1
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
2
|
Xian M, Ma S, Wang K, Lou H, Wang Y, Zhang L, Wang C, Akdis CA. Particulate Matter 2.5 Causes Deficiency in Barrier Integrity in Human Nasal Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:56-71. [PMID: 31743964 PMCID: PMC6875480 DOI: 10.4168/aair.2020.12.1.56] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Purpose The effect of air pollution-related particulate matter (PM) on epithelial barrier function and tight junction (TJ) expression in human nasal mucosa has not been studied to date. This study therefore aimed to assess the direct impact of PM with an aerodynamic diameter less than 2.5 μm (PM2.5) on the barrier function and TJ molecular expression of human nasal epithelial cells. Methods Air-liquid interface cultures were established with epithelial cells derived from noninflammatory nasal mucosal tissue collected from patients undergoing paranasal sinus surgery. Confluent cultures were exposed to 50 or 100 µg/mL PM2.5 for up to 72 hours, and assessed for 1) epithelial barrier integrity as measured by transepithelial resistance (TER) and permeability of fluorescein isothiocyanate (FITC) 4 kDa; 2) expression of TJs using real-time quantitative polymerase chain reaction and immunofluorescence staining, and 3) proinflammatory cytokines by luminometric bead array or enzyme-linked immunosorbent assay. Results Compared to control medium, 50 and/or 100 µg/mL PM2.5-treatment 1) significantly decreased TER and increased FITC permeability, which could not be restored by budesonide pretreatment; 2) significantly decreased the expression of claudin-1 messenger RNA, claudin-1, occludin and ZO-1 protein; and 3) significantly increased production of the cytokines interleukin-8, TIMP metallopeptidase inhibitor 1 and thymic stromal lymphopoietin. Conclusions Exposure to PM2.5 may lead to loss of barrier function in human nasal epithelium through decreased expression of TJ proteins and increased release of proinflammatory cytokines. These results suggest an important mechanism of susceptibility to rhinitis and rhinosinusitis in highly PM2.5-polluted areas.
Collapse
Affiliation(s)
- Mu Xian
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Siyuan Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
3
|
Kolosov D, Bui P, Donini A, Wilkie MP, Kelly SP. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation. J Exp Biol 2017; 220:3657-3670. [DOI: 10.1242/jeb.161562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Abstract
This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two Occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a, and tric were broadly expressed in larval lamprey, with greatest abundance of ocln in gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins respectively while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na+] and [Cl−] reduced, but not [Ca++], and carcass moisture content increased. In association, Ocln abundance increased in skin and kidney, but reduced in gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance was also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
- Current address: Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Phuong Bui
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mike P. Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Scott P. Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
4
|
Suzuki H, Koizumi H, Ikezaki S, Tabata T, Ohkubo JI, Kitamura T, Hohchi N. Electrical Impedance and Expression of Tight Junction Components of the Nasal Turbinate and Polyp. ORL J Otorhinolaryngol Relat Spec 2015; 78:16-25. [PMID: 26633876 DOI: 10.1159/000442024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE We investigated the electrical impedance and expression of tight junction components of the turbinate mucosa, nasal polyp, and normal skin. PROCEDURES The inferior turbinate and nasal polyp of patients with chronic rhinosinusitis and the postauricular skin of patients with otitis media were examined. Electrical impedance was measured in vivo using a tissue conductance meter. Expressions of claudin-1 and tricellulin were examined by fluorescence immunohistochemistry and quantitative RT-PCR. RESULTS Electrical impedance was higher in the skin than in the turbinate and polyp, but did not differ between the turbinate and polyp. Immunoreactivities for claudin-1 and tricellulin were seen in the epithelial/epidermal layer. Expression of claudin-1 was higher in the skin than in the turbinate and polyp. The polyp tended to show higher expression of claudin-1 but showed lower expression of tricellulin than the turbinate. The ratio of claudin-1 to tricellulin was highest in the skin and lowest in the turbinate. The correlation between expressions of the two tight junction components was strongly positive in the skin (r = 0.964) and negative (r = -0.527) in the turbinate and polyp. CONCLUSIONS These results suggest that the roles of claudin-1 and tricellulin in barrier function may be complementary, and may thereby maintain a constant level of permeability of the mucosal tissues.
Collapse
Affiliation(s)
| | - Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
6
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
7
|
Su P, Zhao F, Cao Z, Zhang J, Aschner M, Luo W. Mir-203-mediated tricellulin mediates lead-induced in vitro loss of blood-cerebrospinal fluid barrier (BCB) function. Toxicol In Vitro 2015; 29:1185-94. [PMID: 25975750 DOI: 10.1016/j.tiv.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
The blood-cerebrospinal fluid barrier (BCB) plays a critical role in the maintenance of optimal brain function. Tricellulin (TRIC), a protein localized at the tricellular contact sites of epithelial cells is involved in the formation of tight junctions in various epithelial barriers. However, little is known about its expression in the choroidal epithelial cells. It is well established that lead (Pb) exposure increases the leakage of the BCB. The purpose of this study is to investigate the expression and localization of TRIC in choroidal epithelial cells in vitro and whether altered TRIC expression mediates Pb-induced loss of barrier function. We found that TRIC protein and mRNA were expressed in choroidal epithelial cells in vitro and TRIC was localized at the tricellular contacts, colocalizing with occludin. Downregulation of TRIC by siRNA increased the BCB permeability corroborated by altered transendothelial electrical resistance (TEER) and FITC-dextran flux. Treatment with 10μM Pb reduced TRIC protein expression, but overexpression of TRIC alleviated the Pb-induced increase in BCB permeability. Bioinformatics analysis showed that mir-203 was a potential microRNA (miRNA) binding motif on TRIC 3'UTR, and that Pb exposure increased the expression of mir-203. Treatment with a mir-203 inhibitor increased TRIC protein expression and attenuated the Pb-induced BCB leakage. Our results establish that TRIC plays an important role in regulating BCB function.
Collapse
Affiliation(s)
- Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Miyata R, Nomura K, Kakuki T, Takano KI, Kohno T, Konno T, Sawada N, Himi T, Kojima T. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells. J Membr Biol 2015; 248:327-36. [PMID: 25652184 DOI: 10.1007/s00232-015-9774-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/18/2015] [Indexed: 01/28/2023]
Abstract
The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Tricellulin is a tight-junction protein present at tricellular tight junctions. It has been suggested that basal cells are implicated in the blood-epididymis barrier. Basal cells express claudins, a component of tight junctions; however, there is no information regarding the potential architecture or regulation of basal cell-principal cell interactions. The present objectives were to determine the expression and localization of tricellulin in rat epididymis in relation to occludin, basal cell-principal cell interactions, and other junctional proteins. Tricellulin levels were similar in all segments of the adult epididymis, and the protein was localized to the apical region of the epithelium. Postnatal development showed that tricellulin levels increased with age and localization changed from cytoplasmic to membrane-bound as a function of age. Colocalization with occludin indicated that both proteins are in the region of the tight junction. In the initial segment, the proteins did not colocalize compared to the epididymis where they were both colocalized. Tricellulin did not colocalize with cytokeratin 5, a marker of basal cells, in any region of the epididymis, including the corpus and cauda epididymidis, where apical projections of basal cells were apparent. Tricellulin knockdown studies using small interfering RNA in rat caput epididymal principal cells resulted in decreased transepithelial resistance and was correlated with decreased levels of Cldn3, Cldn1, and occludin. Tight-junction protein1, also known as ZO-1, and cadherin1 levels were unchanged. This is the first report of tricellulin in the epididymis and on the interaction between tricellulin and other tight-junction proteins.
Collapse
Affiliation(s)
- Marion Mandon
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
10
|
Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 2014; 36:166-76. [DOI: 10.1016/j.semcdb.2014.09.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/09/2023]
|
11
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
12
|
Nomura K, Obata K, Keira T, Miyata R, Hirakawa S, Takano KI, Kohno T, Sawada N, Himi T, Kojima T. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res 2014; 15:21. [PMID: 24548792 PMCID: PMC3936699 DOI: 10.1186/1465-9921-15-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/31/2014] [Indexed: 01/09/2023] Open
Abstract
Background Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. Methods To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. Results PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. Conclusions PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| |
Collapse
|
13
|
Kolosov D, Chasiotis H, Kelly SP. Tight junction protein gene expression patterns and changes in transcript abundance during development of model fish gill epithelia. ACTA ACUST UNITED AC 2014; 217:1667-81. [PMID: 24501135 DOI: 10.1242/jeb.098731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vertebrates, tight junction (TJ) proteins play an important role in epithelium formation and development, the maintenance of tissue integrity and regulation of TJ permeability. In this study, primary cultured model gill epithelia composed of pavement cells (PVCs) were used to examine TJ protein transcript abundance during the development of epithelium confluence and epithelium resistive properties. Differences in TJ protein expression patterns and transcript abundance between gill models composed of PVCs and models composed of PVCs and mitochondrion-rich cells (MRCs) were also examined. Marked alterations in TJ protein transcript abundance were observed as cells developed to confluence in flask-cultured model gill epithelia. In contrast, during the formation of tissue resistance in insert-cultured epithelia (i.e. epithelia cultured on a permeable substrate), changes in TJ protein mRNA abundance were conservative, despite paracellular marker flux decreasing by orders of magnitude. In both cases significant changes in claudin-8b, -8d, -27b, -28b and -32a transcript abundance were observed, suggesting that temporal alterations in the abundance of these genes are important end points of model gill epithelium integrity. When MRCs were present in cultured gill models, the mRNA abundance of several TJ proteins significantly altered and claudin-10c, -10d and -33b were only detected in preparations that included MRCs. These data provide insight into the role of select TJ proteins in the formation and development of gill epithelia and the maintenance of gill barrier properties. In addition, observations reveal a heterogeneous distribution of claudin TJ proteins in the gill epithelial cells of rainbow trout.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Helen Chasiotis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
14
|
Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, Sinha GP, Rafeeq M, Jones SM, Belyantseva IA, Anderson JM, Forge A, Frolenkov GI, Riazuddin S. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest 2013; 123:4036-49. [PMID: 23979167 DOI: 10.1172/jci69031] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/30/2013] [Indexed: 01/06/2023] Open
Abstract
The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin.
Collapse
Affiliation(s)
- Gowri Nayak
- Laboratory of Molecular Genetics, Division of Pediatric Otolaryngology / Head and Neck Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kolosov D, Kelly SP. A role for tricellulin in the regulation of gill epithelium permeability. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1139-48. [PMID: 23594608 DOI: 10.1152/ajpregu.00086.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The apical-most region of cell-to-cell contact in a vertebrate epithelium is the tight junction (TJ) complex. It is composed of bicellular TJs (bTJs) that bridge two adjacent epithelial cells and tricellular TJs (tTJs) that are points of contact between three adjoining epithelial cells. Tricellulin (TRIC) is a transmembrane TJ protein of vertebrates that is found in the tTJ complex. Full-length cDNA encoding rainbow trout TRIC was cloned and sequenced. In silico analysis of rainbow trout TRIC revealed a tetraspannin protein with several putative posttranslational modification sites. TRIC mRNA was broadly expressed in rainbow trout tissues and exhibited moderately greater abundance in the gill. In a primary cultured gill epithelium, TRIC localized to tTJs and TRIC protein abundance increased in association with corticosteroid-induced reductions in paracellular permeability. Sodium caprate was used to compromise cultured gill epithelium integrity by disrupting the tTJ complex. Sodium caprate treatment caused a reversible reduction in transepithelial resistance, caused an increase in paracellular permeability (as measured by [³H]PEG-4000 flux), and displaced TRIC from tTJs while leaving bTJs intact. Data from this study support the view that tTJs and the TJ protein TRIC 1) play a role in maintaining gill epithelium integrity and 2) contribute to the regulation of gill epithelium permeability.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | |
Collapse
|
16
|
Regulation of tight junctions in upper airway epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:947072. [PMID: 23509817 PMCID: PMC3591135 DOI: 10.1155/2013/947072] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022]
Abstract
The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.
Collapse
|
17
|
Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 2012; 351:397-407. [DOI: 10.1007/s00441-012-1529-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
18
|
Kojima T, Sawada N. Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells. Ann N Y Acad Sci 2012; 1257:85-92. [PMID: 22671593 DOI: 10.1111/j.1749-6632.2012.06579.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the regulation of tight junction molecules in normal human pancreatic duct epithelial (HPDE) cells and pancreatic cancer cells, we introduced the human telomerase reverse transcriptase (hTERT) gene into HPDE cells in primary culture and compared them to pancreatic cancer cell lines. The hTERT-transfected HPDE cells were positive for PDE markers and expressed claudin-1, claudin-4, claudin-7, and claudin-18, occludin, tricellulin, marvelD3, JAM-A, zonula occludens (ZO)-1, and ZO-2. The tight junction molecules, including claudin-4 and claudin-18 of normal HPDE cells, were in part regulated via a protein kinase C signal pathway by transcriptional control. In addition, claudin-18 in normal HPDE cells and pancreatic cancer cells was markedly induced by a PKC activator, and claudin-18 in pancreatic cancer cells was also modified by DNA methylation. In the marvel family of normal HPDE cells and pancreatic cancer cells, tricellulin was upregulated via a c-Jun N-terminal kinase pathway, and marvelD3 was downregulated during Snail-induced epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Japan.
| | | |
Collapse
|
19
|
Oh EK, Kim YW, Kim IW, Liu HB, Lee KH, Chun HJ, Park DC, Oh EJ, Lee AW, Bae SM, Ahn WS. Differential DNA copy number aberrations in the progression of cervical lesions to invasive cervical carcinoma. Int J Oncol 2012; 41:2038-46. [PMID: 23023522 DOI: 10.3892/ijo.2012.1644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/21/2012] [Indexed: 11/06/2022] Open
Abstract
Host genomic alterations in addition to human papillomavirus (HPV) are needed for cervical precursor lesions to progress to invasive cancer because only a small percentage of women infected by the virus develop disease. However, the genomic alterations during the progression of cervical lesions have not been systematically examined. The aim of this study was to identify differential genomic alterations among cervical intraepithelial neoplasia CIN1, CIN2, CIN3 and cervical squamous cell carcinoma (SCC). Genomic alterations were examined for 15 cases each of CIN1, CIN2, CIN3 and SCC by array-based comparative genomic hybridization (array CGH). The chromosomal regions showing significant differential in DNA copy number aberrations (DCNAs) among CIN1, CIN2, CIN3 and SCC were successfully identified by resampling-based t-test. The chromosomal regions of 5q35.3 and 2q14.3 showed significant DCNAs between CIN1 and CIN2, and between CIN2 and CIN3, respectively, while a significant difference in DCNAs between CIN3 and SCC was observed at 1q24.3, 3p14.1, 3p14.2, 5q13.2, 7p15.3, 7q22.1 and 13q32.3. In addition, the status of DCNAs in 1q43, 2p11.2, 6p11.2, 7p21.1, 7p14.3, 10q24.1, 13q22.3, 13q34 and 16p13.3 was conserved throughout the progression of CIN to SCC. The presence of differential and common DCNAs among CIN1, CIN2, CIN3 and SCC supports that the CIN progression may include continual clonal selection and evolution. This approach also identified 34 probe sets consistently overexpressed when amplified, suggesting an unbiased identification of candidate genes in SCC during cervical cancer progression.
Collapse
Affiliation(s)
- Eun Kyeong Oh
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Seocho-ku, Seoul 137-040, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nguyen KH, Suzuki H, Wakasugi T, Hohchi N, Hashida K, Ohbuchi T. Different expressions of erbB1/2 and tight junction proteins in hypertrophic inferior turbinates and nasal polyps. Eur Arch Otorhinolaryngol 2012; 270:945-51. [PMID: 22926991 DOI: 10.1007/s00405-012-2166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/14/2012] [Indexed: 12/12/2022]
Abstract
Both inferior turbinate hypertrophy and nasal polyp formation entail the enlargement of the nasal mucosa caused by rhinosinusitis, but their macro/microscopic and clinical findings differ markedly. This study aimed at investigating differences in the expressions of erbB1/2 and the tight junction proteins, claudin-1 and tricellulin, in the two tissues. Ten inferior turbinates and ten nasal polyps were collected. The expressions of erbB1/2, claudin-1, and tricellulin were examined by fluorescence immunohistochemistry and by quantitative real-time transcription-polymerase chain reaction (qRT-PCR). The eosinophil count and % of nasal gland area in the mucosa were also measured. The fluorescence intensities in the inferior turbinates were higher for erbB1/2 and lower for claudin-1 than those in the nasal polyps. The results of qRT-PCR were consistent with the immunohistochemical findings for erbB1/2. The quantity of tricellulin mRNA was significantly higher in the inferior turbinates than in the nasal polyps. The % of nasal gland area was significantly higher but the eosinophil count was significantly lower in the inferior turbinate than in the nasal polyp. These results suggest that the underlying pathogenesis of hypertrophic inferior turbinates and nasal polyps is likely to differ with respect to regeneration/proliferation and thus the remodeling process.
Collapse
Affiliation(s)
- Khac-Hung Nguyen
- Department of Otorhinolaryngology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Korompay A, Borka K, Lotz G, Somorácz A, Törzsök P, Erdélyi-Belle B, Kenessey I, Baranyai Z, Zsoldos F, Kupcsulik P, Bodoky G, Schaff Z, Kiss A. Tricellulin expression in normal and neoplastic human pancreas. Histopathology 2012; 60:E76-86. [PMID: 22394074 DOI: 10.1111/j.1365-2559.2012.04189.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Tricellulin is a member of the family of tight junction proteins, which are found concentrated mainly at tricellular contacts. Altered expression of several tight junction components has been observed during carcinogenesis. In the present study, we have analysed the expression of tricellulin in normal human pancreas, and in primary exocrine and endocrine pancreatic tumours. METHODS AND RESULTS A total of 96 cases were studied: 20 normal pancreas, 58 pancreatic ductal adenocarcinomas, 15 pancreatic endocrine neoplasms, and three acinar cell carcinomas. Immunohistochemistry (analysed by digital morphometry), immunofluorescence, western blot analysis and reverse transcription polymerase chain reaction were performed. Tricellulin was localized apically in normal ducts and acini as intensive, spotty immunopositivity at tricellular contacts, whereas weaker signals were observed at the junction between two cells. Islets of Langerhans were negative. Well-differentiated ductal adenocarcinomas significantly overexpressed tricellulin as compared with poorly differentiated adenocarcinomas. Acinar cell carcinomas expressed tricellulin in tumour cells. All endocrine tumours were tricellulin-negative. CONCLUSIONS This is the first report to describe the tricellulin expression profile in normal and neoplastic human pancreas. Both normal and neoplastic pancreatic exocrine tissues expressed tricellulin, whereas no expression was seen in normal or neoplastic endocrine cells. Tricellulin expression in pancreatic ductal adenocarcinomas showed a significant negative correlation with the degree of differentiation.
Collapse
Affiliation(s)
- Anna Korompay
- 2nd Department of Pathology, Semmelweis University, Uzsoki Hospital, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Okabayashi T, Kojima T, Masaki T, Yokota SI, Imaizumi T, Tsutsumi H, Himi T, Fujii N, Sawada N. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus Res 2011; 160:360-6. [PMID: 21816185 DOI: 10.1016/j.virusres.2011.07.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
As an innate immune response against diverse viral infections, a host induces two types of interferon (IFN), type-I (IFN-β/α) and type-III (IFN-λ). We investigated IFN inductions by respiratory viruses, including respiratory syncytial virus (RSV), measles virus and mumps virus in human nasal epithelial cells (NECs). IFN-λ, but not IFN-β/α, was induced by respiratory virus infection in primary NECs and immortalized NECs through transfection with the human telomerase reverse transcriptase gene (hTERT-NECs). In contrast, both IFN-λ and IFN-β/α were induced by RSV infection in human bronchiolar carcinoma cell line A549. Suppression of retinoic acid-inducible gene-I (RIG-I) expression using siRNA significantly reduced IFN-λ1 production in RSV-infected hTERT-NECs, while suppression of melanoma differentiation-associated gene 5 (MDA5) expression did not. Exogenous IFN-λ1 treatment suppressed RSV replication and chemokine induction in hTERT-NECs. These data indicate that IFN-λ, but not IFN-β/α, contributes to the main first line defense via RIG-I-dependent pathway against respiratory virus infection in NECs.
Collapse
Affiliation(s)
- Tamaki Okabayashi
- Department of Microbiology, Sapporo Medical University School of Medicine, S1-W17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mariano C, Sasaki H, Brites D, Brito MA. A look at tricellulin and its role in tight junction formation and maintenance. Eur J Cell Biol 2011; 90:787-96. [PMID: 21868126 DOI: 10.1016/j.ejcb.2011.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022] Open
Abstract
Tight junctions are elaborate networks of transmembrane and cytosolic proteins that regulate epithelial permeability. Tricellulin was the first tight junction protein found at tricellular tight junctions, the specialized structures occurring where three cells meet together. Here, we summarize the current knowledge about tricellulin (marvelD2), a MARVEL domain protein. We address tricellulin location at tricellular junctions, and establish the comparison with the other members of the MARVEL family, occludin (marvelD1) and marvelD3. The structure of tricellulin and its membrane folding, as well as the proposed molecular interactions of tricellulin with other tight junction proteins, together with the interplay between those proteins are also discussed. In addition, we address the role of tricellulin in barrier properties, discriminating the involvement of the protein in paracellular permeability at bicellular and at tricellular tight junctions. Moreover, the key importance of the protein for hearing is highlighted based on the fact that mutations in TRIC, the human tricellulin gene, lead to deafness. Furthermore, this review points to some of the aspects that still deserve clarification for a better understanding of the biology of tight junctions in general and of tricellulin in particular.
Collapse
Affiliation(s)
- Cibelle Mariano
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), and Department of Biochemistry and Human Biology, Faculty of Pharmacy,University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
24
|
Kondoh A, Takano KI, Kojima T, Ohkuni T, Kamekura R, Ogasawara N, Go M, Sawada N, Himi T. Altered expression of claudin-1, claudin-7, and tricellulin regardless of human papilloma virus infection in human tonsillar squamous cell carcinoma. Acta Otolaryngol 2011; 131:861-8. [PMID: 21480761 DOI: 10.3109/00016489.2011.562537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONCLUSIONS Altered expression of claudin-1, claudin-7, and tricellulin in early tonsillar squamous cell carcinoma (SCC) independent of human papilloma virus (HPV) infection may lead to tumor progression. OBJECTIVES Integral tight junction proteins, the claudins and tricellulin, play a crucial role in all tissues. HPV is significantly associated with tonsillar SCC. We sought to determine the expression of claudin-1, claudin-7, and tricellulin in HPV-infected and HPV-free tonsillar SCC. METHODS Twenty-eight tonsillar SCCs were studied by immunohistochemical analysis and real-time reverse transcription polymerase chain reaction with in situ hybridization analysis. RESULTS Compared with normal tissues, claudin-1 was strongly expressed, whereas claudin-7 and tricellulin were weakly expressed or were absent in primary SCC and metastatic lymph nodes. Claudin-7 and tricellulin were markedly reduced at all stages of tumor development. In situ hybridization analysis showed no correlation between HPV infection and altered expression of the tight junction proteins.
Collapse
Affiliation(s)
- Atsushi Kondoh
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mariano C, Silva SL, Pereira P, Fernandes A, Brites D, Brito MA. Evidence of tricellulin expression by immune cells, particularly microglia. Biochem Biophys Res Commun 2011; 409:799-802. [PMID: 21624353 DOI: 10.1016/j.bbrc.2011.05.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) are elaborate structures located on the apical region of epithelial cells that limit paracellular permeability. Tricellulin is a recently discovered TJ protein, which is concentrated at the structurally specialized tricellular TJs but also present at bicellular contacts between epithelial cells, namely in the stomach. Interestingly, several TJ proteins have been found in other than epithelial cells, as astrocytes, and tricellulin mRNA expression was reported in mature dendritic cells. These findings prompted us to look for tricellulin expression in both epithelial and immune cells in the stomach, as well as in microglia, the brain resident immunocompetent cells. Immunohistochemical analysis of human stomach tissue sections revealed peroxidase staining at three-corner contact sites, as well as at the contact between two adjacent epithelial cells, thus evidencing the expression of tricellulin not only at tricellullar but at bicellular junctions as well. Such analysis, further revealed tricellulin immunostaining in cells of the monocyte/macrophage lineage, scattered throughout the lamina propria. Cultured rat microglia exhibited a notorious tricellulin staining, consistent with an extensive expression of the protein along the cell, which was not absolutely coincident with the lysosomal marker CD68. Detection of mRNA expression by real-time PCR provided supportive evidence for the expression of the TJ protein in microglia. These data demonstrate for the first time that microglia express a TJ protein. Moreover, the expression of tricellulin both in microglia and in the stomach immune cells point to a possible role of this new TJ protein in the immune system.
Collapse
Affiliation(s)
- Cibelle Mariano
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 2011; 22:2144-56. [PMID: 21562222 PMCID: PMC3128518 DOI: 10.1091/mbc.e10-11-0875] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We established a respiratory syncytial virus (RSV)-infected model in polarized normal human nasal epithelial cells and found that the replication of RSV and the epithelial cell responses including induction of tight junctions were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κβ pathway. The control of this pathway may be useful in therapy for RSV-induced respiratory pathogenesis. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis.
Collapse
Affiliation(s)
- Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ogasawara N, Kojima T, Go M, Takano KI, Kamekura R, Ohkuni T, Koizumi JI, Masaki T, Fuchimoto J, Obata K, Kurose M, Shintani T, Sawada N, Himi T. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol 2011; 131:116-23. [PMID: 21062118 DOI: 10.3109/00016489.2010.520022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasion of antigens through the mucosal surface can be prevented by the common mucosal immune system, including Peyer's patches (PPs) and nasopharyngeal-associated lymphoreticular tissue (NALT). The adenoids (nasopharyngeal tonsils) comprise one of the NALTs and constitute the major part of Waldeyer's lymphoid ring in humans. However, the role of the lymphoepithelium, including M cells and dendritic cells (DCs), in the adenoids is unknown compared with the epithelium of PPs. NALTs also have unique functions such as the barrier of epithelial cells and uptake of antigens by M cells and DCs, and may play a crucial role in airway mucosal immune responses. The lymphoepithelium of adenoids has well-developed tight junctions that play an important role in the barrier function, the same as nasal epithelium but not palatine tonsillar epithelium. Tight junction molecules are expressed in both M cells and DCs as well as epithelial cells, and various antigens may be sampled, transported, and released to lymphocytes through the cells while they maintain the integrity of the epithelial barrier. This review summarizes the recent progress in our understanding of how M cells and DCs control the epithelial barrier in the adenoids.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kojima T, Fuchimoto J, Yamaguchi H, Ito T, Takasawa A, Ninomiya T, Kikuchi S, Ogasawara N, Ohkuni T, Masaki T, Hirata K, Himi T, Sawada N. c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cells. J Cell Physiol 2010; 225:720-33. [PMID: 20533305 DOI: 10.1002/jcp.22273] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tricellulin (TRIC) is a tight junction protein at tricellular contacts where three epithelial cells meet, and it is required for the maintenance of the epithelial barrier. To investigate whether TRIC is regulated via a c-Jun N-terminal kinase (JNK) pathway, human pancreatic HPAC cells, highly expressed at tricellular contacts, were exposed to various stimuli such as the JNK activators anisomycin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and the proinflammatory cytokines IL-1β, TNFα, and IL-1α. TRIC expression and the barrier function were moderated by treatment with the JNK activator anisomycin, and suppressed not only by inhibitors of JNK and PKC but also by siRNAs of TRIC. TRIC expression was induced by treatment with the PKC activator TPA and proinflammatory cytokines IL-1β, TNFα, and IL-1α, whereas the changes were inhibited by a JNK inhibitor. Furthermore, in normal human pancreatic duct epithelial cells using hTERT-transfected primary cultured cells, the responses of TRIC expression to the various stimuli were similar to those in HPAC cells. TRIC expression in tricellular tight junctions is strongly regulated together with the barrier function via the JNK transduction pathway. These findings suggest that JNK may be involved in the regulation of tricellular tight junctions including TRIC expression and the barrier function during normal remodeling of epithelial cells, and prevent disruption of the epithelial barrier in inflammation and other disorders in pancreatic duct epithelial cells.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohkuni T, Kojima T, Ogasawara N, Masaki T, Fuchimoto J, Kamekura R, Koizumi JI, Ichimiya S, Murata M, Tanaka S, Himi T, Sawada N. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-α via distinct NF-κB pathways in human nasal epithelial cells. Toxicol Appl Pharmacol 2010; 250:29-38. [PMID: 20932985 DOI: 10.1016/j.taap.2010.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 12/13/2022]
Abstract
Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P(3)CSK(4), TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-α. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-α after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-κB pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.
Collapse
Affiliation(s)
- Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ogasawara N, Kojima T, Go M, Ohkuni T, Koizumi JI, Kamekura R, Masaki T, Murata M, Tanaka S, Fuchimoto J, Himi T, Sawada N. PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells. Pharmacol Res 2010; 61:489-98. [PMID: 20227502 DOI: 10.1016/j.phrs.2010.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator activated (PPAR)gamma plays a critical role in the control of not only adipocyte differentiation, lipid metabolism and immunity but also the barrier functions of epithelial and endothelial cells. In the present study, to investigate effects of PPAR gamma agonists on the tight junctional barrier of human nasal epithelial cells (HNECs), hTERT-transfected HNECs, which highly express both PPAR gamma and tight junction proteins, were treated with the PPAR gamma agonists rosiglitazone and troglitazone. Treatment with the PPAR gamma agonists enhanced the barrier function of hTERT-transfected HNECs together with the upregulation of tight junction molecules claudin-1 and -4, occludin, and tricellulin at the transcriptional level. A significant increase of tight junction strands was also observed after treatment with rosiglitazone. Treatment with PPAR gamma agonists induced the activity of phospho-PKC in hTERT-transfected HNECs. The upregulation of the tight junction molecules in hTERT-transfected HNECs by rosiglitazone was inhibited by not only PPAR gamma antagonists GW9662 and T0070907, but also the panPKC inhibitor GF109203X. These findings suggest that PPAR gamma agonists upregulate the barrier function of tight junctions of human nasal epithelial cells via a PKC signaling pathway and could be novel drugs for protection against inhaled substances and pathogens in the airway epithelium of human nasal mucosa.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|