1
|
Câmara PEAS, Pellizzari FM, Lopes FAC, Amorim ET, Bones FLV, Anjos DA, Carvalho-Silva M, Convey P, Rosa LH. DNA metabarcoding reveal hidden diversity of periphytic eukaryotes on marine Antarctic macroalgae. AN ACAD BRAS CIENC 2025; 96:e20240570. [PMID: 39813480 DOI: 10.1590/0001-3765202420240570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025] Open
Abstract
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae. The ITS2 region was used as a barcode and our analysis yielded 77 eukaryotic ASVs spanning five Kingdoms (Fungi, Metazoa, Chromista, Protozoa, and Viridiplantae) and ten phyla (Ascomycota, Basidiomycota, Cercozoa, Ciliophora, Ochrophyta, Amebozoa, Chlorophyta, Rhodophyta, Bryophyta and Cnidaria). Additionally, we identified 14 potential new occurrence records for Antarctica. Ciliates and green algae were the most species-rich groups. The most abundant assigned associated species was Monostroma angicava (Chrorophyta). Within the macroalgal, the Chlorophyceans Ulothrix sp. hosted the greatest number of taxa, followed by Monostroma hariotii. Our data suggested that Antarctic macroalgae host a rich diversity of associated organisms and the biodiversity associated with the phycosphere remains underestimated.
Collapse
Affiliation(s)
- Paulo Eduardo A S Câmara
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Franciane Maria Pellizzari
- Universidade Estadual do Paraná (UNESPAR), Departamento de Ciências Biológicas, Programa de Pós-graduação em Ecossistemas Litorâneos e Insulares, Rua Comendador Correia Júnior, 11783203-560 Paranaguá, PR, Brazil
| | - Fabyano A C Lopes
- Universidade Federal do Tocantins, Laboratório de Microbiologia, Rua 03, Lote 11,/n, 77500-000 Porto Nacional, TO, Brazil
- Universidade Federal do Tocantins, Núcleo de Estudos Ambientais, Rua 03, Lote 11, s/n, 77500-000 Porto Nacional, TO, Brazil
| | - Eduardo T Amorim
- Jardim Botânico do Rio de Janeiro (JBRJ), Centro Nacional de Conservação da Flora (CNCFLORA), Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Dafne A Anjos
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade do Estado do Rio de Janeiro, UERJ, Instituto de Biologia Roberto Alcantara Gomes, Rua São Francisco Xavier 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Micheline Carvalho-Silva
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
- University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Luiz Henrique Rosa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Amaral CRL, Anjos D, Bones FLV, Freitas ACDE, Magalhães MGP, Moreira LM, Goldenberg-Barbosa R, Donato A. May Antarctic plants grow on Martian and Lunar soil simulants under terrestrial conditions? AN ACAD BRAS CIENC 2024; 96:e20240571. [PMID: 39699396 DOI: 10.1590/0001-3765202420240571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024] Open
Abstract
Extremophile organisms have been largely studied in Astrobiology. Among them, two antarctic plants emerge as good candidates to become colonizers of other celestial bodies, such as Mars and the Moon. The present research aimed to evaluate survival and growing capacity of Sanionia uncinata and Colobanthus quitensis on Martian (MGS-1) and Lunar (LMS-1) regolith simulants, under terrestrial conditions. The survival responses of both species on the simulators and the original sampling site of Antarctic soil were observed during 15 days, in laboratory conditions at 'Comandante Ferraz' Station. Based on physiological parameters changes under the three soil conditions tested, our results suggest that Martian soil can be too harsh for plant growth, showing expressive decay, especially for C. quitensis. While lunar soil might provide more favorable conditions, with less observed changes, similarly to how they would in Antarctic soil from their natural habitat. This preliminary study provides resources and fosters knowledge about the possibility of these Antarctic species to survive in extraterrestrial environments, starting with soil parameters; and discusses the importance and use of Antarctic plants in astrobiology.
Collapse
Affiliation(s)
- Cesar R L Amaral
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Dafne Anjos
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Policlínica Universitária Piquet Carneiro, Avenida Marechal Rondon, 381, Pavilhão José Roberto Feresin Moraes, São Francisco Xavier, 20950-003 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Programa de Pós-graduação em Algas, Fungos e Plantas, Rua Engenheiro Agronômico Andrei Cristian Ferreira, s/n, Sala 208, Bloco E, Prédio Administrativo, Campus Universitário, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Antonio Carlos DE Freitas
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Fotografia Científica Ambiental Biocenas, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Maithê G P Magalhães
- Instituto Oswaldo Cruz (IOC/Fiocruz), Laboratório de Genômica Aplicada e Bio Inovações, Avenida Brasil, 4365, Pavilhão Leônidas Deane, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Lucas M Moreira
- Instituto Oswaldo Cruz (IOC/Fiocruz), Instituto Nacional de Infectologia Evandro Chagas, Avenida Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Goldenberg-Barbosa
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, 2º andar, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Anna Donato
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, 2º andar, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Gonçalves VN, Pimenta RS, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Fungal and fungal-like diversity present in ornithogenically influenced maritime Antarctic soils assessed using metabarcoding. J Basic Microbiol 2024; 64:e2300601. [PMID: 38386010 DOI: 10.1002/jobm.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
We assessed soil fungal and fungal-like diversity using metabarcoding in ornithogenically influenced soils around nests of the bird species Phalacrocorax atriceps, Macronectes giganteus, Pygoscelis antarcticus, and Pygoscelis adelie on the South Shetland Islands, maritime Antarctic. A total of 1,392,784 fungal DNA reads was obtained and assigned to 186 amplicon sequence variants (ASVs). The dominant fungal phylum was Ascomycota, followed by Basidiomycota, Chytridiomycota, Blastocladiomycota, Rozellomycota, Mortierellomycota, Monoblepharomycota, Aphelidiomycota, Basidiobolomycota, Mucoromycota, and the fungal-like Oomycota (Stramenopila), in rank order. Antarctomyces sp., Blastocladiomycota sp., Pseudogymnoascus pannorum, Microascaceae sp., Mortierella sp., Lobulomycetales sp., Sordariomycetes sp., Fungal sp., Rhizophydiales sp., Pseudeurotiaceae sp., Chytridiomycota sp. 1, Filobasidiella sp., Tausonia pullulans, Betamyces sp., and Leucosporidium sp. were the most abundant assigned taxa. The fungal assemblages present in the different ornithogenically influenced soils displayed different diversity indices. However, in general, we detected high fungal diversity and few taxa shared between the samples. Despite the polyextreme environmental conditions experienced in these Antarctic soils, the metabarcoding approach detected a rich and complex fungal community dominated by saprophytes, but with some pathogenic taxa also present. The community was dominated by psychrophilic and psychrotolerant taxa, some apparently endemic to Antarctica, and those identified only at higher taxonomic levels, which may represent currently undescribed fungi. The mycobiome detected included taxa characterized by different ecological roles, including saprotrophic, human- and animal-associated, phytopathogenic, mutualistic, and cosmopolitan. These fungi may potentially be dispersed by birds or in the air column over great distances, including between different regions within Antarctica and from South America, Africa, and Oceania.
Collapse
Affiliation(s)
- Vívian Nicolau Gonçalves
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Raphael Sânzio Pimenta
- Laboratório de Microbiologia Geral e Aplicada, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Karita C R Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Micheline C Silva
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Las Palmeras, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil
- Programa de Pós-graduação em Fungos, Algas e Plantas, UFSC, Florianópolis, Brasil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
4
|
Rabelo NG, Gonçalves VN, Carvalho MA, Scheffler SM, Santiago G, Sucerquia PA, Oliveira FS, Campos LP, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Endolithic Fungal Diversity in Antarctic Oligocene Rock Samples Explored Using DNA Metabarcoding. BIOLOGY 2024; 13:414. [PMID: 38927294 PMCID: PMC11200754 DOI: 10.3390/biology13060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
In this study, we evaluated the fungal diversity present associated with cores of Oligocene rocks using a DNA metabarcoding approach. We detected 940,969 DNA reads grouped into 198 amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank abundance order. Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladosporium sp., Aspergillaceae sp. and Diaporthaceae sp. were assessed to be dominant taxa, with 22 fungal ASVs displaying intermediate abundance and 170 being minor components of the assigned fungal diversity. The data obtained displayed high diversity indices, while rarefaction indicated that the majority of the diversity was detected. However, the diversity indices varied between the cores analysed. The endolithic fungal community detected using a metabarcoding approach in the Oligocene rock samples examined contains a rich and complex mycobiome comprising taxa with different lifestyles, comparable with the diversity reported in recent studies of a range of Antarctic habitats. Due to the high fungal diversity detected, our results suggest the necessity of further research to develop strategies to isolate these fungi in culture for evolutionary, physiological, and biogeochemical studies, and to assess their potential role in biotechnological applications.
Collapse
Affiliation(s)
- Natana G. Rabelo
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (N.G.R.); (V.N.G.)
| | - Vívian N. Gonçalves
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (N.G.R.); (V.N.G.)
| | - Marcelo A. Carvalho
- Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; (M.A.C.); (S.M.S.); (G.S.)
| | - Sandro M. Scheffler
- Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; (M.A.C.); (S.M.S.); (G.S.)
| | - Gustavo Santiago
- Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; (M.A.C.); (S.M.S.); (G.S.)
| | - Paula A. Sucerquia
- Departmento de Geologia, Universidade Federal de Pernambuco, Recife 50740-540, Brazil;
| | - Fabio S. Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.S.O.); (L.P.C.)
| | - Larissa P. Campos
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.S.O.); (L.P.C.)
| | - Fabyano A. C. Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Porto Nacional 77500-000, Brazil; (F.A.C.L.); (K.C.R.S.)
| | - Karita C. R. Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Porto Nacional 77500-000, Brazil; (F.A.C.L.); (K.C.R.S.)
| | - Micheline C. Silva
- Departamento de Botânica, Universidade de Brasília, Brasília 70297-400, Brazil; (M.C.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
- Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 8320000, Chile
- Cape Horn International Center (CHIC), Puerto Williams 6350000, Chile
| | - Paulo E. A. S. Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília 70297-400, Brazil; (M.C.S.)
- Programa de Pós-Graduação em Fungos, Algas e Plantas, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luiz H. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (N.G.R.); (V.N.G.)
| |
Collapse
|
5
|
de Menezes GCA, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Fungal diversity present in snow sampled in summer in the north-west Antarctic Peninsula and the South Shetland Islands, Maritime Antarctica, assessed using metabarcoding. Extremophiles 2024; 28:23. [PMID: 38575688 DOI: 10.1007/s00792-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.
Collapse
Affiliation(s)
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Karita C R Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Micheline C Silva
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação Em Fungos, Algas e Plantas, UFSC, Florianópolis, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Prekrasna-Kviatkovska Y, Parnikoza I, Yerkhova A, Stelmakh O, Pavlovska M, Dzyndra M, Yarovyi O, Dykyi E. From acidophilic to ornithogenic: microbial community dynamics in moss banks altered by gentoo penguins. Front Microbiol 2024; 15:1362975. [PMID: 38525081 PMCID: PMC10959021 DOI: 10.3389/fmicb.2024.1362975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The study explores the indirect impact of climate change driven by gentoo's penguin colonization pressure on the microbial communities of moss banks formed by Tall moss turf subformation in central maritime Antarctica. Methods Microbial communities and chemical composition of the differently affected moss banks (Unaffected, Impacted and Desolated) located on Galindez Island and Сape Tuxen on the mainland of Kyiv Peninsula were analyzed. Results The native microbiota of the moss banks' peat was analyzed for the first time, revealing a predominant presence of Acidobacteria (32.2 ± 14.4%), followed by Actinobacteria (15.1 ± 4.0%) and Alphaproteobacteria (9.7 ± 4.1%). Penguin colonization and subsequent desolation of moss banks resulted in an increase in peat pH (from 4.7 ± 0.05 to 7.2 ± 0.6) and elevated concentrations of soluble nitrogen (from 1.8 ± 0.4 to 46.9 ± 2.1 DIN, mg/kg) and soluble phosphorus compounds (from 3.6 ± 2.6 to 20.0 ± 1.8 DIP, mg/kg). The contrasting composition of peat and penguin feces led to the elimination of the initial peat microbiota, with an increase in Betaproteobacteria (from 1.3 ± 0.8% to 30.5 ± 23%) and Bacteroidota (from 5.5 ± 3.7% to 19.0 ± 3.7%) proportional to the intensity of penguins' impact, accompanied by a decrease in community diversity. Microbial taxa associated with birds' guts, such as Gottschalkia and Tissierella, emerged in Impacted and Desolated moss banks, along with bacteria likely benefiting from eutrophication. The changes in the functional capacity of the penguin-affected peat microbial communities were also detected. The nitrogen-cycling genes that regulate the conversion of urea into ammonia, nitrite oxide, and nitrate oxide (ureC, amoA, nirS, nosZ, nxrB) had elevated copy numbers in the affected peat. Desolated peat samples exhibit the highest nitrogen-cycle gene numbers, significantly differing from Unaffected peat (p < 0.05). Discussion The expansion of gentoo penguins induced by climate change led to the replacement of acidophilic microbiomes associated with moss banks, shaping a new microbial community influenced by penguin guano's chemical and microbial composition.
Collapse
Affiliation(s)
| | - Ivan Parnikoza
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Department of Cell Population Genetics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Faculty of Natural Science, National University of “Kyiv-Mohyla Academy”, Kyiv, Ukraine
| | - Anna Yerkhova
- Biomedical Institute, Open International University of Human Development Ukraine, Kyiv, Ukraine
| | - Olesia Stelmakh
- Faculty of Molecular Biology and Biotechnology, Kyiv Academic University, Kyiv, Ukraine
| | - Mariia Pavlovska
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Marta Dzyndra
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Oleksandr Yarovyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Evgen Dykyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| |
Collapse
|
7
|
Câmara PEAS, de Menezes GCA, Lopes FAC, da Silva Paiva T, Carvalho-Silva M, Convey P, Amorim ET, Rosa LH. Investigating non-fungal eukaryotic diversity in snow in the Antarctic Peninsula region using DNA metabarcoding. Extremophiles 2023; 28:3. [PMID: 37962679 DOI: 10.1007/s00792-023-01322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, 70910-900, Brasil.
- Algas E Plantas, Pós Graduação Em Fungos, Universidade Federal de Santa Catarina, Florianoplis, Santa Catarina, Brazil.
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Thiago da Silva Paiva
- Laboratório de Protistologia, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| |
Collapse
|
8
|
Giovannini I, Manfrin C, Greco S, Vincenzi J, Altiero T, Guidetti R, Giulianini P, Rebecchi L. Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species. Front Physiol 2023; 14:1258932. [PMID: 37766751 PMCID: PMC10520964 DOI: 10.3389/fphys.2023.1258932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The Antarctic region has been experiencing some of the planet's strongest climatic changes, including an expected increase of the land temperature. The potential effects of this warming trend will lead ecosystems to a risk of losing biodiversity. Antarctic mosses and lichens host different microbial groups, micro-arthropods and meiofaunal organisms (e.g., tardigrades, rotifers). The eutardigrade Acutuncus antarcticus is considered a model animal to study the effect of increasing temperature due to global warming on Antarctic terrestrial communities. In this study, life history traits and fitness of this species are analyzed by rearing specimens at two different and increasing temperatures (5°C vs. 15°C). Moreover, the first transcriptome analysis on A. antarcticus is performed, exposing adult animals to a gradual increase of temperature (5°C, 10°C, 15°C, and 20°C) to find differentially expressed genes under short- (1 day) and long-term (15 days) heat stress. Acutuncus antarcticus specimens reared at 5°C live longer (maximum life span: 686 days), reach sexual maturity later, lay more eggs (which hatch in longer time and in lower percentage) compared with animals reared at 15°C. The fitness decreases in animals belonging to the second generation at both rearing temperatures. The short-term heat exposure leads to significant changes at transcriptomic level, with 67 differentially expressed genes. Of these, 23 upregulated genes suggest alterations of mitochondrial activity and oxido-reductive processes, and two intrinsically disordered protein genes confirm their role to cope with heat stress. The long-term exposure induces alterations limited to 14 genes, and only one annotated gene is upregulated in response to both heat stresses. The decline in transcriptomic response after a long-term exposure indicates that the changes observed in the short-term are likely due to an acclimation response. Therefore, A. antarcticus could be able to cope with increasing temperature over time, including the future conditions imposed by global climate change.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Joel Vincenzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Altiero
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Education and Humanities, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Piero Giulianini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
9
|
Lee JR, Terauds A, Carwardine J, Shaw JD, Fuller RA, Possingham HP, Chown SL, Convey P, Gilbert N, Hughes KA, McIvor E, Robinson SA, Ropert-Coudert Y, Bergstrom DM, Biersma EM, Christian C, Cowan DA, Frenot Y, Jenouvrier S, Kelley L, Lee MJ, Lynch HJ, Njåstad B, Quesada A, Roura RM, Shaw EA, Stanwell-Smith D, Tsujimoto M, Wall DH, Wilmotte A, Chadès I. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol 2022; 20:e3001921. [PMID: 36548240 PMCID: PMC9778584 DOI: 10.1371/journal.pbio.3001921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
Collapse
Affiliation(s)
- Jasmine R. Lee
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- CSIRO, Dutton Park, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- British Antarctic Survey, NERC, High Cross, Cambridge, United Kingdom
- * E-mail:
| | - Aleks Terauds
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | | | - Justine D. Shaw
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Richard A. Fuller
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Hugh P. Possingham
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- The Nature Conservancy, Arlington, Virginia, United States of America
| | - Steven L. Chown
- Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Cambridge, United Kingdom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Neil Gilbert
- Constantia Consulting, Christchurch, New Zealand
| | - Kevin A. Hughes
- British Antarctic Survey, NERC, High Cross, Cambridge, United Kingdom
| | - Ewan McIvor
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences and Global Challenges Program, University of Wollongong, Wollongong, New South Wales, Australia
- Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yan Ropert-Coudert
- Centre d’Etudes Biologiques de Chizé, La Rochelle Université − CNRS, UMR 7372, Villiers en Bois, France
| | - Dana M. Bergstrom
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences and Global Challenges Program, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elisabeth M. Biersma
- British Antarctic Survey, NERC, High Cross, Cambridge, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Claire Christian
- Antarctic and Southern Ocean Coalition, Washington DC, United States of America
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Frenot
- University of Rennes 1, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution)—UMR 6553, Rennes, France
| | - Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Lisa Kelley
- International Association of Antarctica Tour Operators (IAATO), South Kingstown, Rhode Island, United States of America
| | | | - Heather J. Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Antonio Quesada
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo M. Roura
- Antarctic and Southern Ocean Coalition, Washington DC, United States of America
| | - E. Ashley Shaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Damon Stanwell-Smith
- International Association of Antarctica Tour Operators (IAATO), South Kingstown, Rhode Island, United States of America
- Viking Expeditions, Basel, Switzerland
| | - Megumu Tsujimoto
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa Japan
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Diana H. Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado, United States of America
| | | | | |
Collapse
|
10
|
UAV-based classification of maritime Antarctic vegetation types using GEOBIA and random forest. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Abstract
Remote sensing is a very powerful tool that has been used to identify, map and monitor Antarctic features and processes for nearly one century. Satellite remote sensing plays the main role for about the last five decades, as it is the only way to provide multitemporal views at continental scale. But the emergence of small consumer-grade unoccupied aerial vehicles (UAVs) over the past two decades has paved the way for data in unprecedented detail. This has been also verified by an increasing noticeable interest in Antarctica by the incorporation of UAVs in the field activities in diversified research topics. This paper presents a comprehensive review about the use of UAVs in scientific activities in Antarctica. It is based on the analysis of 190 scientific publications published in peer-reviewed journals and proceedings of conferences which are organised into six main application topics: Terrestrial, Ice and Snow, Fauna, Technology, Atmosphere and Others. The analysis encompasses a detailed overview of the activities, identifying advantages and difficulties, also evaluating future possibilities and challenges for expanding the use of UAV in the field activities. The relevance of using UAVs to support numerous and diverse scientific activities in Antarctica becomes very clear after analysing this set of scientific publications, as it is revolutionising the remote acquisition of new data with much higher detail, from inaccessible or difficult to access regions, in faster and cheaper ways. Many of the advances can be seen in the terrestrial areas (detailed 3D mapping; vegetation mapping, discrimination and health assessment; periglacial forms characterisation), ice and snow (more detailed topography, depth and features of ice-sheets, glaciers and sea-ice), fauna (counting penguins, seals and flying birds and detailed morphometrics) and in atmosphere studies (more detailed meteorological measurements and air-surface couplings). This review has also shown that despite the low environmental impact of UAV-based surveys, the increasing number of applications and use, may lead to impacts in the most sensitive Antarctic ecosystems. Hence, we call for an internationally coordinated effort to for planning and sharing UAV data in Antarctica, which would reduce environmental impacts, while extending research outcomes.
Collapse
|
12
|
Diversity of Viridiplantae DNA present on rock surfaces in the Ellsworth Mountains, continental Antarctica. Polar Biol 2022. [DOI: 10.1007/s00300-022-03021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Câmara PEAS, Eisenlohr PV, Coelho LC, Carvalho-Silva M, Amorim ET, Convey P, Pinto OHB, Rosa LH. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 2021; 25:501-512. [PMID: 34643818 DOI: 10.1007/s00792-021-01246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Since the nineteenth century, a ring-forming disease attacking Antarctic mosses has been reported. However, to date, only the effects on the mosses themselves are known. In this study, we used DNA metabarcoding to investigate the effects on the moss epiphytic algal community at different stages of disease progression. As the disease progressed, algal species richness decreased, although overall abundance was not significantly affected. Prasiolales appeared unaffected, whereas Ulotrichales were more sensitive. Trebouxiales dominated the advanced disease stage, suggesting a possible benefit from the disease, either through the elimination of competition or creation of new niches. Infection is responsible for moss death, leading to habitat loss for other organisms, but pathogenic effects on algae cannot be ruled out. Our data indicate that the disease not only impacts mosses but also other groups, potentially resulting in loss of Antarctic biodiversity. This study provides the first report of the disease effects on epiphytic algal communities of Antarctic bryophytes.
Collapse
Affiliation(s)
| | - Pedro V Eisenlohr
- Universidade do Estado de Mato Grosso, Campus Alta Floresta, Alta Floresta, Brazil
| | - Lívia C Coelho
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Otavio H B Pinto
- Departamento de Biologia Celular e Molecular, Universidade de Brasília, Brasília, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Rosa LH, da Costa Coelho L, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS. Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease. Extremophiles 2021; 25:471-481. [PMID: 34480232 DOI: 10.1007/s00792-021-01240-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by 'fairy ring' disease using metabarcoding. A total of 127 fungal and 706 bacterial taxa were assigned. Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota. The fungal community displayed high indices of diversity, richness and dominance, which increased from healthy through infected to dead moss samples. A range of fungal taxa were more abundant in dead rather than healthy or fairy ring moss samples. Bacterial diversity and richness were greatest in healthy moss and least within the infected fairy ring. The dominant prokaryotic phyla were Actinobacteriota, Proteobacteria, Bacteroidota and Cyanobacteria. Cyanophyceae sp., whilst consistently dominant, were less abundant in fairy ring samples. Our data confirmed the presence and abundance of a range of plant pathogenic fungi, supporting the hypothesis that the disease is linked with multiple fungal taxa. Further studies are required to characterise the interactions between plant pathogenic fungi and their host Antarctic mosses. Monitoring the dynamics of mutualist, phytopathogenic and decomposer microorganisms associated with moss carpets may provide bioindicators of moss health.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lívia da Costa Coelho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | |
Collapse
|