1
|
Patil M, Thapa D, Warne LN, Lareu RR, Dallerba E, Lian J, Massi M, Carlessi R, Falasca M. Chronic metabolic effects of novel gut-oriented small-molecule GPR119 agonists in diet-induced obese mice. Biomed Pharmacother 2024; 181:117675. [PMID: 39566336 DOI: 10.1016/j.biopha.2024.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
The pharmacological activation of G-protein coupled receptor-119 (GPR119) modulates glucose, energy, and hepatic lipid homeostasis in type-2 diabetes (T2D). We developed synthetic small-molecule GPR119 agonists targeting gastrointestinal receptors. This study investigates the chronic metabolic effects of lead candidates, ps297 and ps318, individually and in combination with sitagliptin, a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in high-fat diet (HFD)-induced obese (DIO) mice. In a 10-week dose-escalation protocol, DIO mice were orally treated with the investigational agents alone (10-90 mg/kg/day) and in combination with sitagliptin (20 mg/kg/day). Weekly body weight, food intake, and random blood glucose levels were monitored during the treatment phase. Post-treatment, an intraperitoneal glucose tolerance test (ipGTT), estimation of plasma biomarkers and haematological assessment were conducted. The treatment's effect on hepatic steatosis was studied by estimating liver biomarkers and histological examinations. Ten-week sitagliptin combination therapy with the investigational entities restored incretins, insulin, and other metabolic hormonal secretions, accompanied by improved glucose homeostasis and retarded weight gain. Interestingly, monotherapy with investigational agents improved liver health by reducing liver weight, liver enzymes, and inflammation. Hepatic effects were further enhanced by co-administration of sitagliptin, evident by amelioration in hepatic steatosis endpoints such as liver weight, plasma liver enzyme concentrations, hepatic triglycerides (TG), total cholesterol (CHO), hydroxyproline content, and cytokine levels. Histopathological investigations confirmed regression in hepatic steatosis in the combination groups. These findings demonstrate the therapeutic potential of novel gut-oriented GPR119 agonists in combination with a DPP-IV inhibitor to ameliorate metabolic dysfunction-associated steatohepatitis (MASH), warranting further mechanistic investigations.
Collapse
Affiliation(s)
- Mohan Patil
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Dinesh Thapa
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Leon N Warne
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; College of Science, Health, Engineering, Murdoch University, Perth, WA, Australia
| | - Ricky R Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Jerome Lian
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Rodrigo Carlessi
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| |
Collapse
|
2
|
Hu J, Cao Y, Duan L, Peng J. What is holding back preclinical GPR119 agonists from their potential as the therapeutics of type 2 diabetes? Expert Opin Ther Targets 2024; 28:825-828. [PMID: 39470103 DOI: 10.1080/14728222.2024.2421751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianxiang Duan
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
3
|
Hryciw DH, Patten RK, Rodgers RJ, Proietto J, Hutchinson DS, McAinch AJ. GPR119 agonists for type 2 diabetes: past failures and future hopes for preclinical and early phase candidates. Expert Opin Investig Drugs 2024; 33:183-190. [PMID: 38372052 DOI: 10.1080/13543784.2024.2321271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the β-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.
Collapse
Affiliation(s)
- Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute of Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joseph Proietto
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Lee SH, Park H, Yang EK, Lee BR, Jung IH, Kim TH, Goo MJ, Chae Y, Kim MK. GPR119 activation by DA-1241 alleviates hepatic and systemic inflammation in MASH mice through inhibition of NFκB signaling. Biomed Pharmacother 2023; 166:115345. [PMID: 37657264 DOI: 10.1016/j.biopha.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND PURPOSE GPR119 activation has been suggested to improve hyperglycemia, dyslipidemia and hepatic steatosis. But its therapeutic potential for metabolic dysfunction-associated steatohepatitis (MASH) are underexplored. Here, we investigated the effects of DA-1241, a novel GPR119 agonist, on MASH and explored its underlying mechanism of anti-inflammatory effects. EXPERIMENTAL APPROACH The in vivo anti-MASH effect was assessed by examining the preventive effect in MS-MASH and Ob-MASH mice and the therapeutic effect in MASH with severe hyperglycemia and diet-induced obese (DIO)-MASH mice. Histological and biochemical changes in liver tissue were assessed. Both plasma and hepatic biomarkers related to inflammation and fibrosis were comprehensively analyzed. To understand its mode of action, changes in NFκB signaling were determined in HepG2 and THP-1 cells. KEY RESULTS DA-1241 attenuated MASH progression and alleviated the MASH phenotypes in MASH mouse models with different etiologies, regardless of glucose-lowering activity. In DIO-MASH mice, DA-1241 significantly reduced biochemical parameters related to steatosis, inflammation and fibrosis in the liver with reduced plasma liver enzymes. When used in combination with a dipeptidyl peptidase 4 (DPP4) inhibitor, DA-1241 further improved the MASH phenotype by increasing endogenous glucagon-like peptide-1 effect. Notably, DA-1241 alone and in combination reduced liver inflammation and restored inflammation-related hepatic gene expression, leading to remission of systemic inflammation as assessed by plasma inflammatory cytokines and chemokines. We demonstrated that DA-1241 reduces macrophage differentiation through downregulation of NFκB signaling by activating GPR119. CONCLUSION Our data suggest the therapeutic potential of DA-1241, alone and in combination with a DPP4 inhibitor, for MASH.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Hansu Park
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Eun-Kyoung Yang
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Bo Ram Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Il-Hoon Jung
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Tae-Hyoung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Moon Jung Goo
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Yuna Chae
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Mi-Kyung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea.
| |
Collapse
|
5
|
Peng Y, Huan Y, Chen JJ, Chen TJ, Lei L, Yang JL, Shen ZF, Gong T, Zhu P. Microbial biotransformation to obtain stilbene methylglucoside with GPR119 agonistic activity. Front Microbiol 2023; 14:1148513. [PMID: 37032867 PMCID: PMC10081513 DOI: 10.3389/fmicb.2023.1148513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Limitation of pharmaceutical application of resveratrol (RSV) and piceatannol (PIC) continue to exist, there is a need to obtain the superior analogs of two stilbenes with promoted activity, stability, and bioavailability. Microbial transformation has been suggested as a common and efficient strategy to solve the above problems. Methods In this study, Beauveria bassiana was selected to transform RSV and PIC. LC-MS and NMR spectroscopies were used to analyze the transformed products and identify their structures. The biological activities of these metabolites were evaluated in vitro with GPR119 agonist and insulin secretion assays. Single factor tests were employed to optimize the biotransformation condition. Results Three new methylglucosylated derivatives of PIC (1-3) and two known RSV methylglucosides (4 and 5) were isolated and characterized from the fermentation broth. Among them, 1 not only showed moderate GPR119 agonistic activity with 65.9%, but also promoted insulin secretion level significantly (12.94 ng/mg protein/hour) at 1 μM. After optimization of fermentation conditions, the yield of 1 reached 45.53%, which was increased by 4.2-fold compared with the control. Discussion Our work presents that 3-O-MG PIC (1), obtained by microbial transformation, is an effective and safer ligand targeting GPR119, which lays a foundation for the anti-diabetic drug design in the future.
Collapse
|
6
|
Rusinov VL, Sapozhnikova IM, Spasov AA, Chupakhin ON. Fused azoloazines with antidiabetic activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nat Struct Mol Biol 2022; 29:863-870. [PMID: 35970999 DOI: 10.1038/s41594-022-00816-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022]
Abstract
Lysophosphatidylcholine (LPC) is an essential mediator in human lipid metabolism and is associated with a variety of diseases, but the exact identity of LPC receptors remains controversial. Through extensive biochemical and structural analyses, we have identified the orphan receptor GPR119 as the receptor for LPC. The structure of the GPR119-G-protein complex without any added ligands reveals a density map that fits well with LPC, which is further confirmed by mass spectrometry and functional studies. As LPCs are abundant on the cell membrane, their preoccupancy in the receptor may lead to 'constitutive activity' of GPR119. The structure of GPR119 bound to APD668, a clinical drug candidate for type 2 diabetes, reveals an exceedingly similar binding mode to LPC. Together, these data highlight structural evidence for LPC function in regulating glucose-dependent insulin secretion through direct binding and activation of GPR119, and provide structural templates for drug design targeting GPR119.
Collapse
|
8
|
Santos FO, Correia BRO, Marinho TS, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-steatotic linagliptin pleiotropic effects encompasses suppression of de novo lipogenesis and ER stress in high-fat-fed mice. Mol Cell Endocrinol 2020; 509:110804. [PMID: 32259637 DOI: 10.1016/j.mce.2020.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of linagliptin treatment on hepatic energy metabolism and ER stress in high-fat-fed C57BL/6 mice. METHODS Forty male C57BL/6 mice, three months of age, received a control diet (C, 10% of lipids as energy, n = 20) or high-fat diet (HF, 50% of lipids as energy, n = 20) for 10 weeks. The groups were randomly subdivided into four groups to receive linagliptin, for five weeks, at a dose of 30 mg/kg/day added to the diets: C, C-L, HF, and HF-L groups. RESULTS The HF group showed higher body mass, total and hepatic cholesterol levels and total and hepatic triacylglycerol levels than the C group, all of which were significantly diminished by linagliptin in the HF-L group. The HF group had higher hepatic steatosis than the C group, whereas linagliptin markedly reduced the hepatic steatosis (less 52%, P < 0.001). The expression of Sirt1 and Pgc1a was more significant in the HF-L group than in the HF group. Linagliptin also elicited enhanced GLP-1 concentrations and a reduction in the expression of the lipogenic genes Fas and Srebp1c. Besides, HF-L showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45 coupled with reduced apoptotic nuclei immunostaining. CONCLUSION Linagliptin caused a marked reduction in hepatic steatosis as a secondary effect of its glucose-lowering property. NAFLD countering involved reduced lipogenesis, increased beta-oxidation, and relief in endoplasmic reticulum stress, leading to reduced apoptosis and better preservation of the hepatic structure. Therefore, linagliptin may be used, preferably in diabetic patients, to avoid the progression of hepatic steatosis.
Collapse
Affiliation(s)
- F O Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R O Correia
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T S Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Sumida Y, Yoneda M, Tokushige K, Kawanaka M, Fujii H, Yoneda M, Imajo K, Takahashi H, Eguchi Y, Ono M, Nozaki Y, Hyogo H, Koseki M, Yoshida Y, Kawaguchi T, Kamada Y, Okanoue T, Nakajima A, Japan Study Group of NAFLD (JSG-NAFLD). Antidiabetic Therapy in the Treatment of Nonalcoholic Steatohepatitis. Int J Mol Sci 2020; 21:ijms21061907. [PMID: 32168769 PMCID: PMC7139365 DOI: 10.3390/ijms21061907] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Liver-related diseases are the third-leading causes (9.3%) of mortality in type 2 diabetes (T2D) in Japan. T2D is closely associated with nonalcoholic fatty liver disease (NAFLD), which is the most prevalent chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH), a severe form of NAFLD, can lead to hepatocellular carcinoma (HCC) and hepatic failure. No pharmacotherapies are established for NASH patients with T2D. Though vitamin E is established as a first-line agent for NASH without T2D, its efficacy for NASH with T2D recently failed to be proven. The effects of pioglitazone on NASH histology with T2D have extensively been established, but several concerns exist, such as body weight gain, fluid retention, cancer incidence, and bone fracture. Glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors are expected to ameliorate NASH and NAFLD (LEAN study, LEAD trial, and E-LIFT study). Among a variety of SGLT2 inhibitors, dapagliflozin has already entered the phase 3 trial (DEAN study). A key clinical need is to determine the kinds of antidiabetic drugs that are the most appropriate for the treatment of NASH to prevent the progression of hepatic fibrosis, resulting in HCC or liver-related mortality without increasing the risk of cardiovascular or renal events. Combination therapies, such as glucagon receptor agonist/GLP-1 or gastrointestinal peptide/GLP-1, are under development. This review focused on antidiabetic agents and future perspectives on the view of the treatment of NAFLD with T2D.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-62-1508
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Miwa Kawanaka
- Department of General Internal Medicine2, Kawasaki Medical School, Okayama 700-8505, Japan;
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 558-8585, Japan;
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | - Hirokazu Takahashi
- Department of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 840-8502, Japan;
| | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, Saga 840-8502, Japan;
| | - Masafumi Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Women’s Medical University Medical Center East, Tokyo 116-8567, Japan;
| | - Yuichi Nozaki
- Department of Gastroenterology, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima General Hospital, Hiroshima 738-8503, Japan;
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, Suita Osaka 565-0871, Japan;
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka 564-8567, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Osaka 564-0013, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | | |
Collapse
|
10
|
Members of the endocannabinoid system are distinctly regulated in inflammatory bowel disease and colorectal cancer. Sci Rep 2019; 9:2358. [PMID: 30787385 PMCID: PMC6382821 DOI: 10.1038/s41598-019-38865-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Preclinical studies have demonstrated that the endocannabinoid system (ECS) plays an important role in the protection against intestinal inflammation and colorectal cancer (CRC); however, human data are scarce. We determined members of the ECS and related components of the ‘endocannabinoidome’ in patients with inflammatory bowel disease (IBD) and CRC, and compared them to control subjects. Anandamide (AEA) and oleoylethanolamide (OEA) were increased in plasma of ulcerative colitis (UC) and Crohn’s disease (CD) patients while 2-arachidonoylglycerol (2-AG) was elevated in patients with CD, but not UC. 2-AG, but not AEA, PEA and OEA, was elevated in CRC patients. Lysophosphatidylinositol (LPI) 18:0 showed higher levels in patients with IBD than in control subjects whereas LPI 20:4 was elevated in both CRC and IBD. Gene expression in intestinal mucosal biopsies revealed different profiles in CD and UC. CD, but not UC patients, showed increased gene expression for the 2-AG synthesizing enzyme diacylglycerol lipase alpha. Transcripts of CNR1 and GPR119 were predominantly decreased in CD. Our data show altered plasma levels of endocannabinoids and endocannabinoid-like lipids in IBD and CRC and distinct transcript profiles in UC and CD. We also report alterations for less known components in intestinal inflammation, such as GPR119, OEA and LPI.
Collapse
|