analogous to the Internet of Things (IoT) because we believe it may be useful to shed light on human-made, but not necessarily human-related, unexplored microbial niches.
Collapse
Affiliation(s)
- Leila Satari
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
- Darwin Bioprospecting Excellence SL., Parc Científic, Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
17
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
18
|
Pinheiro Y, Faria da Mota F, Peixoto RS, van Elsas JD, Lins U, Mazza Rodrigues JL, Rosado AS. A thermophilic chemolithoautotrophic bacterial consortium suggests a mutual relationship between bacteria in extreme oligotrophic environments. Commun Biol 2023; 6:230. [PMID: 36859706 PMCID: PMC9977764 DOI: 10.1038/s42003-023-04617-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
A thermophilic, chemolithoautotrophic, and aerobic microbial consortium (termed carbonitroflex) growing in a nutrient-poor medium and an atmosphere containing N2, O2, CO2, and CO is investigated as a model to expand our understanding of extreme biological systems. Here we show that the consortium is dominated by Carbonactinospora thermoautotrophica (strain StC), followed by Sphaerobacter thermophilus, Chelatococcus spp., and Geobacillus spp. Metagenomic analysis of the consortium reveals a mutual relationship among bacteria, with C. thermoautotrophica StC exhibiting carboxydotrophy and carbon-dioxide storage capacity. C. thermoautotrophica StC, Chelatococcus spp., and S. thermophilus harbor genes encoding CO dehydrogenase and formate oxidase. No pure cultures were obtained under the original growth conditions, indicating that a tightly regulated interactive metabolism might be required for group survival and growth in this extreme oligotrophic system. The breadwinner hypothesis is proposed to explain the metabolic flux model and highlight the vital role of C. thermoautotrophica StC (the sole keystone species and primary carbon producer) in the survival of all consortium members. Our data may contribute to the investigation of complex interactions in extreme environments, exemplifying the interconnections and dependency within microbial communities.
Collapse
Affiliation(s)
- Yuri Pinheiro
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Faria da Mota
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Ulysses Lins
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California Davis, Davis, CA, USA
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
19
|
Production and Characterization of New Biosurfactants/Bioemulsifiers from Pantoea alhagi and Their Antioxidant, Antimicrobial and Anti-Biofilm Potentiality Evaluations. Molecules 2023; 28:molecules28041912. [PMID: 36838900 PMCID: PMC9963710 DOI: 10.3390/molecules28041912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The present work aimed to develop rapid approach monitoring using a simple selective method based on a positive hemolysis test, oil spreading activity and emulsification index determinations. It is the first to describe production of biosurfactants (BS) by the endophytic Pantoea alhagi species. Results indicated that the new BS evidenced an E24 emulsification index of 82%. Fourier-transform infrared (FTIR) results mentioned that the described BS belong to the glycolipid family. Fatty acid profiles showed the predominance of methyl 2-hyroxydodecanoate in the cell membrane (67.00%) and methyl 14-methylhexadecanoate (12.05%). The major fatty acid in the BS was oleic acid (76.26%), followed by methyl 12-methyltetradecanoate (10.93%). Markedly, the BS produced by the Pantoea alhagi species exhibited antimicrobial and anti-biofilm activities against tested human pathogens. With superior antibacterial activity against Escherchia coli and Staphylococcus aureus, a high antifungal effect was given against Fusarium sp. with a diameter of zone of inhibition of 29.5 mm, 36 mm and 31 mm, obtained by BS dissolved in methanol extract. The DPPH assay indicated that the BS (2 mg/mL) showed a higher antioxidant activity (78.07 inhibition percentage). The new BS exhibited specific characteristics, encouraging their use in various industrial applications.
Collapse
|
20
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
21
|
de Lemos EA, Procópio L, da Mota FF, Jurelevicius D, Rosado AS, Seldin L. Molecular characterization of Paenibacillus antarcticus IPAC21, a bioemulsifier producer isolated from Antarctic soil. Front Microbiol 2023; 14:1142582. [PMID: 37025627 PMCID: PMC10072262 DOI: 10.3389/fmicb.2023.1142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.
Collapse
Affiliation(s)
- Ericka Arregue de Lemos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Procópio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Lucy Seldin,
| |
Collapse
|
22
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
23
|
Unraveling the Genomic Potential of the Thermophilic Bacterium Anoxybacillus flavithermus from an Antarctic Geothermal Environment. Microorganisms 2022; 10:microorganisms10081673. [PMID: 36014090 PMCID: PMC9413872 DOI: 10.3390/microorganisms10081673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Antarctica is a mosaic of extremes. It harbors active polar volcanoes, such as Deception Island, a marine stratovolcano having notable temperature gradients over very short distances, with the temperature reaching up to 100 °C near the fumaroles and subzero temperatures being noted in the glaciers. From the sediments of Deception Island, we isolated representatives of the genus Anoxybacillus, a widely spread genus that is mainly encountered in thermophilic environments. However, the phylogeny of this genus and its adaptive mechanisms in the geothermal sites of cold environments remain unknown. To the best of our knowledge, this is the first study to unravel the genomic features and provide insights into the phylogenomics and metabolic potential of members of the genus Anoxybacillus inhabiting the Antarctic thermophilic ecosystem. Here, we report the genome sequencing data of seven A. flavithermus strains isolated from two geothermal sites on Deception Island, Antarctic Peninsula. Their genomes were approximately 3.0 Mb in size, had a G + C ratio of 42%, and were predicted to encode 3500 proteins on average. We observed that the strains were phylogenomically closest to each other (Average Nucleotide Identity (ANI) > 98%) and to A. flavithermus (ANI 95%). In silico genomic analysis revealed 15 resistance and metabolic islands, as well as genes related to genome stabilization, DNA repair systems against UV radiation threats, temperature adaptation, heat- and cold-shock proteins (Csps), and resistance to alkaline conditions. Remarkably, glycosyl hydrolase enzyme-encoding genes, secondary metabolites, and prophage sequences were predicted, revealing metabolic and cellular capabilities for potential biotechnological applications.
Collapse
|
24
|
Dos Santos RA, Rodríguez DM, Ferreira INDS, de Almeida SM, Takaki GMDC, de Lima MAB. Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. ENVIRONMENTAL TECHNOLOGY 2022; 43:2956-2967. [PMID: 33775228 DOI: 10.1080/09593330.2021.1910733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Oil spills in aquatic ecosystems cause irreparable damage to marine life and the coastal populations of affected areas. In recent years, chemical dispersants have been extensively used to remedy these impacted ecosystems, although these agents have been increasingly restricted due to their toxic potential. In this context, biosurfactants are emerging as a promising alternative to chemical dispersants, which have some advantages including low toxicity, high biodegradability and good ecological acceptability. Thus, this study aimed to the production of biosurfactant by the bacteria Serratia marcescens UCP 1549 for application as biodispersant. The experiment was carried out using wheat bran as substrate in solid-state fermentation (SSF) as low-cost technology. Biosurfactant production was verified by the reduction of surface tension (28.4 mN/m) and interfacial tension (4.1 mN/m) with n-hexadecane. Also, promising result of emulsification (94%) with burned motor oil was obtained. Acid precipitation yielded 52.0 g/kg dry substrate of biosurfactant, that was identified as an anionic compound of a lipopeptide nature by the Zeta potential and FTIR spectrum, respectively. The biomolecule showed stability under extreme conditions of temperature, pH and salinity, as well as low toxicity against the microcrustacean Artemia salina. In addition, the biosurfactant demonstrated excellent properties to dispersing burned motor oil in water (ODA = 50.24 cm2) and to washing of marine stones (100% removal of burned motor oil). Therefore, these results confirm SSF as a sustainable technology for the production of biodispersant by S. marcescens UCP 1549, promising in the bioremediation of marine ecosystems impacted by petroderivatives.
Collapse
Affiliation(s)
- Renata Andreia Dos Santos
- Post-graduation Program in Development of Environmental Processes, Catholic University of Pernambuco Recife, Brazil
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
| | - Dayana Montero Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- National Post-Doctorate Program (PNPD-CAPES), Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife, Brazil
| | - Isabela Natália da Silva Ferreira
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Doctorate Northeast Network for Biotechnology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Sérgio Mendonça de Almeida
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Department of Biology, Catholic University of Pernambuco, Recife, Brazil
| | - Galba Maria de Campos Takaki
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
| | - Marcos Antônio Barbosa de Lima
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Laboratory of Agricultural and Environmental Microbiology, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
25
|
Cruz Mendoza I, Villavicencio-Vasquez M, Aguayo P, Coello Montoya D, Plaza L, Romero-Peña M, Marqués AM, Coronel-León J. Biosurfactant from Bacillus subtilis DS03: Properties and Application in Cleaning Out Place System in a Pilot Sausages Processing. Microorganisms 2022; 10:microorganisms10081518. [PMID: 35893576 PMCID: PMC9332754 DOI: 10.3390/microorganisms10081518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Biosurfactants (BS) are amphiphilic molecules that align at the interface reducing the surface tension. BS production is developed as an alternative to synthetic surfactants because they are biodegradable, with low toxicity and high specificity. BS are versatile, and this research proposes using a biosurfactant crude extract (BCE) as part of cleaning products. This paper reported the BCE production from Bacillus subtilis DS03 using a medium with molasses. The BCE product was characterized by different physical and chemical tests under a wide pH range, high temperatures, and emulsifying properties showing successful results. The water surface tension of 72 mN/m was reduced to 34 mN/m with BCE, achieving a critical micelle concentration at 24.66 ppm. BCE was also applied to polystyrene surface as pre-treatment to avoid microbial biofilm development, showing inhibition in more than 90% of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes above 2000 ppm BCE. The test continued using BCE as post-treatment to remove biofilms, reporting a significant reduction of 50.10% Escherichia coli, 55.77% Staphylococcus aureus, and 59.44% Listeria monocytogenes in a concentration higher than 250 ppm BCE. Finally, a comparison experiment was performed between sodium lauryl ether sulfate (SLES) and BCE (included in commercial formulation), reporting an efficient reduction with the mixtures. The results suggested that BCE is a promising ingredient for cleaning formulations with applications in industrial food applications.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Mirian Villavicencio-Vasquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Paola Aguayo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Luis Plaza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Ana M. Marqués
- Unitat de Microbiología, Facultat de Farmacia, Universitat de Barcelona, 08035 Barcelona, Spain;
| | - Jonathan Coronel-León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
- Correspondence:
| |
Collapse
|
26
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
27
|
Chafale A, Kapley A. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. J Biotechnol 2022; 352:1-15. [DOI: 10.1016/j.jbiotec.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
|
28
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
30
|
Kochhar N, I․K K, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M. Perspectives on the microorganism of extreme environments and their applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100134. [PMID: 35909612 PMCID: PMC9325743 DOI: 10.1016/j.crmicr.2022.100134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Extremophiles are organisms that can survive and thrive in conditions termed as "extreme" by human beings. Conventional methods cannot be applied under extreme conditions like temperature and pH fluctuations, high salinity, etc. for a variety of reasons. Extremophiles can function and are adapted to thrive in these environments and are sustainable, cheaper, and efficient, therefore, they serve as better alternatives to the traditional methods. They adapt to these environments with biochemical and physiological changes and produce products like extremolytes, extremozymes, biosurfactants, etc., which are found to be useful in a wide range of industries like sustainable agriculture, food, cosmetics, and pharmaceuticals. These products also play a crucial role in bioremediation, production of biofuels, biorefinery, and astrobiology. This review paper comprehensively lists out the current applications of extremophiles and their products in various industries and explores the prospects of the same. They help us understand the underlying basis of biological mechanisms exploring the boundaries of life and thus help us understand the origin and evolution of life on Earth. This helps us in the research for extra-terrestrial life and space exploration. The structure and biochemical properties of extremophiles along with any possible long-term effects of their applications need to be investigated further.
Collapse
Affiliation(s)
- Nikita Kochhar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | - Kavya I․K
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Anshika Ghosh
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Kushneet Kaur Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Mohit Kumar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| |
Collapse
|
31
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst RJ, Moreau B, Newbold J, Clark W, Thakur VK, Gupta VK. Valorization of dairy waste and by-products through microbial bioprocesses. BIORESOURCE TECHNOLOGY 2022; 346:126444. [PMID: 34848333 DOI: 10.1016/j.biortech.2021.126444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Waste is an inherent and unavoidable part of any process which can be attributed to various factors such as process inefficiencies, usability of resources and discarding of not so useful parts of the feedstock. Dairy is a burgeoning industry following the global population growth, resulting in generation of waste such as wastewater (from cleaning, processing, and maintenance), whey and sludge. These components are rich in nutrients, organic and inorganic materials. Additionally, the presence of alkaline and acidic detergents along with sterilizing agents in dairy waste makes it an environmental hazard. Thus, sustainable valorization of dairy waste requires utilization of biological methods such as microbial treatment. This review brings forward the current developments in utilization and valorization of dairy waste through microbes. Aerobic and anaerobic treatment of dairy waste using microbes can be a sustainable and green method to generate biofertilizers, biofuels, power, and other biobased products.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Monika Sharma
- Department of Botany, Shri Awadh Raz Singh Smarak Degree College, Gonda, Uttar Pradesh, India
| | - Richard J Dewhurst
- Dairy Research Centre, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Benoît Moreau
- Laboratoire de "Chimie verte et Produits Biobasés", Haute Ecole Provinciale du Hainaut- Département AgroBioscience et Chimie, 11, rue de la Sucrerie, 7800 Ath, Belgique
| | | | - William Clark
- Zero Waste Scotland, Moray House, Forthside Way, Stirling FK8 1QZ, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
33
|
Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021; 12:791723. [PMID: 35003022 PMCID: PMC8733403 DOI: 10.3389/fmicb.2021.791723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Joanna Felicity Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
34
|
Loeto D, Jongman M, Lekote L, Muzila M, Mokomane M, Motlhanka K, Ndlovu T, Zhou N. Biosurfactant production by halophilic yeasts isolated from extreme environments in Botswana. FEMS Microbiol Lett 2021; 368:6426179. [PMID: 34788824 DOI: 10.1093/femsle/fnab146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
Nine morphologically distinct halophilic yeasts were isolated from Makgadikgadi and Sua pans, as pristine and extreme environments in Botswana. Screening for biosurfactant production showed that Rhodotorula mucilaginosa SP6 and Debaryomyces hansenii MK9 exhibited the highest biosurfactant activity using Xanthocercis zambesiaca seed powder as a novel and alternative inexpensive carbon substrate. Chemical characterization of the purified biosurfactants by Fourier Transform Infra-Red spectroscopy suggested that the biosurfactant from R. mucilaginosa SP6 was a rhamnolipid-type whereas the biosurfactant from D. hansenii MK9 was a sophorolipid-type. The two biosurfactants exhibited antimicrobial activities against eight pathogenic bacteria and fungal strains (Proteus vulgaris, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Micrococcus luteus, Cryptococcus neoformans, Candida albicans and Aspergilus niger). The sophorolopid-type biosurfactant was found to be the most potent among the antimicrobial drug resistant strains tested. The findings open up prospects for the development of environmentally friendly antimicrobial drugs that use an inexpensive source of carbon to reduce the costs associated with the production of biosurfactants.
Collapse
Affiliation(s)
- Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Lerato Lekote
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag 0022, Gaborone Botswana
| | - Koketso Motlhanka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
35
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
36
|
Ruocco N, Esposito R, Zagami G, Bertolino M, De Matteo S, Sonnessa M, Andreani F, Crispi S, Zupo V, Costantini M. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep 2021; 11:21151. [PMID: 34707182 PMCID: PMC8551288 DOI: 10.1038/s41598-021-00713-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Roberta Esposito
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giacomo Zagami
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | - Marco Bertolino
- grid.5606.50000 0001 2151 3065DISTAV, Università Degli Studi Di Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sergio De Matteo
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | | | | | - Stefania Crispi
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources Naples, National Research Council of Italy, Naples, Italy
| | - Valerio Zupo
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Costantini
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
37
|
Trindade M, Sithole N, Kubicki S, Thies S, Burger A. Screening Strategies for Biosurfactant Discovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:17-52. [PMID: 34518910 DOI: 10.1007/10_2021_174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa.
| | - Nombuso Sithole
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anita Burger
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
38
|
Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS, Wong JWC, Bui XT. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 2021; 20:120. [PMID: 34174898 PMCID: PMC8236176 DOI: 10.1186/s12934-021-01613-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
39
|
da Silva AF, Banat IM, Giachini AJ, Robl D. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 2021; 44:2003-2034. [PMID: 34131819 PMCID: PMC8205652 DOI: 10.1007/s00449-021-02597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Biosurfactants are in demand by the global market as natural commodities that can be added to commercial products or use in environmental applications. These biomolecules reduce the surface/interfacial tension between fluid phases and exhibit superior stability to chemical surfactants under different physico-chemical conditions. Biotechnological production of biosurfactants is still emerging. Fungi are promising producers of these molecules with unique chemical structures, such as sophorolipids, mannosylerythritol lipids, cellobiose lipids, xylolipids, polyol lipids and hydrophobins. In this review, we aimed to contextualize concepts related to fungal biosurfactant production and its application in industry and the environment. Concepts related to the thermodynamic and physico-chemical properties of biosurfactants are presented, which allows detailed analysis of their structural and application. Promising niches for isolating biosurfactant-producing fungi are presented, as well as screening methodologies are discussed. Finally, strategies related to process parameters and variables, simultaneous production, process optimization through statistical and genetic tools, downstream processing and some aspects of commercial products formulations are presented.
Collapse
Affiliation(s)
- André Felipe da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Admir José Giachini
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
41
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|
42
|
Trudgeon B, Dieser M, Balasubramanian N, Messmer M, Foreman CM. Low-Temperature Biosurfactants from Polar Microbes. Microorganisms 2020; 8:E1183. [PMID: 32756528 PMCID: PMC7466143 DOI: 10.3390/microorganisms8081183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms from cold environments have been largely overlooked for their biotechnological potential as biosurfactant producers. In this study, four cold-adapted bacterial isolates from Antarctica are investigated for their ability to produce biosurfactants. Here we report on the physical properties and chemical structure of biosurfactants from the genera Janthinobacterium, Psychrobacter, and Serratia. These organisms were able to grow on diesel, motor oil, and crude oil at 4 °C. Putative identification showed the presence of sophorolipids and rhamnolipids. Emulsion index test (E24) activity ranged from 36.4-66.7%. Oil displacement tests were comparable to 0.1-1.0% sodium dodecyl sulfate (SDS) solutions. Data presented herein are the first report of organisms of the genus Janthinobacterium to produce biosurfactants and their metabolic capabilities to degrade diverse petroleum hydrocarbons. The organisms' ability to produce biosurfactants and grow on different hydrocarbons as their sole carbon and energy source at low temperatures (4 °C) makes them suitable candidates for the exploration of hydrocarbon bioremediation in low-temperature environments.
Collapse
Affiliation(s)
- Benjamin Trudgeon
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Civil & Environmental Engineering, Montana State University, Bozeman, MT 59715, USA
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| | | | - Mitch Messmer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA;
| | - Christine M. Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| |
Collapse
|