1
|
Kerns BK, Day MA. Long-term frequent fire and cattle grazing alter dry forest understory vegetation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2972. [PMID: 38751157 DOI: 10.1002/eap.2972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 07/02/2024]
Abstract
Understanding fire and large herbivore interactions in interior western forests is critical, owing to the extensive and widespread co-occurrence of these two disturbance types and multiple present and future implications for forest resilience, conservation and restoration. However, manipulative studies focused on interactions and outcomes associated with these two disturbances are rare in forested rangelands. We investigated understory vegetation response to 5-year spring and fall prescribed fire and domestic cattle grazing exclusion in ponderosa pine stands and reported long-term responses, almost two decades after the first entry fires. In fall burn areas open to cattle grazing, total understory cover prior to utilization was about 12% lower compared with fall burn areas where cattle were experimentally excluded. This response was not strongly driven by a particular palatable or unpalatable plant functional group. Fire and grazing are likely interacting in a numerically mediated process, as we found little evidence to support a functionally moderated pathway. Post-fire green-up may equalize forage to a certain extent and concentrate herbivores in the smaller burned areas within pastures, constraining a positive understory response to burning. Fall fire and grazing also increased annual forbs and resprouting shrubs. The effects of spring burning were relatively minor, and we found no interaction with grazing. The nonnative annual grass Bromus tectorum (cheatgrass) remains a problematic invader linked to fall burning but not grazing in stands that had higher propagule pressure when the experiment was initiated. At these sites, exotic grass was a major component of the vegetation by 2015, and invasion was also increasing in spring burn and unburned areas. Information from our study suggests that frequent fall fires and cattle grazing combined may reduce understory resilience in similar dry ponderosa pine forests. Consideration of longer fire return intervals, resting areas after fire, virtual fencing, or burning entire pastures may help to mitigate the effects noted in this study.
Collapse
Affiliation(s)
- Becky K Kerns
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Michelle A Day
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| |
Collapse
|
2
|
Case MF, Davies KW, Boyd CS, Aoyama L, Merson J, Penkauskas C, Hallett LM. Cross-scale analysis reveals interacting predictors of annual and perennial cover in Northern Great Basin rangelands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2953. [PMID: 38558271 DOI: 10.1002/eap.2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/04/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024]
Abstract
Exotic annual grass invasion is a widespread threat to the integrity of sagebrush ecosystems in Western North America. Although many predictors of annual grass prevalence and native perennial vegetation have been identified, there remains substantial uncertainty about how regional-scale and local-scale predictors interact to determine vegetation heterogeneity, and how associations between vegetation and cattle grazing vary with environmental context. Here, we conducted a regionally extensive, one-season field survey across burned and unburned, grazed, public lands in Oregon and Idaho, with plots stratified by aspect and distance to water within pastures to capture variation in environmental context and grazing intensity. We analyzed regional-scale and local-scale patterns of annual grass, perennial grass, and shrub cover, and examined to what extent plot-level variation was contingent on pasture-level predictions of site favorability. Annual grasses were widespread at burned and unburned sites alike, contrary to assumptions of annual grasses depending on fire, and more common at lower elevations and higher temperatures regionally, as well as on warmer slopes locally. Pasture-level grazing pressure interacted with temperature such that annual grass cover was associated positively with grazing pressure at higher temperatures but associated negatively with grazing pressure at lower temperatures. This suggests that pasture-level temperature and grazing relationships with annual grass abundance are complex and context dependent, although the causality of this relationship deserves further examination. At the plot-level within pastures, annual grass cover did not vary with grazing metrics, but perennial cover did; perennial grasses, for example, had lower cover closer to water sources, but higher cover at higher dung counts within a pasture, suggesting contrasting interpretations of these two grazing proxies. Importantly for predictions of ecosystem response to temperature change, we found that pasture-level and plot-level favorability interacted: perennial grasses had a higher plot-level cover on cooler slopes, and this difference across topography was starkest in pastures that were less favorable for perennial grasses regionally. Understanding the mechanisms behind cross-scale interactions and contingent responses of vegetation to grazing in these increasingly invaded ecosystems will be critical to land management in a changing world.
Collapse
Affiliation(s)
- Madelon F Case
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Kirk W Davies
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Chad S Boyd
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Lina Aoyama
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Joanna Merson
- InfoGraphics Lab, University of Oregon, Eugene, Oregon, USA
| | - Calvin Penkauskas
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Lauren M Hallett
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Root HT, Chan J, Ponzetti J, Pyke DA, McCune B. Long-term biocrust responses to wildfires in Washington, USA. AMERICAN JOURNAL OF BOTANY 2023; 110:e16261. [PMID: 38031439 DOI: 10.1002/ajb2.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
PREMISE Dryland ecosystems in the western United States are affected by invasive species, wildfires, livestock grazing, and climate change in ways that are difficult to distinguish. Biocrusts perform important ecological roles in these systems and are sensitive to all of these pressures. METHODS We revisited a Washington, USA, site sampled for biocrusts in 1999 to focus on effects of exotic annual grass invasion and wildfires in the absence of livestock grazing. We examined changes between 1999 and 2020 using a Bayesian directed acyclic graph (DAG) to interpret direct and indirect causal impacts of wildfire on perennial bunchgrasses, exotic annual grasses, and biocrusts. RESULTS Between 1999 and 2020, exotic annual grass cover increased in all plots and in unburned plots by 16% and 18%, respectively, bunchgrass cover decreased by 21% and 25%, and biocrust cover decreased by 8.9% and 9.8%. Our DAG suggested that decreases in bunchgrass increased exotic annual grass, which reduced biocrust cover. Wildfires did not directly influence changes in bunchgrass, exotic annual grass, or biocrust cover. Areas dominated by exotic annual grass had less abundant and diverse biocrusts than areas with less exotic annual grass. CONCLUSIONS Biocrust community changes were more strongly related to increasing exotic annual grasses than to wildfires. Changes may relate to other soil disturbances or broad-scale changes in climate or air quality. The minimal influence of wildfire on exotic annual grass and biocrusts suggests that apparent negative impacts of wildfire at other sites may be due to exacerbation by livestock grazing or other surface disturbance.
Collapse
Affiliation(s)
- Heather T Root
- Department of Botany and Plant Ecology, Weber State University, Ogden, Utah, 84401, USA
| | - Julian Chan
- Department of Mathematics, Weber State University, Ogden, Utah, 84401, USA
| | | | - David A Pyke
- U.S. Geological Survey, Forest & Rangeland Ecosystem Science Center, Corvallis, Oregon, 97330, USA
| | - Bruce McCune
- Department of Botany & Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|
4
|
Weise CL, Brussee BE, Coates PS, Shinneman DJ, Crist MR, Aldridge CL, Heinrichs JA, Ricca MA. A retrospective assessment of fuel break effectiveness for containing rangeland wildfires in the sagebrush biome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117903. [PMID: 37146489 DOI: 10.1016/j.jenvman.2023.117903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/07/2023]
Abstract
Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities' innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels modification and allowing safe access points for containment by firefighters. The Bureau of Land Management has proposed to roughly double the existing fuel break network in the western U.S., centered on the Great Basin. To our knowledge, no broad-scale examination of fuel break effectiveness or the environmental conditions under which fuel breaks are expected to be most effective has been conducted. We performed a retrospective assessment of probability of fuel break contributing to wildfire containment on recorded wildfire and fuel break interactions from 1985 to 2018 within the western U.S. We characterized environmental, fuels, and weather conditions within 500 m of wildfire contact, and within 5 km of the approaching wildfire. We used a binomial mixed model within a Bayesian framework to identify relationships between these variables and fuel break success. Fuel breaks were least successful in areas classified as having low resilience to disturbance and low resistance to invasion, in areas composed of primarily woody fuels, and when operating in high temperature and low precipitation conditions. Fuel breaks were most effective in areas where fine fuels dominated and in areas that were readily accessible. Maintenance history and fuel break type also contributed to the probability of containment. Overall results indicate a complex and sometimes paradoxical relationship between landscape characteristics that promote wildfire spread and those that impact fuel break effectiveness. Finally, we developed predictive maps of fuel break effectiveness by fuel break type to further elucidate these complex relationships and to inform urgently needed fuel break placement and maintenance priorities across the sagebrush biome.
Collapse
Affiliation(s)
- Cali L Weise
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | - Brianne E Brussee
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | - Peter S Coates
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA.
| | - Douglas J Shinneman
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 230 N. Collins Rd., Boise, ID, 83706, USA
| | - Michele R Crist
- Bureau of Land Management, National Interagency Fire Center, 3833 Development Avenue, Boise, ID, 83705-5354, USA
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO, 80526-8118, USA
| | - Julie A Heinrichs
- Natural Resource Ecology Laboratory, Colorado State University; in Cooperation with U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO, 80526-8118, USA
| | - Mark A Ricca
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA; U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, 777 NW 9th St #400, Corvallis, OR 97330, USA
| |
Collapse
|
5
|
Mahood AL, Koontz MJ, Balch JK. Fuel connectivity, burn severity, and seed bank survivorship drive ecosystem transformation in a semiarid shrubland. Ecology 2023; 104:e3968. [PMID: 36571436 DOI: 10.1002/ecy.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022]
Abstract
A key challenge in ecology is understanding how multiple drivers interact to precipitate persistent vegetation state changes. These state changes may be both precipitated and maintained by disturbances, but predicting whether the state change will be fleeting or persistent requires an understanding of the mechanisms by which disturbance affects the alternative communities. In the sagebrush shrublands of the western United States, widespread annual grass invasion has increased fuel connectivity, which increases the size and spatial contiguity of fires, leading to postfire monocultures of introduced annual grasses (IAG). The novel grassland state can be persistent and is more likely to promote large fires than the shrubland it replaced. But the mechanisms by which prefire invasion and fire occurrence are linked to higher postfire flammability are not fully understood. A natural experiment to explore these interactions presented itself when we arrived in northern Nevada immediately after a 50,000 ha wildfire was extinguished. We hypothesized that the novel grassland state is maintained via a reinforcing feedback where higher fuel connectivity increases burn severity, which subsequently increases postfire IAG dispersal, seed survivorship, and fuel connectivity. We used a Bayesian joint species distribution model and structural equation model framework to assess the strength of the support for each element in this feedback pathway. We found that prefire fuel connectivity increased burn severity and that higher burn severity had mostly positive effects on the occurrence of IAG and another nonnative species and mostly negative or neutral relationships with all other species. Finally, we found that the abundance of IAG seeds in the seed bank immediately after a fire had a positive effect on the fuel connectivity 3 years after the fire, completing a positive feedback promoting IAG. These results demonstrate that the strength of the positive feedback is controlled by measurable characteristics of ecosystem structure, composition, and disturbance. Further, each node in the loop is affected independently by multiple global change drivers. It is possible that these characteristics can be modeled to predict threshold behavior and inform management actions to mitigate or slow the establishment of the grass-fire cycle, perhaps via targeted restoration applications or prefire fuel treatments.
Collapse
Affiliation(s)
- Adam L Mahood
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA.,Earth Lab, University of Colorado, Boulder, Colorado, USA.,Water Resources, Agricultural Research Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | | | - Jennifer K Balch
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA.,Earth Lab, University of Colorado, Boulder, Colorado, USA.,Environmental Data Science Innovation and Inclusion Lab, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
6
|
Anthony CR, Germino MJ. Does post-fire recovery of native grasses across abiotic-stress and invasive-grass gradients match theoretical predictions, in sagebrush steppe? Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
7
|
Germino MJ, Kluender CR, Anthony CR. Plant community trajectories following livestock exclusion for conservation vary and hinge on initial invasion and soil‐biocrust conditions in shrub steppe. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Matthew J. Germino
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Chad R. Kluender
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | | |
Collapse
|
8
|
Arkle RS, Pilliod DS, Germino MJ, Jeffries MI, Welty JL. Reestablishing a foundational species: Limitations on post‐wildfire sagebrush seedling establishment. Ecosphere 2022. [DOI: 10.1002/ecs2.4195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Robert S. Arkle
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - David S. Pilliod
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Matthew J. Germino
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Michelle I. Jeffries
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Justin L. Welty
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| |
Collapse
|
9
|
Roth CL, O'Neil ST, Coates PS, Ricca MA, Pyke DA, Aldridge CL, Heinrichs JA, Espinosa SP, Delehanty DJ. Targeting Sagebrush (Artemisia Spp.) Restoration Following Wildfire with Greater Sage-Grouse (Centrocercus Urophasianus) Nest Selection and Survival Models. ENVIRONMENTAL MANAGEMENT 2022; 70:288-306. [PMID: 35687203 PMCID: PMC9252971 DOI: 10.1007/s00267-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented conservation efforts for sagebrush (Artemisia spp.) ecosystems across the western United States have been catalyzed by risks from escalated wildfire activity that reduces habitat for sagebrush-obligate species such as Greater Sage-Grouse (Centrocercus urophasianus). However, post-fire restoration is challenged by spatial variation in ecosystem processes influencing resilience to disturbance and resistance to non-native invasive species, and spatial and temporal lags between slower sagebrush recovery processes and faster demographic responses of sage-grouse to loss of important habitat. Decision-support frameworks that account for these factors can help users strategically apply restoration efforts by predicting short and long-term ecological benefits of actions. Here, we developed a framework that strategically targets burned areas for restoration actions (e.g., seeding or planting sagebrush) that have the greatest potential to positively benefit sage-grouse populations through time. Specifically, we estimated sagebrush recovery following wildfire and risk of non-native annual grass invasion under four scenarios: passive recovery, grazing exclusion, active restoration with seeding, and active restoration with seedling transplants. We then applied spatial predictions of integrated nest site selection and survival models before wildfire, immediately following wildfire, and at 30 and 50 years post-wildfire based on each restoration scenario and measured changes in habitat. Application of this framework coupled with strategic planting designs aimed at developing patches of nesting habitat may help increase operational resilience for fire-impacted sagebrush ecosystems.
Collapse
Affiliation(s)
- Cali L Roth
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | - Shawn T O'Neil
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | - Peter S Coates
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA.
| | - Mark A Ricca
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | - David A Pyke
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 777 NW 9th Street, Suite 400, Corvallis, OR, 97330, USA
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO, 80526-8118, USA
| | - Julie A Heinrichs
- Natural Resource Ecology Laboratory, in cooperation with U.S. Geological Survey, Fort Collins Science Center, Colorado State University, 2150 Centre Avenue, Building C, Fort Collins, CO, 80526-8118, USA
| | - Shawn P Espinosa
- Nevada Department of Wildlife, 6980 Sierra Center Parkway #120, Reno, NV, 89511, USA
| | - David J Delehanty
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
10
|
Pyke DA, Shaff SE, Chambers JC, Schupp EW, Newingham BA, Gray ML, Ellsworth LM. Ten‐year ecological responses to fuel treatments within semiarid Wyoming big sagebrush ecosystems. Ecosphere 2022. [DOI: 10.1002/ecs2.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- David A. Pyke
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis Oregon USA
| | - Scott E. Shaff
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis Oregon USA
| | - Jeanne C. Chambers
- U.S. Department of Agriculture, Forest Service Rocky Mountain Research Station Reno Nevada USA
| | - Eugene W. Schupp
- Department of Wildland Resources/Ecology Center Utah State University Logan Utah USA
| | - Beth A. Newingham
- U.S. Department of Agriculture, Agricultural Research Service Great Basin Rangelands Research Unit Reno Nevada USA
| | - Margaret L. Gray
- Department of Wildland Resources/Ecology Center Utah State University Logan Utah USA
| | - Lisa M. Ellsworth
- Fisheries and Wildlife Department Oregon State University Corvallis Oregon USA
| |
Collapse
|
11
|
Mahood AL, Jones RO, Board DI, Balch JK, Chambers JC. Interannual climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion in a semiarid shrubland. GLOBAL CHANGE BIOLOGY 2022; 28:267-284. [PMID: 34614268 PMCID: PMC9291498 DOI: 10.1111/gcb.15921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/26/2021] [Indexed: 05/13/2023]
Abstract
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2 ) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure-shrubs, grasses, and forbs-will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.
Collapse
Affiliation(s)
- Adam L. Mahood
- Department of GeographyUniversity of Colorado BoulderBoulderColoradoUSA
- Earth LabUniversity of ColoradoBoulderColoradoUSA
| | - Rachel O. Jones
- Department of Biological & Ecological EngineeringOregon State UniversityCorvallisOregonUSA
| | - David I. Board
- US Forest ServiceRocky Mountain Research StationRenoNevadaUSA
| | - Jennifer K. Balch
- Department of GeographyUniversity of Colorado BoulderBoulderColoradoUSA
- Earth LabUniversity of ColoradoBoulderColoradoUSA
| | | |
Collapse
|
12
|
Lucero JE, Callaway RM, Faist AM, Lortie CJ. An unfortunate alliance: Native shrubs increase the abundance, performance, and apparent impacts of Bromus tectorum across a regional aridity gradient. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Palmquist KA, Schlaepfer DR, Renne RR, Torbit SC, Doherty KE, Remington TE, Watson G, Bradford JB, Lauenroth WK. Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients. GLOBAL CHANGE BIOLOGY 2021; 27:5169-5185. [PMID: 34189797 DOI: 10.1111/gcb.15776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Plant community response to climate change will be influenced by individual plant responses that emerge from competition for limiting resources that fluctuate through time and vary across space. Projecting these responses requires an approach that integrates environmental conditions and species interactions that result from future climatic variability. Dryland plant communities are being substantially affected by climate change because their structure and function are closely tied to precipitation and temperature, yet impacts vary substantially due to environmental heterogeneity, especially in topographically complex regions. Here, we quantified the effects of climate change on big sagebrush (Artemisia tridentata Nutt.) plant communities that span 76 million ha in the western United States. We used an individual-based plant simulation model that represents intra- and inter-specific competition for water availability, which is represented by a process-based soil water balance model. For dominant plant functional types, we quantified changes in biomass and characterized agreement among 52 future climate scenarios. We then used a multivariate matching algorithm to generate fine-scale interpolated surfaces of functional type biomass for our study area. Results suggest geographically divergent responses of big sagebrush to climate change (changes in biomass of -20% to +27%), declines in perennial C3 grass and perennial forb biomass in most sites, and widespread, consistent, and sometimes large increases in perennial C4 grasses. The largest declines in big sagebrush, perennial C3 grass and perennial forb biomass were simulated in warm, dry sites. In contrast, we simulated no change or increases in functional type biomass in cold, moist sites. There was high agreement among climate scenarios on climate change impacts to functional type biomass, except for big sagebrush. Collectively, these results suggest divergent responses to warming in moisture-limited versus temperature-limited sites and potential shifts in the relative importance of some of the dominant functional types that result from competition for limiting resources.
Collapse
Affiliation(s)
- Kyle A Palmquist
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Daniel R Schlaepfer
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Rachel R Renne
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Stephen C Torbit
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | - Kevin E Doherty
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | | | - Greg Watson
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - William K Lauenroth
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
O'Connor RC, Germino MJ. Comment on: Grazing disturbance promotes exotic annual grasses by degrading soil biocrust communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02277. [PMID: 33320997 DOI: 10.1002/eap.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Rory C O'Connor
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho, 83706, USA
| | - Matthew J Germino
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho, 83706, USA
| |
Collapse
|
15
|
Chambers JC, Urza AK, Board DI, Miller RF, Pyke DA, Roundy BA, Schupp EW, Tausch RJ. Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions. Ecosphere 2021. [DOI: 10.1002/ecs2.3450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Alexandra K. Urza
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| | - David I. Board
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| | - Richard F. Miller
- Department of Range and Animal Science Oregon State University Corvallis Oregon97331USA
| | - David A. Pyke
- Forest & Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon97331USA
| | - Bruce A. Roundy
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah84602USA
| | - Eugene W. Schupp
- Department of Wildland Resources and Ecology Center Utah State University Logan Utah84322USA
| | - Robin J. Tausch
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| |
Collapse
|
16
|
Copeland SM, Davies KW, Boyd CS, Bates JD. Recovery of the herbaceous component of degraded sagebrush steppe is unimpeded by 75 years of moderate cattle grazing. Ecosphere 2021. [DOI: 10.1002/ecs2.3445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Stella M. Copeland
- Eastern Oregon Agricultural Research Center U.S. Department of Agriculture−Agricultural Research Service Burns Oregon97720USA
| | - Kirk W. Davies
- Eastern Oregon Agricultural Research Center U.S. Department of Agriculture−Agricultural Research Service Burns Oregon97720USA
| | - Chad S. Boyd
- Eastern Oregon Agricultural Research Center U.S. Department of Agriculture−Agricultural Research Service Burns Oregon97720USA
| | - Jonathan D. Bates
- Eastern Oregon Agricultural Research Center U.S. Department of Agriculture−Agricultural Research Service Burns Oregon97720USA
| |
Collapse
|
17
|
Freund SM, Newingham BA, Chambers JC, Urza AK, Roundy BA, Cushman JH. Plant functional groups and species contribute to ecological resilience a decade after woodland expansion treatments. Ecosphere 2021. [DOI: 10.1002/ecs2.3325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Stephanie M. Freund
- Department of Natural Resources and Environmental Science University of Nevada, Reno Reno Nevada89557USA
| | - Beth A. Newingham
- Department of Natural Resources and Environmental Science University of Nevada, Reno Reno Nevada89557USA
- Great Basin Rangelands Research Unit USDA Agricultural Research Service Reno Nevada89512USA
| | | | - Alexandra K. Urza
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89509USA
| | - Bruce A. Roundy
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah84602USA
| | - J. Hall Cushman
- Department of Natural Resources and Environmental Science University of Nevada, Reno Reno Nevada89557USA
| |
Collapse
|
18
|
Using native grass seeding and targeted spring grazing to reduce low-level Bromus tectorum invasion on the Colorado Plateau. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02397-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractReducing invasive species abundance near the leading edge of invasions is important for maintaining diverse, high-functioning ecosystems, but it can be hard to remove invasives present at low levels within desirable plant communities. Focusing on an invasive annual grass, Bromus tectorum, near the edge of its range in the southern Colorado Plateau, we used an observational study to ask what plant community components were associated with lower levels of B. tectorum, and a manipulative experiment to ask if targeted spring grazing or seeding native competitors were effective for reversing low-level invasion. The observational study found that higher C3 perennial grass cover and shrub cover were associated with lower B. tectorum abundance, and adult Poa fendleriana and Pascopyrum smithii plants had the fewest B. tectorum individuals within 50 cm. Our manipulative experiment used a randomized, hierarchical design to test the relative effectiveness of seeding native perennial grasses using different spatial planting arrangements, seeding rates, seed enhancements, and targeted spring grazing. Two years after seeding, seeded species establishment was 36% greater in high seed rate than unseeded plots, and high rate plots also had lower B. tectorum cover. One season after targeted spring grazing (a single, 2-week spring-grazing treatment 17 months post-seeding), grazed paddocks displayed trends towards higher seeded species densities and lower B. tectorum biomass in certain seeding treatments, compared to ungrazed paddocks. Results suggest high rate native grass seedings may be effective and short-duration spring grazing should be further evaluated as potential tools for preventing ecosystem conversion along invasion fronts.
Collapse
|
19
|
Tucker C, Antoninka A, Day N, Poff B, Reed S. Biological soil crust salvage for dryland restoration: an opportunity for natural resource restoration. Restor Ecol 2020. [DOI: 10.1111/rec.13115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Colin Tucker
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
- Northern Research StationU.S. Forest Service Houghton MI U.S.A
| | - Anita Antoninka
- School of ForestryNorthern Arizona University Flagstaff AZ U.S.A
| | - Natalie Day
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
| | - Boris Poff
- Southern Nevada District OfficeBureau of Land Management Las Vegas NV U.S.A
| | - Sasha Reed
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
| |
Collapse
|
20
|
Antoninka A, Faist A, Rodriguez‐Caballero E, Young KE, Chaudhary VB, Condon LA, Pyke DA. Biological soil crusts in ecological restoration: emerging research and perspectives. Restor Ecol 2020. [DOI: 10.1111/rec.13201] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anita Antoninka
- School of Forestry Northern Arizona University 200 E Pine Knoll Drive, Flagstaff AZ 86011 U.S.A
| | - Akasha Faist
- Department of Animal and Range Sciences New Mexico State University Box 30003 MSC 3‐I, Las Cruces NM 88003 U.S.A
| | - Emilio Rodriguez‐Caballero
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL) University of Almería 04120 Almería Spain
| | - Kristina E. Young
- Department of Biological Sciences University of Texas at El Paso 500 West University Avenue, El Paso TX 79968 U.S.A
| | - V. Bala Chaudhary
- Department of Environmental Science and Studies DePaul University 1110 West Belden Avenue, Chicago IL 60614 U.S.A
| | - Lea A. Condon
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| | - David A. Pyke
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| |
Collapse
|
21
|
Bishop TBB, Nusink BC, Lee Molinari R, Taylor JB, St. Clair SB. Earlier fall precipitation and low severity fire impacts on cheatgrass and sagebrush establishment. Ecosphere 2020. [DOI: 10.1002/ecs2.3019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tara B. B. Bishop
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
- Southwest Biological Science Center U.S. Geological Survey Moab Utah USA
| | - Baylie C. Nusink
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
| | - Rebecca Lee Molinari
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
| | - Justin B. Taylor
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
| | - Samuel B. St. Clair
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
| |
Collapse
|
22
|
Condon LA, Pyke DA. Components and Predictors of Biological Soil Crusts Vary at the Regional vs. Plant Community Scales. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Rosentreter R. Biocrust lichen and moss species most suitable for restoration projects. Restor Ecol 2020. [DOI: 10.1111/rec.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roger Rosentreter
- Department of BiologyBoise State University 2032 S. Crystal Way Boise ID 83706 U.S.A
| |
Collapse
|
24
|
Root HT, Miller JED, Rosentreter R. Grazing disturbance promotes exotic annual grasses by degrading soil biocrust communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02016. [PMID: 31596981 DOI: 10.1002/eap.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Exotic invasive plants threaten ecosystem integrity, and their success depends on a combination of abiotic factors, disturbances, and interactions with existing communities. In dryland ecosystems, soil biocrusts (communities of lichens, bryophytes, and microorganisms) can limit favorable microsites needed for invasive species establishment, but the relative importance of biocrusts for landscape-scale invasion patterns remains poorly understood. We examine effects of livestock grazing in habitats at high risk for invasion to test the hypothesis that disturbance indirectly favors exotic annual grasses by reducing biocrust cover. We present some of the first evidence that biocrusts increase site resistance to invasion at a landscape scale and mediate the effects of disturbance. Biocrust species richness, which is reduced by livestock grazing, also appears to promote native perennial grasses. Short mosses, as a functional group, appear to be particularly valuable for preventing invasion by exotic annual grasses. Our study suggests that maintaining biocrust communities with high cover, species richness, and cover of short mosses can increase resistance to invasion. These results highlight the potential of soil surface communities to mediate invasion dynamics and suggest promising avenues for restoration in dryland ecosystems.
Collapse
Affiliation(s)
- Heather T Root
- Botany Department, Weber State University, Ogden, Utah, 84401, USA
| | - Jesse E D Miller
- Department of Biology, Stanford University, Stanford, California, 94304, USA
| | - Roger Rosentreter
- Biology Department, Boise State University, Boise, Idaho, 83725, USA
| |
Collapse
|
25
|
Wood DJA, Seipel T, Irvine KM, Rew LJ, Stoy PC. Fire and development influences on sagebrush community plant groups across a climate gradient in northern Nevada. Ecosphere 2019. [DOI: 10.1002/ecs2.2990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- David J. A. Wood
- U.S. Geological Survey Northern Rocky Mountain Science Center Bozeman Montana 59715 USA
- Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana 59717 USA
| | - Tim Seipel
- Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana 59717 USA
| | - Kathryn M. Irvine
- U.S. Geological Survey Northern Rocky Mountain Science Center Bozeman Montana 59715 USA
| | - Lisa J. Rew
- Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana 59717 USA
| | - Paul C. Stoy
- Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana 59717 USA
| |
Collapse
|
26
|
Barker BS, Pilliod DS, Rigge M, Homer CG. Pre‐fire vegetation drives post‐fire outcomes in sagebrush ecosystems: evidence from field and remote sensing data. Ecosphere 2019. [DOI: 10.1002/ecs2.2929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Brittany S. Barker
- Forest and Rangeland Ecosystem Science Center US Geological Survey Boise Idaho 83706 USA
- Integrated Plant Protection Center and Department of Horticulture Oregon State University 2040 Cordley Hall Corvallis Oregon 97331 USA
| | - David S. Pilliod
- Forest and Rangeland Ecosystem Science Center US Geological Survey Boise Idaho 83706 USA
| | - Matthew Rigge
- Earth Resources Observation and Science Center AFDS, contractor to the US Geological Survey Sioux Falls South Dakota 57198 USA
| | - Collin G. Homer
- Earth Resources Observation and Science Center US Geological Survey Sioux Falls South Dakota 57198 USA
| |
Collapse
|
27
|
Condon LA, Pietrasiak N, Rosentreter R, Pyke DA. Passive restoration of vegetation and biological soil crusts following 80 years of exclusion from grazing across the Great Basin. Restor Ecol 2019. [DOI: 10.1111/rec.13021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lea A. Condon
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis OR 97331 U.S.A
| | - Nicole Pietrasiak
- Plant and Environmental Sciences Department New Mexico State University Las Cruces New Mexico 88003 U.S.A
| | | | - David A. Pyke
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis OR 97331 U.S.A
| |
Collapse
|
28
|
Blankenship WD, Condon LA, Pyke DA. Hydroseeding tackifiers and dryland moss restoration potential. Restor Ecol 2019. [DOI: 10.1111/rec.12997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W. Dillon Blankenship
- Department of Botany and Plant Pathology Oregon State University Corvallis OR 97331 U.S.A
| | - Lea A. Condon
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center 3200 SW Jefferson Way, Corvallis OR 97331 U.S.A
| | - David A. Pyke
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center 3200 SW Jefferson Way, Corvallis OR 97331 U.S.A
| |
Collapse
|
29
|
Doherty K, Bowker MA, Durham RA, Antoninka A, Ramsey P, Mummey D. Adapting mechanized vascular plant seed dispersal technologies to biocrust moss restoration. Restor Ecol 2019. [DOI: 10.1111/rec.12998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyle Doherty
- School of ForestryNorthern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| | - Matthew A. Bowker
- School of ForestryNorthern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| | | | - Anita Antoninka
- School of ForestryNorthern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| | - Philip Ramsey
- MPG Ranch 1001 S. Higgins Avenue STE A3, Missoula MT 59801 U.S.A
| | - Daniel Mummey
- MPG Ranch 1001 S. Higgins Avenue STE A3, Missoula MT 59801 U.S.A
| |
Collapse
|
30
|
Barnard DM, Germino MJ, Arkle RS, Bradford JB, Duniway MC, Pilliod DS, Pyke DA, Shriver RK, Welty JL. Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance. Ecosphere 2019. [DOI: 10.1002/ecs2.2780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- David M. Barnard
- US Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Matthew J. Germino
- US Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Robert S. Arkle
- US Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - John B. Bradford
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | | | - David S. Pilliod
- US Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - David A. Pyke
- US Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis Oregon USA
| | - Robert K. Shriver
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Justin L. Welty
- US Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| |
Collapse
|
31
|
Mahood AL, Balch JK. Repeated fires reduce plant diversity in low-elevation Wyoming big sagebrush ecosystems (1984-2014). Ecosphere 2019. [DOI: 10.1002/ecs2.2591] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Adam L. Mahood
- Department of Geography; University of Colorado Boulder; GUGG 110, 260 UCB Boulder Colorado 80309 USA
| | - Jennifer K. Balch
- Department of Geography; University of Colorado Boulder; GUGG 110, 260 UCB Boulder Colorado 80309 USA
| |
Collapse
|
32
|
Smith DiCarlo LA, DeBano SJ. Spider community responses to grassland restoration: balancing trade-offs between abundance and diversity. Restor Ecol 2018. [DOI: 10.1111/rec.12832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren A. Smith DiCarlo
- Department of Fisheries and Wildlife; Oregon State University, 104 Nash Hall; Corvallis OR 97333 U.S.A
| | - Sandra J. DeBano
- Department of Fisheries and Wildlife; Hermiston Agricultural Research and Extension Center, Oregon State University, 2121 S. 1st Street; Hermiston OR 97838 U.S.A
| |
Collapse
|