1
|
Velde CD, Molnes J, Berland S, Njølstad PR, Molven A. Clinical and Genetic Characteristics of Congenital Hyperinsulinism in Norway: A Nationwide Cohort Study. J Clin Endocrinol Metab 2025; 110:554-563. [PMID: 38963811 PMCID: PMC11747666 DOI: 10.1210/clinem/dgae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE Congenital hyperinsulinism (CHI) is a rare, monogenic disease characterized by excessive insulin secretion. We aimed to evaluate all probands with suspected CHI in Norway registered over the past 2 decades. METHODS The study included 98 probands. Clinical data were cumulated from medical records. All probands were screened for variants in the genes ABCC8 and KCNJ11. Other CHI-related genes were Sanger-sequenced as indicated by the patients' phenotype (n = 75) or analyzed by next-generation sequencing employing a panel of 30 CHI-related genes (n = 23). RESULTS Twenty-one probands (21%) received a diagnosis other than CHI, the most common being idiopathic ketotic hypoglycemia (9%) or syndromic hyperinsulinism (4%). In the final cohort of 77 CHI probands, genetic findings were revealed in 46 (60%). ABCC8 variants were most common (n= 40), and 5 novel variants were identified. One proband harbored both the pathogenic GCK variant p.(Ala456Val) and the ABCC8 variant p.(Gly505Cys). Although most ABCC8 variants caused immediate disease onset with severe hypoglycemia and were diazoxide-unresponsive, 8 probands had a heterozygous, apparently dominant variant with milder phenotype. Two probands had pathogenic variants in GLUD1, whereas variants in HADH, HNF4A, KCNJ11, and HK1 were identified in 1 proband each, the latter being noncoding. Neurologic sequelae were reported in 53% of the CHI probands. Of nonsurgically treated probands, 43% had spontaneous resolution. The minimum birth prevalence of CHI in Norway is 1:19,400 live births. MAIN CONCLUSION Individuals with disease-causing ABCC8 variants dominated our cohort. Patients with known genetic etiology had earlier and more severe disease onset than genetically unsolved patients.
Collapse
Affiliation(s)
- Christoffer Drabløs Velde
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Pathology and Section for Cancer Genomics, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
2
|
Zukeran H, Akiba K, Higuchi S, Mori J, Yorifuji T, Hasegawa Y. A case of diffuse congenital hyperinsulinism in which continuous glucose monitoring contributed to the choice of a treatment strategy following a subtotal pancreatectomy. Clin Pediatr Endocrinol 2024; 33:174-180. [PMID: 38993720 PMCID: PMC11234182 DOI: 10.1297/cpe.2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 07/13/2024] Open
Abstract
Patients with diffuse congenital hyperinsulinism (CHI) refractory to drug therapy require subtotal or near-total pancreatectomy. Although almost all patients develop diabetes postoperatively, the clinical course and timing of insulin therapy remain unclear. A 7-yr-old girl presented with recurrent hypoglycemia shortly after birth and a relatively elevated insulin level, which confirmed the diagnosis of CHI. Genetic analysis revealed compound heterozygous ATP-binding cassette, Subfamily C, Member 8 pathogenic variants and diffuse CHI was suspected. Because her condition was refractory to diazoxide and octreotide, she underwent a subtotal pancreatectomy at the age of 4 mo. The drug therapy was discontinued. Although an oral glucose tolerance test at the age of 2 yr showed hyperglycemia after loading, continuous glucose monitoring (CGM) revealed that her daily glucose trends were almost within the 70-180 mg/dL range, and mild hypoglycemia appeared during the daytime. After the age of 6 yr, CGM showed an elevation in glucose trends from midnight to early morning, suggesting that insulin secretion was attenuated and hepatic glucose production was insufficiently suppressed. Insulin therapy was initiated at the age of 7 yr. These results indicate that CGM can be useful for making treatment decisions.
Collapse
Affiliation(s)
- Hiroaki Zukeran
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kazuhisa Akiba
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Tohru Yorifuji
- 2nd Department of Internal Medicine, Date Red Cross Hospital, Hokkaido, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Pediatrics, Tama-Hokubu Medical Center, Tokyo, Japan
| |
Collapse
|
3
|
Siserman CV, Jeican II, Gheban D, Anton V, Mironescu D, Șușman S, Vică ML, Lazăr M, Aluaș M, Toader C, Albu S. Fatal Form of COVID-19 in a Young Male Bodybuilder Anabolic Steroid Using: The First Autopsied Case. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1373. [PMID: 36295534 PMCID: PMC9611349 DOI: 10.3390/medicina58101373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
We report the case of a 34-year-old male patient, a bodybuilding trainer and user of anabolic androgenic steroids (AASs) for 16 years. He was found in cardio-respiratory arrest in his home. By performing a medico-legal autopsy, a severe form of COVID-19, aortic atherosclerotic plaques, and an old myocardial infarction was found. The SARS-CoV-2 RT-PCR test on necroptic lung fragments was positive, with a B.1.258 genetic line. The histopathological examinations showed microthrombi with endothelitis in the cerebral tissue, massive pulmonary edema, diffuse alveolar damage grade 1, pulmonary thromboembolism, hepatic peliosis, and severe nesidioblastosis. The immunohistochemical examinations showed SARS-CoV-2 positive in the myocardium, lung, kidneys, and pancreas. ACE-2 receptor was positive in the same organs, but also in the spleen and liver. HLA alleles A*03, A*25, B*18, B*35, C*04, C*12, DRB1*04, DRB1*15, DQB1*03, DQB1*06 were also identified. In conclusion, death was due to a genetic predisposition, a long-term abuse of AASs that favored the development of a pluriorganic pathological tissue terrain, and recent consumption of AASs, which influenced the immune system at the time of infection.
Collapse
Affiliation(s)
- Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ionuț Isaia Jeican
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Infectious Disease Clinical Hospital, 400000 Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Pathology, Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Vlad Anton
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | | | - Sergiu Șușman
- Imogen Medical Research Institute, County Clinical Emergency Hospital, 400000 Cluj-Napoca, Romania
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihaela Laura Vică
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Viral Respiratory Infections Laboratory, Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeș Str., No. 15, 400012 Cluj-Napoca, Romania
| | - Corneliu Toader
- Clinic of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 041914 Bucharest, Romania
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Boodhansingh KE, Yang Z, Li C, Chen P, Lord K, Becker SA, States LJ, Adzick NS, Bhatti T, Shyng SL, Ganguly A, Stanley CA, De Leon DD. Localized islet nuclear enlargement hyperinsulinism (LINE-HI) due to ABCC8 and GCK mosaic mutations. Eur J Endocrinol 2022; 187:301-313. [PMID: 35674212 PMCID: PMC9339501 DOI: 10.1530/eje-21-1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Objective Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycemia in children. In addition to typical focal or diffuse HI, some cases with diazoxide-unresponsive congenital HI have atypical pancreatic histology termed Localized Islet Nuclear Enlargement (LINE) or mosaic HI, characterized by histologic features similar to diffuse HI, but confined to only a region of pancreas. Our objective was to characterize the phenotype and genotype of children with LINE-HI. Design The phenotype and genotype features of 12 children with pancreatic histology consistent with LINE-HI were examined. Methods We compiled clinical features of 12 children with LINE-HI and performed next-generation sequencing on specimens of pancreas from eight of these children to look for mosaic mutations in genes known to be associated with diazoxide-unresponsive HI (ABCC8, KCNJ11, and GCK). Results Children with LINE-HI had lower birth weights and later ages of presentation compared to children with typical focal or diffuse HI. Partial pancreatectomy in LINE-HI cases resulted in euglycemia in 75% of cases; no cases have developed diabetes. Low-level mosaic mutations were identified in the pancreas of six cases with LINE-HI (three in ABCC8, three in GCK). Expression studies confirmed that all novel mutations were pathogenic. Conclusion These results indicate that post-zygotic low-level mosaic mutations of known HI genes are responsible for some cases of LINE-HI that lack an identifiable germ-line mutation and that partial pancreatectomy may be curative for these cases.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katherine Lord
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan A. Becker
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa J. States
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - N. Scott Adzick
- Department of Surgery, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Tricia Bhatti
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
States LJ, Davis JC, Hamel SM, Becker SA, Zhuang H. 18F-6-Fluoro-l-Dopa PET/CT Imaging of Congenital Hyperinsulinism. J Nucl Med 2021; 62:51S-56S. [PMID: 34230074 DOI: 10.2967/jnumed.120.246033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital hyperinsulinism is characterized by persistent hypoglycemia due to inappropriate excess secretion of insulin resulting in hyperinsulinemic hypoglycemia. The clinical course varies from mild to severe, with a significant risk for brain damage. Imaging plays a valuable role in the care of infants and children with severe hypoglycemia unresponsive to medical therapy. 18F-6-fluoro-l-dopa PET/CT is the method of choice for the detection and localization of a focal lesion of hyperinsulinism. Surgical resection of a focal lesion can lead to a cure with limited pancreatectomy. This article reviews the role of 18F-6-fluoro-l-dopa PET/CT in the management of this vulnerable population.
Collapse
Affiliation(s)
- Lisa J States
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| | - J Christopher Davis
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| | - Steven M Hamel
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Susan A Becker
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Hongming Zhuang
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| |
Collapse
|
6
|
Li M, Gong S, Han X, Zhang S, Ren Q, Cai X, Luo Y, Zhou L, Zhang R, Liu W, Zhu Y, Zhou X, Sun Y, Li Y, Ma Y, Ji L. Genetic variants of ABCC8 and phenotypic features in Chinese early onset diabetes. J Diabetes 2021; 13:542-553. [PMID: 33300273 DOI: 10.1111/1753-0407.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ABCC8 variants cause neonatal diabetes, maturity onset diabetes of the young (MODY), and hyperinsulinemic hypoglycemia because of activating or inactivating variants. In this study we used targeted exon sequencing to investigate genetic variants of ABCC8 and phenotypic features in Chinese patients with early onset diabetes (EOD). METHODS A cross-sectional study of 543 Chinese patients with EOD was recruited and the exons of them were conducted targeted sequencing. The pathogenicity of ABCC8 variants was defined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline. The phenotypes of patients owing to ABCC8 variants (ABCC8-MODY) were characterized. RESULTS Among the 543 participants, eight (1.5%) patients with ABCC8-MODY were identified. They harbored eight missense ABCC8 variants (p.R306C, p.E1326K, and p.R1379H, previously reported; p.R298C, p.F1176C, p.R1221W, p.K1358R, and p.I1404V) classified as likely pathogenic. Two family members with ABCC8-MODY were also confirmed. The average diagnosed age of the 10 patients was 26.8 ± 12.9 years. The majority of them had unsatisfactory glucose control, 80% of them had diabetic kidney disease, and neurological features were not observed. CONCLUSION Using targeted exon sequencing followed by pathogenicity analysis, we could be able to make genetic diagnoses for eight (1.5%) patients with ABCC8-MODY. The phenotype was variable with higher risk of diabetic microvascular complications. Genetic diagnosis is conducive for facilitating the personalized treatment of ABCC8-MODY.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanfang Sun
- Department of Internal Medicine, Hebei Province Sanhe Hospital, Langfang, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
7
|
Inoue C, Nishihama K, Hayasaki A, Okano Y, Hayashi A, Eguchi K, Uemura M, Suzuki T, Yasuma T, Inoue T, Yorifuji T, Mizuno S, Gabazza EC, Yano Y. Case Report: A Difficult-to-Diagnose Case of Hyperinsulinemic Hypoglycemia Surgically Treated After Developing Acute Pancreatitis. Front Endocrinol (Lausanne) 2021; 12:731071. [PMID: 34777243 PMCID: PMC8578890 DOI: 10.3389/fendo.2021.731071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
The patient is a 28-year-old Japanese man diagnosed with severe congenital hyperinsulinemic-hypoglycemia six months after birth. Clinical records revealed no imaging evidence of pancreatic tumor at the time of diagnosis. Subsequently, he had developmental disorders and epilepsy caused by recurrent hypoglycemic attacks. The patient's hypoglycemia improved with oral diazoxide. However, he developed necrotizing acute pancreatitis at 28 years of age, thought to be due to diazoxide. Discontinuation of diazoxide caused persistent hypoglycemia, requiring continuous glucose supplementation by tube feeding and total parenteral nutrition. A selective arterial secretagogue injection test revealed diffuse pancreatic hypersecretion of insulin. He underwent subtotal distal (72%) pancreatectomy and splenectomy. There was no intraoperative visible pancreatic tumor. His hypoglycemia improved after the surgical procedure. The histopathological study revealed a high density of islets of Langerhans in the pancreatic body and tail. There were large islets of Langerhans and multiple neuroendocrine cell nests in the whole pancreas. Nests of neuroendocrine cells were also detected in lymph nodes. The pathological diagnosis was grade 1 neuroendocrine tumor (microinsulinomas) with lymph node metastases. This patient is a difficult-to-diagnose case of hyperinsulinemic hypoglycemia surgically treated after developing acute pancreatitis. We believe this is a unique case of microinsulinomas with lymph metastases diagnosed and treated as congenital hyperinsulinemic hypoglycemia for almost 28 years.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Aoi Hayasaki
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akinobu Hayashi
- Department of Pathology, Mie University Hospital, Tsu, Japan
| | - Kazuhito Eguchi
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mei Uemura
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshinari Suzuki
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Inoue
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Esteban C. Gabazza,
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
8
|
Garg PK, Putegnat B, Truong L, Reynolds C, Sanchez I, Nedrelow JK, Uffman J, Lokitz SJ, Nazih R, Garg S, Thornton PS. Visual interpretation, not SUV ratios, is the ideal method to interpret 18F-DOPA PET scans to aid in the cure of patients with focal congenital hyperinsulinism. PLoS One 2020; 15:e0241243. [PMID: 33108363 PMCID: PMC7591017 DOI: 10.1371/journal.pone.0241243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/11/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism is characterized by abnormal regulation of insulin secretion from the pancreas causing profound hypoketotic hypoglycemia and is the leading cause of persistent hypoglycemia in infants and children. The main objective of this study is to highlight the different mechanisms to interpret the 18F-DOPA PET scans and how this can influence outcomes. MATERIALS AND METHODS After 18F-Fluoro-L-DOPA was injected intravenously into 50 subjects' arm at a dose of 2.96-5.92 MBq/kg, three to four single-bed position PET scans were acquired at 20, 30, 40 and 50-minute post injection. The radiologist interpreted the scans for focal and diffuse hyperinsulinism using a visual interpretation method, as well as determining the Standard Uptake Value ratios with varying cut-offs. RESULTS Visual interpretation had the combination of the best sensitivity and positive prediction values. CONCLUSIONS In patients with focal disease, SUV ratios are not as accurate in identifying the focal lesion as visual inspection, and cases of focal disease may be missed by those relying on SUV ratios, thereby denying the patients a chance of cure. We recommend treating patients with diazoxide-resistant hyperinsulinism in centers with dedicated multidisciplinary team comprising of at least a pediatric endocrinologist with a special interest in hyperinsulinism, a radiologist experienced in interpretation of 18F-Fluoro-L-DOPA PET/CT scans, a histopathologist with experience in frozen section analysis of the pancreas and a pancreatic surgeon experienced in partial pancreatectomies in patients with hyperinsulinism.
Collapse
Affiliation(s)
- Pradeep K. Garg
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
- * E-mail:
| | - Burton Putegnat
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Lisa Truong
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Courtney Reynolds
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Irene Sanchez
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | | | - John Uffman
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Stephen J. Lokitz
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Rachid Nazih
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Sudha Garg
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Paul S. Thornton
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| |
Collapse
|
9
|
Abstract
A multidisciplinary approach to patients with congenital hyperinsulinism (HI) can distinguish focal from diffuse HI, localize focal lesions, and permit partial pancreatectomy with cure in almost all focal patients. Surgery does not cure diffuse disease but can help prevent severe hypoglycemia and brain damage. Surgery can be curative for insulinoma and for some cases of atypical HI.
Collapse
Affiliation(s)
- N Scott Adzick
- Department of Surgery and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| |
Collapse
|
10
|
Rasmussen AG, Melikian M, Globa E, Detlefsen S, Rasmussen L, Petersen H, Brusgaard K, Rasmussen AH, Mortensen MB, Christesen HT. The difficult management of persistent, non-focal congenital hyperinsulinism: A retrospective review from a single, tertiary center. Pediatr Diabetes 2020; 21:441-455. [PMID: 31997554 DOI: 10.1111/pedi.12989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE Congenital hyperinsulinism (CHI) is a rare, heterogeneous disease with transient or persistent hypoglycemia. Histologically, focal, diffuse, and atypical forms of CHI exist, and at least 11 disease-causing genes have been identified. METHODS We retrospectively evaluated the treatment and outcome of a cohort of 40 patients with non-focal, persistent CHI admitted to the International Hyperinsulinism Center, Denmark, from January 2000 to May 2017. RESULTS Twenty-two patients (55%) could not be managed with medical monotherapy (diazoxide or octreotide) and six (15%) patients developed severe potential side effects to medication. Surgery was performed in 17 (43%) patients with resection of 66% to 98% of the pancreas. Surgically treated patients had more frequently KATP -channel gene mutations (surgical treatment 12/17 vs conservative treatment 6/23, P = .013), highly severe disease (15/17 vs 13/23, P = .025) and clinical onset <30 days of age (15/17 vs 10/23, P = .004). At last follow-up at median 5.3 (range: 0.3-31.3) years of age, 31/40 (78%) patients still received medical treatment, including 12/17 (71%) after surgery. One patient developed diabetes after a 98% pancreatic resection. Problematic treatment status was seen in 7/40 (18%). Only 8 (20%) had clinical remission (three spontaneous, five after pancreatic surgery). Neurodevelopmental impairment (n = 12, 30%) was marginally associated with disease severity (P = .059). CONCLUSIONS Persistent, non-focal CHI remains difficult to manage. Neurological impairment in 30% suggests a frequent failure of prompt and adequate treatment. A high rate of problematic treatment status at follow-up demonstrates an urgent need for new medical treatment modalities.
Collapse
Affiliation(s)
- Amalie G Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Melikian
- Department of Pediatric Endocrinology, Endrocrine Research Center, Moscow, Russia
| | - Evgenia Globa
- Department of Pediatric Endocrinology, Ukrainian Research Center of Endocrine Surgery, Kyiv, Ukraine
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lars Rasmussen
- OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Annett H Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Michael B Mortensen
- OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Xu A, Cheng J, Sheng H, Wen Z, Lin Y, Zhou Z, Zeng C, Shao Y, Li C, Liu L, Li X. Clinical Management and Gene Mutation Analysis of Children with Congenital Hyperinsulinism in South China. J Clin Res Pediatr Endocrinol 2019; 11:400-409. [PMID: 31208162 PMCID: PMC6878346 DOI: 10.4274/jcrpe.galenos.2019.2019.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To explore the clinical presentation and molecular genetic characteristics of a cohort of congenital hyperinsulinism (CHI) patients from southern China and also to explore the most appropriate therapeutic approaches. METHODS We retrospectively reviewed a cohort of 65 children with CHI. Mutational analysis was performed for KCNJ11 and ABCC8 genes. The GLUD1 gene was sequenced in patients with hyperammonaemia. GCK gene sequencing was performed in those patients with no mutation identified in the ABCC8, KCNJ11 or GLUD1 genes. RESULTS ABCC8 mutations were identified in 16 (25%) of the cohort, GLUD1 mutations were identified in five children, and no KCNJ11 or GCK mutations were identified. Moreover, some unique features of ABCC8 gene mutations in southern Chinese CHI patients were found in this study. The most common mutation was a deletion/insertion mutation p.Thr1042GlnfsX75 was found in five unrelated patients, which possibly represents a relatively common mutation in southern China. Five novel ABCC8 mutations were detected. The mutations were p.Phe5SerfsX72, p.Gln273ArgfsX85, p.Leu724del, p.Asp1447Gly and IVS 25-1G>T. Five compound heterozygous mutations of ABCC8 gene were identified in this study, and three of these patients were diazoxide-responsive. Forty patients were diazoxide-responsive, 13 patients were diazoxide-unresponsive and 12 patients received dietary treatment only. A pancreatectomy was performed in 10 patients who were unresponsive to medical treatment. CONCLUSION To the best of our knowledge, this is the first study of CHI in south China. Mutations in ABCC8 are the most common causes of CHI in this cohort. Diazoxide and dietary treatment were effective in most patients. Multicentre studies are necessary to obtain the long-term follow-up characteristics of such patients at a national level.
Collapse
Affiliation(s)
- Aijing Xu
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,Contributed equally to this work
| | - Jing Cheng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,Contributed equally to this work
| | - Huiying Sheng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Zhe Wen
- Guangzhou Women and Children’s Medical Center, Clinic of Pediatric Surgery, Guangzhou, China
| | - Yunting Lin
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Zhihong Zhou
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Chunhua Zeng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Yongxian Shao
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Cuiling Li
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Li Liu
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Xiuzhen Li
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,* Address for Correspondence: Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China Phone: +86020-38076127 E-mail:
| |
Collapse
|
12
|
Adzick NS, De Leon DD, States LJ, Lord K, Bhatti TR, Becker SA, Stanley CA. Surgical treatment of congenital hyperinsulinism: Results from 500 pancreatectomies in neonates and children. J Pediatr Surg 2019; 54:27-32. [PMID: 30343978 PMCID: PMC6339589 DOI: 10.1016/j.jpedsurg.2018.10.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Congenital Hyperinsulinism (HI) causes severe hypoglycemia in neonates and children. We reviewed our experience with pancreatectomy for the various types of HI. METHODS From 1998 to 2018, 500 patients with HI underwent pancreatectomy: 246 for focal HI, 202 for diffuse HI, 37 for atypical HI (16 for Localized Islet Nuclear Enlargement [LINE], 21 for Beckwith-Wiedemann Syndrome), and 15 for insulinoma. Focal HI neonates were treated with partial pancreatectomy. Patients with diffuse HI who failed medical management underwent near-total (98%) pancreatectomy. Atypical HI patients had pancreatectomies tailored to the PET scan and biopsy findings. RESULTS The vast majority of pancreatectomies for focal HI were < 50%, and many were 2%-10%. 97% of focal HI patients are cured. For diffuse disease patients, 31% were euglycemic, 20% were hyperglycemic, and 49% required treatment for hypoglycemia; the incidence of diabetes increased with long-term follow-up. All 15 insulinoma patients were cured. CONCLUSIONS Our approach to patients with focal HI can distinguish focal from diffuse HI, localize focal lesions, and permit partial pancreatectomy with cure in almost all focal patients. Surgery does not cure diffuse disease but can help prevent severe hypoglycemia and brain damage. Surgery can be curative for insulinoma and for some cases of atypical HI. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- N Scott Adzick
- Department of Surgery and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Diva D De Leon
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Lisa J States
- Department of Radiology and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine Lord
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R Bhatti
- Department of Pathology and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susan A Becker
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A Stanley
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Sousa-Santos F, Simões H, Castro-Feijóo L, Rodríguez PC, Fernández-Marmiesse A, Fiaño RS, Rego T, Carracedo Á, Conde JB. Congenital hyperinsulinism in two siblings with ABCC8 mutation: same genotype, different phenotypes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:560-565. [PMID: 30462810 PMCID: PMC10118649 DOI: 10.20945/2359-3997000000077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous disease caused by insulin secretion regulatory defects, being ABCC8/KCNJ11 the most commonly affected genes. Therapeutic options include diazoxide, somatostatin analogues and surgery, which is curative in focal CHI. We report the case of two siblings (born two years apart) that presented themselves with hypoketotic hyperinsulinemic persistent hypoglycemias during neonatal period. The diagnosis of diffuse CHI due to an ABCC8 compound mutation (c.3576delG and c.742C>T) was concluded. They did not benefit from diazoxide therapy (or pancreatectomy performed in patient number 1) yet responded to somatostatin analogues. Patient number 1 developed various neurological deficits (including epilepsy), however patient number 2 experienced an entirely normal neurodevelopment. We believe this case shows how previous knowledge of the firstborn sibling's disease contributed to a better and timelier medical care in patient number 2, which could potentially explain her better neurological outcome despite their same genotype.
Collapse
Affiliation(s)
- Francisco Sousa-Santos
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital Egas Moniz, Lisbon, Portugal. Unidad de Endocrinología Pediátrica y Crecimiento. IDIS. Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Helder Simões
- Serviço de Endocrinologia, Instituto Portugues de Oncologia de Lisboa, Portugal
| | - Lidia Castro-Feijóo
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Paloma Cabanas Rodríguez
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Ana Fernández-Marmiesse
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca Saborido Fiaño
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Rego
- Unidad de Endocrinología Pediátrica y Crecimiento, IDIS. Hospital Clínico Universitario de Santiago de Compostela Spain. Endocrinología. Hospital Curry Cabral. Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Ángel Carracedo
- Fundación Publica Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Barreiro Conde
- Unidad de Endocrinología Pediátrica y Crecimiento, Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Abstract
The pancreas is a complex organ that may give rise to large number of neoplasms and non-neoplastic lesions. This article focuses on benign neoplasms, such as serous neoplasms, and tumorlike (pseudotumoral) lesions that may be mistaken for neoplasm not only by clinicians and radiologists, but also by pathologists. The family of pancreatic pseudotumors, by a loosely defined conception of that term, includes a variety of lesions including heterotopia, hamartoma, and lipomatous pseudohypertrophy. Autoimmune pancreatitis and paraduodenal ("groove") pancreatitis may also lead to pseudotumor formation. Knowledge of these entities will help in making an accurate diagnosis.
Collapse
Affiliation(s)
- Olca Basturk
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Abstract
We report a disease-causing mutation in the β-cell–enriched MAFA transcription factor. Strikingly, the missense p.Ser64Phe MAFA mutation was associated with either of two distinct phenotypes, multiple insulin-producing neuroendocrine tumors of the pancreas—a condition known as insulinomatosis—or diabetes mellitus, recapitulating the physiological properties of MAFA both as an oncogene and as a key islet β-cell transcription factor. The implication of MAFA in these human phenotypes will provide insights into how this transcription factor regulates human β-cell activity as well as into the mechanisms of Maf-induced tumorigenesis. The β-cell–enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity.
Collapse
|
16
|
Martínez R, Fernández-Ramos C, Vela A, Velayos T, Aguayo A, Urrutia I, Rica I, Castaño L. Clinical and genetic characterization of congenital hyperinsulinism in Spain. Eur J Endocrinol 2016; 174:717-26. [PMID: 27188453 DOI: 10.1530/eje-16-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
CONTEXT Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disease characterized by severe hypoglycemia caused by inappropriate insulin secretion by pancreatic β-cells. OBJECTIVE To characterize clinically and genetically CHI patients in Spain. DESIGN AND METHODS We included 50 patients with CHI from Spain. Clinical information was provided by the referring clinicians. Mutational analysis was carried out for KCNJ11, ABCC8, and GCK genes. The GLUD1, HNF4A, HNF1A, UCP2, and HADH genes were sequenced depending on the clinical phenotype. RESULTS We identified the genetic etiology in 28 of the 50 CHI patients tested: 21 had a mutation in KATP channel genes (42%), three in GLUD1 (6%), and four in GCK (8%). Most mutations were found in ABCC8 (20/50). Half of these patients (10/20) were homozygous or compound heterozygous, with nine being unresponsive to diazoxide treatment. The other half had heterozygous mutations in ABCC8, six of them being unresponsive to diazoxide treatment and four being responsive to diazoxide treatment. We identified 22 different mutations in the KATP channel genes, of which ten were novel. Notably, patients with ABCC8 mutations were diagnosed earlier, with lower blood glucose levels and required higher doses of diazoxide than those without a genetic diagnosis. CONCLUSIONS Genetic analysis revealed mutations in 56% of the CHI patients. ABCC8 mutations are the most frequent cause of CHI in Spain. We found ten novel mutations in the KATP channel genes. The genetic diagnosis is more likely to be achieved in patients with onset within the first week of life and in those who fail to respond to diazoxide treatment.
Collapse
Affiliation(s)
- R Martínez
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - C Fernández-Ramos
- Pediatric Endocrinology SectionBasurto University Hospital, BioCruces Health Research Institute, UPV/EHU, Bilbao, Spain
| | - A Vela
- Pediatric Endocrinology SectionCruces University Hospital, BioCruces Health Research Institute, CIBERDEM, CIBERER, UPV/EHU, Barakaldo, Spain
| | - T Velayos
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - A Aguayo
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - I Urrutia
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - I Rica
- Pediatric Endocrinology SectionCruces University Hospital, BioCruces Health Research Institute, CIBERDEM, CIBERER, UPV/EHU, Barakaldo, Spain
| | - L Castaño
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| |
Collapse
|
17
|
Biomarkers of Insulin for the Diagnosis of Hyperinsulinemic Hypoglycemia in Infants and Children. J Pediatr 2016; 168:212-219. [PMID: 26490124 DOI: 10.1016/j.jpeds.2015.09.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/07/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate thresholds of various biomarkers for defining excess insulin activity to recognize congenital hyperinsulinism. STUDY DESIGN This was a retrospective chart review of diagnostic fasting tests in children with ketotic hypoglycemia (n = 30) and genetically/pathology confirmed congenital hyperinsulinism (n = 28). Sensitivity and specificity for congenital hyperinsulinism were determined for plasma insulin, β-hydroxybutyrate, free fatty acids (FFA), C-peptide, insulin-like growth factor binding protein-1 (IGFBP-1), and the glycemic response to glucagon (through the glucagon stimulation test [GST]) at the time of hypoglycemia. RESULTS Only 23 of the 28 subjects with congenital hyperinsulinism had detectable insulin (median, 6.7 μIU/mL), and insulin was undetectable in all subjects with ketotic hypoglycemia. Compared with ketotic hypoglycemia, subjects with congenital hyperinsulinism had higher GST values (57 vs 13 mg/dL; ΔGST ≥30 mg/dL in 24 of 27 subjects with congenital hyperinsulinism vs 0 of 30 subjects with ketotic hypoglycemia) and C-peptide levels (1.55 vs 0.11 ng/mL), with lower levels of FFA (0.82 vs 2.51 mM) and IGFBP-1 (59.5 vs 634 ng/mL). At the time of hypoglycemia, the upper limits of β-hydroxybutyrate and FFA in subjects with congenital hyperinsulinism were higher than reported previously (β-hydroxybutyrate <1.8 mM and FFA <1.7 mM), providing the best sensitivity for congenital hyperinsulinism vs ketotic hypoglycemia. A C-peptide level ≥0.5 ng/mL was 89% sensitive and 100% specific, and an IGFBP-1 level ≤110 ng/mL was 85% sensitive and 96.6% specific. CONCLUSION Because low or undetectable insulin level during hypoglycemia does not exclude the diagnosis of hyperinsulinism, C-peptide and IGFBP-1 may inform the diagnosis of congenital hyperinsulinism. In this group of children with well-defined congenital hyperinsulinism, thresholds for "suppressed" β-hydroxybutyrate and FFA are higher than previously reported levels.
Collapse
|
18
|
Fan ZC, Ni JW, Yang L, Hu LY, Ma SM, Mei M, Sun BJ, Wang HJ, Zhou WH. Uncovering the molecular pathogenesis of congenital hyperinsulinism by panel gene sequencing in 32 Chinese patients. Mol Genet Genomic Med 2015; 3:526-36. [PMID: 26740944 PMCID: PMC4694131 DOI: 10.1002/mgg3.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/06/2023] Open
Abstract
Congenital hyperinsulinism (CHI) has been mostly associated with mutations in seven major genes. We retrospectively reviewed a cohort of 32 patients with CHI. Extensive mutational analysis (ABCC8,KCNJ11,GCK,GLUD1,HADH,HNF4A, and UCP2) was performed on Ion torrent platform, which could analyze hundreds of genes simultaneously with ultrahigh-multiplex PCR using up to 6144 primer pairs in a single primer pool and address time-sensitive samples with single-day assays, from samples to annotated variants, to identify the genetic etiology of this disease. Thirty-seven sequence changes were identified, including in ABCC8/KCNJ11 (n = 25, 65.7%), GCK (n = 2), HNF4A (n = 3), GLUD1 (n = 2), HADH (n = 4), and UCP2 (n = 1); these mutations included 14 disease-causing mutations, eight rare SNPs, 14 common SNPs, and one novel mutation. Mutations were identified in 21 of 32 patients (65.6%). Among the patients with an identified mutation, 14 had mutations in ABCC8, one of which was combined with a GLUD1 mutation. Four patients had mutations in KCNJ11, 1 had a GCK mutation, 1 had a mutation in HADH, and two had a mutation in HNF4A. Among the 32 patients, the age at the onset of hyperinsulinemia ranged from the neonatal period to 1 year of age; five patients underwent a pancreatectomy due to intractable hyperinsulinemia. This study describes novel and previously identified mutations in patients with CHI. The spectrum of mutations in CHI patients represents an important tool for the diagnosis and prognosis of CHI patients in the Chinese population as well as for the genetic counseling of CHI families.
Collapse
Affiliation(s)
- Zi-Chuan Fan
- Department of NeonatologyChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jin-Wen Ni
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Lin Yang
- Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Neonatal DiseasesMinistry of HealthChildren's HospitalFudan UniversityShanghaiChina
| | - Li-Yuan Hu
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Si-Min Ma
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Mei Mei
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Bi-Jun Sun
- Department of NeonatologyChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityShanghaiChina
| | - Hui-Jun Wang
- Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Neonatal DiseasesMinistry of HealthChildren's HospitalFudan UniversityShanghaiChina
| | - Wen-Hao Zhou
- Department of NeonatologyChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityShanghaiChina; Key Laboratory of Neonatal DiseasesMinistry of HealthChildren's HospitalFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Jahnavi S, Poovazhagi V, Kanthimathi S, Balamurugan K, Bodhini D, Yadav J, Jain V, Khadgawat R, Sikdar M, Bhavatharini A, Das AK, Kaur T, Mohan V, Radha V. Novel ABCC8 (SUR1) gene mutations in Asian Indian children with congenital hyperinsulinemic hypoglycemia. Ann Hum Genet 2015; 78:311-9. [PMID: 25117148 DOI: 10.1111/ahg.12070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/20/2014] [Indexed: 11/30/2022]
Abstract
Congenital hyperinsulinemic hypoglycemia (HI) is a heterogeneous genetic disorder of insulin secretion characterized by persistent hypoglycemia, most commonly associated with inactivating mutations of the β-cell ATP-sensitive K(+) channel (K(ATP) channel) genes ABCC8 (encoding SUR1) and KCNJ11(encoding Kir6.2). This study aimed to screen the mutations in the genes associated with congenital HI in Asian Indian children. Recessive mutations of these genes cause hyperinsulinism that is unresponsive to treatment with channel agonists like diazoxide. Dominant K(ATP) mutations have been associated with diazoxide-responsive disease. The KCNJ11, ABCC8, GCK, HNF4A, and GLUD1 genes were analyzed by sequence analysis in 22 children with congenital HI. We found 10 novel mutations (c.1delA, c.61delG, c.267delT, c.619-629delCCCGAGGACCT, Gln444*, Leu724Pro, Ala847Thr, Trp898*, IVS30-2A>C, and Leu1454Arg) and two known mutations (Gly111Arg and Arg598*) in the ABCC8 gene. This study describes novel and known ABCC8 gene mutations in children with congenital HI. This is the first large genetic screening study on HI in India and our results will help clinicians in providing optimal treatment for patients with hyperinsulinemia and in assisting affected families with genetic counseling.
Collapse
Affiliation(s)
- Suresh Jahnavi
- Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arya VB, Guemes M, Nessa A, Alam S, Shah P, Gilbert C, Senniappan S, Flanagan SE, Ellard S, Hussain K. Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. Eur J Endocrinol 2014; 171:685-95. [PMID: 25201519 DOI: 10.1530/eje-14-0353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONTEXT Congenital hyperinsulinism (CHI) has two main histological types: diffuse and focal. Heterozygous paternally inherited ABCC8/KCNJ11 mutations (depending upon whether recessive or dominant acting and occurrence of somatic maternal allele loss) can give rise to either phenotype. However, the relative proportion of these two phenotypes in a large cohort of CHI patients due to paternally inherited heterozygous ABCC8/KCNJ11 mutations has not been reported. OBJECTIVE The purpose of this study is to highlight the variable clinical phenotype and to characterise the distribution of diffuse and focal disease in a large cohort of CHI patients due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. DESIGN A retrospective chart review of the CHI patients due to heterozygous paternally inherited ABCC8/KCNJ11 mutations from 2000 to 2013 was conducted. RESULTS Paternally inherited heterozygous ABCC8/KCNJ11 mutations were identified in 53 CHI patients. Of these, 18 (34%) either responded to diazoxide or resolved spontaneously. Fluorine-18 l-3, 4-dihydroxyphenylalanine positron emission tomography computerised tomography 18F DOPA-PET CT) scanning in 3/18 children showed diffuse disease. The remaining 35 (66%) diazoxide-unresponsive children either had pancreatic venous sampling (n=8) or 18F DOPA-PET CT (n=27). Diffuse, indeterminate and focal disease was identified in 13, 1 and 21 patients respectively. Two patients with suspected diffuse disease were identified to have focal disease on histology. CONCLUSIONS Paternally inherited heterozygous ABCC8/KCNJ11 mutations can manifest as a wide spectrum of CHI with variable 18F DOPA-PET CT/histological findings and clinical outcomes. Focal disease was histologically confirmed in 24/53 (45%) of CHI patients with paternally inherited heterozygous ABCC8/KCNJ11 mutations.
Collapse
Affiliation(s)
- Ved Bhushan Arya
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Maria Guemes
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Azizun Nessa
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Syeda Alam
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Pratik Shah
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Clare Gilbert
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Senthil Senniappan
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sarah E Flanagan
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sian Ellard
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Khalid Hussain
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
21
|
Yorifuji T, Masue M, Nishibori H. Congenital hyperinsulinism: global and Japanese perspectives. Pediatr Int 2014; 56:467-76. [PMID: 24865345 DOI: 10.1111/ped.12390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022]
Abstract
Over the past 20 years, there has been remarkable progress in the diagnosis and treatment of congenital hyperinsulinism (CHI). These advances have been supported by the understanding of the molecular mechanism and the development of diagnostic modalities to identify the focal form of ATP-sensitive potassium channel CHI. Many patients with diazoxide-unresponsive focal CHI have been cured by partial pancreatectomy without developing postsurgical diabetes mellitus. Important novel findings on the genetic basis of the other forms of CHI have also been obtained, and several novel medical treatments have been explored. However, the management of patients with CHI is still far from ideal. First, state-of-the-art treatment is not widely available worldwide. Second, it appears that the management strategy needs to be adjusted according to the patient's ethnic group. Third, optimal management of patients with the diazoxide-unresponsive, diffuse form of CHI is still insufficient and requires further improvement. In this review, we describe the current landscape of this disorder, discuss the racial disparity of CHI using Japanese patients as an example, and briefly note unanswered questions and unmet needs that should be addressed in the near future.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan; Clinical Research Center, Osaka City General Hospital, Osaka, Japan; Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | | | | |
Collapse
|
22
|
Sang Y, Xu Z, Liu M, Yan J, Wu Y, Zhu C, Ni G. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism. Endocr J 2014; 61:901-10. [PMID: 25008049 DOI: 10.1507/endocrj.ej13-0398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.
Collapse
Affiliation(s)
- Yanmei Sang
- National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education; Department of Endocrinology, genetics and metabolism, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Sogno Valin P, Proverbio MC, Diceglie C, Gessi A, di Candia S, Mariani B, Zamproni I, Mangano E, Asselta R, Battaglia C, Caruso-Nicoletti M, Mora S, Salvatoni A. Genetic analysis of Italian patients with congenital hyperinsulinism of infancy. Horm Res Paediatr 2013; 79:236-42. [PMID: 23652837 DOI: 10.1159/000350827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Congenital hyperinsulinism of infancy is a rare disease that needs prompt treatment to avoid brain damage. There are currently no data regarding the clinical and molecular features of Italian patients. METHODS Thirty-three patients with HI and their parents were included. Consanguinity was reported in six patients. Half of patients were macrosomic at birth. None had raised 3-hydroxybutyrylcarnitine or hyperammonemia. Molecular analysis of ABCC8 and KCNJ11 genes was performed in all patients, and subjects with no mutation underwent analysis of HNF4A and GCK. GLUD1 and HADH genes were analyzed in a patient with leucine sensitivity. RESULTS Mutations in the ABCC8 and KCNJ11 genes were found in 45% of the patients (6 novel). No mutations in HNF4A, GLUD1 and GCK genes were found. Recessive mode of inheritance was found in 21% of patients. A single heterozygous mutation was identified in 24% of probands. 72% of the patients were responsive to medical treatment, and 44% of the 17 patients with no identified mutation achieved spontaneous remission. Nine children, unresponsive to medical therapy, underwent pancreatectomy. CONCLUSION This is the first report on hyperinsulinism of infancy in Italy, confirming the complexity of the clinical forms and the heterogeneity of the genetic causes of the disease.
Collapse
Affiliation(s)
- Paola Sogno Valin
- Department of Pediatrics, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Patterson ME, Mao CS, Yeh MW, Ipp E, Cortina G, Barank D, Vasinrapee P, Pawlikowska-Haddal A, Lee WNP, Yee JK. Hyperinsulinism presenting in childhood and treatment by conservative pancreatectomy. Endocr Pract 2012; 18:e52-6. [PMID: 22548943 DOI: 10.4158/ep11232.cr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe the uncommon presentation of hyperinsulinism in an 8-year-old boy. METHODS We describe the patient's clinical findings, results from biochemical and imaging studies, surgical approach, and outcome. The discussion encompasses a review of literature that provided the basis for the diagnostic and surgical approach applied to this patient's case. RESULTS An obese 8.5-year-old boy initially presented with hypoglycemic seizures after initiation of dietary changes to treat obesity. Biochemical analysis indicated hyperinsulinism. Endoscopic ultrasonography showed no pancreatic lesions suggestive of insulinoma. Genetic studies identified no known mutations in the ABCC8, KCNJ11, GCK, or GLUD1 genes. Selective arterial calcium stimulation and hepatic venous sampling did not document a focal source for hyperinsulinism in the pancreas, and positron emission tomography with 18-fluoro-L-3,4-dihydroxyphenylalanine showed diffusely increased uptake in the pancreas. The patient ultimately required partial pancreatectomy because of continued hypoglycemia while taking diazoxide and octreotide. Intraoperative glucose monitoring directed the extent of surgical resection. A 45% pancreatectomy was performed, which resolved the hypoglycemia but led to impaired glucose tolerance after surgery. CONCLUSION The unusual presentation of hyperinsulinism in childhood required a personalized approach to diagnosis and surgical management using intraoperative glucose monitoring that resulted in a conservative pancreatectomy.
Collapse
Affiliation(s)
- Mary E Patterson
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ouyang D, Dhall D, Yu R. Pathologic pancreatic endocrine cell hyperplasia. World J Gastroenterol 2011; 17:137-43. [PMID: 21245985 PMCID: PMC3020366 DOI: 10.3748/wjg.v17.i2.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Pathologic hyperplasia of various pancreatic endocrine cells is rare but has been long known. β cell hyperplasia contributes to persistent hyperinsulinemic hypoglycemia of infancy, which is commonly caused by mutations in the islet ATP-sensitive potassium channel, and to non-insulinoma pancreatogenous hypoglycemia in adults, which may or may not be associated with bariatric surgery. α cell hyperplasia may cause glucagonoma syndrome or induce pancreatic neuroendocrine tumors. An inactivating mutation of the glucagon receptor causes α cell hyperplasia and asymptomatic hyperglucagonemia. Pancreatic polypeptide cell hyperplasia has been described without a clearly-characterized clinical syndrome and hyperplasia of other endocrine cells inside the pancreas has not been reported to our knowledge. Based on morphological evidence, the main pathogenetic mechanism for pancreatic endocrine cell hyperplasia is increased endocrine cell neogenesis from exocrine ductal epithelium. Pancreatic endocrine cell hyperplasia should be considered in the diagnosis and management of hypoglycemia, elevated islet hormone levels, and pancreatic neuroendocrine tumors. Further studies of pathologic pancreatic endocrine cell hyperplasia will likely yield insights into the pathogenesis and treatment of diabetes and pancreatic neuroendocrine tumors.
Collapse
|
26
|
Lovisolo SM, Mendonça BB, Pinto EM, Manna TD, Saldiva PHN, Zerbini MCN. Congenital hyperinsulinism in Brazilian neonates: a study of histology, KATP channel genes, and proliferation of β cells. Pediatr Dev Pathol 2010; 13:375-84. [PMID: 20482375 DOI: 10.2350/08-12-0578.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare pancreatic β-cell disease of neonates, characterized by inappropriate insulin secretion with severe persistent hypoglycemia, with regard to which many questions remain to be answered, despite the important acquisition of its molecular mechanisms in the last decade. The aim of this study was to examine pancreatic histology, β-cell proliferation (immunohistochemistry with double staining for Ki-67/insulin), and β-cell adenosine triphosphate-sensitive potassium channels genes from 11 Brazilian patients with severe medically unresponsive CHI who underwent pancreatectomy. Pancreatic histology and β-cell proliferation in CHI patients were compared to pancreatic samples from 19 age-matched controls. Ten cases were classified as diffuse form (D-CHI) and 1 as focal form (F-CHI). β-cell nucleomegaly and abundant cytoplasm were absent in controls and were observed only in D-CHI patients. The Ki-67 labeling index (Ki-67-LI) was used to differentiate the adenomatous areas of the F-CHI case (10.15%) from the "loose cluster of islets" found in 2 D-CHI samples (2.29% and 2.43%) and 1 control (1.54%) sample. The Ki-67-LI was higher in the F-CHI adenomatous areas, but D-CHI patients also had significantly greater Ki-67-LI (mean value = 2.41%) than age-matched controls (mean value = 1.87%) (P = 0.009). In this 1st genetic study of CHI patients in Brazil, no mutations or new polymorphisms were found in the 33-37 exons of the ABCC8 gene (SUR1) or in the entire exon of the KCNJ11 gene (Kir 6.2) in 4 of 4 patients evaluated. On the other hand, enhanced β-cell proliferation seems to be a constant feature in CHI patients, both in diffuse and focal forms.
Collapse
Affiliation(s)
- Silvana M Lovisolo
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
27
|
Sandal T, Laborie LB, Brusgaard K, Eide SÅ, Christesen HBT, Søvik O, Njølstad PR, Molven A. The spectrum ofABCC8mutations in Norwegian patients with congenital hyperinsulinism of infancy. Clin Genet 2009; 75:440-8. [DOI: 10.1111/j.1399-0004.2009.01152.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Kapoor RR, James C, Hussain K. Advances in the diagnosis and management of hyperinsulinemic hypoglycemia. ACTA ACUST UNITED AC 2009; 5:101-12. [PMID: 19165222 DOI: 10.1038/ncpendmet1046] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/12/2008] [Indexed: 12/16/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is a consequence of unregulated insulin secretion by pancreatic beta-cells and is a major cause of hypoglycemic brain injury and mental retardation. Congenital HH is caused by mutations in genes involved in regulation of insulin secretion, seven of which have been identified (ABCC8, KCNJ11, GLUD1, CGK, HADH, SLC16A1 and HNF4A). Severe forms of congenital HH are caused by mutations in ABCC8 and KCNJ11, which encode the two components of the pancreatic beta-cell ATP-sensitive potassium channel. Mutations in HNF4A, GLUD1, CGK, and HADH lead to transient or persistent HH, whereas mutations in SLC16A1 cause exercise-induced HH. Rapid genetic analysis combined with an understanding of the histological features (focal or diffuse disease) of congenital HH and the introduction of (18)F-L-3,4-dihydroxyphenylalanine PET-CT to guide laparoscopic surgery have totally transformed the clinical approach to this complex disease. Adult-onset HH is mostly caused by an insulinoma; however, it has also been reported to present as postprandial HH in patients with noninsulinoma pancreatogenous hypoglycemia syndrome, in those who have undergone gastric-bypass surgery for morbid obesity, and in those with mutations in the insulin-receptor gene.
Collapse
Affiliation(s)
- Ritika R Kapoor
- Institute of Child Health, University College London and Great Ormond Street Hospital for Children National Health Services Trust, London, UK
| | | | | |
Collapse
|
30
|
Arbizu Lostao J, Fernández-Marmiesse A, Garrastachu Zumarrán P, Martino Casado E, Azcona San Julián C, Carracedo A, Richter Echevarría JA. [18F-fluoro-L-DOPA PET-CT imaging combined with genetic analysis for optimal classification and treatment in a child with severe congenital hyperinsulinism]. An Pediatr (Barc) 2008; 68:481-5. [PMID: 18447993 DOI: 10.1157/13120046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infancy. The differential diagnosis between focal and diffuse forms of CHI is of great importance when planning surgery. The aim of this article is to show the first case of focal CHI diagnosed in Spain using PET-CT imaging combined with genetic analysis. METHODS A 13 month child with CHI and normal conventional radiological investigations treated with diazoxide, diet control and feeding by gastrostomy is presented. Genetic analysis of ABCC8 and KCNJ11 genes and PET-TAC using 18F-fluoro-L-DOPA were performed. RESULTS A pathological mutation (G111R) in the paternal allele of ABCC8 was detected. PET-CT scanning using 18F-fluoro-L-DOPA showed a focus of high uptake in the body of the pancreas compatible with adenoma that was hystopathologically confirmed. After surgical resection the patient is asymptomatic without needing either pharmacological treatment or dietetic control. CONCLUSIONS The combination of genetic analysis and 18F-fluoro-L-DOPA PET-TAC shows a great potential for the identification, location and guideline for surgery in CHI.
Collapse
Affiliation(s)
- J Arbizu Lostao
- Servicio de Medicina Nuclear, Clínica Universitaria de Navarra, Facultad de Medicina, Universidad de Navarra, Pamplona, España.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hussain K, Flanagan SE, Smith VV, Ashworth M, Day M, Pierro A, Ellard S. An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes 2008; 57:259-63. [PMID: 17942822 DOI: 10.2337/db07-0998] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) may be due to diffuse or focal pancreatic disease. The diffuse form is associated with an increase in the size of beta-cell nuclei throughout the whole of the pancreas and most commonly results from recessive ATP-sensitive K(+) channel (K(ATP) channel) mutations. Focal lesions are the consequence of somatic uniparental disomy for a paternally inherited K(ATP) channel mutation with enlargement of the beta-cell nuclei confined to the focal lesion. Some "atypical" cases defy classification and show pancreatic beta-cell nuclear enlargement confined to discrete regions of the pancreas. We investigated an atypical case with normal morphology within the tail of the pancreas but occasional enlarged endocrine nuclei in parts of the body and head. RESEARCH DESIGN AND METHODS The KCNJ11 and ABCC8 genes encoding the K(ATP) channel subunits and microsatellite markers on chromosome 11 were analyzed in DNA samples from the patient and her parents. RESULTS A mosaic ABCC8 nonsense mutation (Q54X) was identified in the proband. The paternally inherited mutation was present at 90% in lymphocytes and 50% in normal pancreatic sections but between 64 and 74% in abnormal sections. Microsatellite analysis showed mosaic interstitial paternal uniparental isodisomy (UPD) for chromosome 11p15.1. CONCLUSIONS We report a novel genetic mechanism to explain atypical histological diffuse forms of CHI due to mosaic UPD in patients with dominantly inherited ABCC8 (or KCNJ11) gene mutations.
Collapse
Affiliation(s)
- Khalid Hussain
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Trust and the Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Hussain K. Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia of Infancy. Horm Res Paediatr 2007; 69:2-13. [PMID: 18059080 DOI: 10.1159/000111789] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 07/27/2007] [Indexed: 11/19/2022] Open
Affiliation(s)
- Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, Institute of Child Health, University College London, London, UK.
| |
Collapse
|
33
|
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Scheuermann JS, Ernst LM, Freifelder R, Zhuang H, MacMullen C, Becker S, Adzick NS, Divgi C, Alavi A, Stanley CA. Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 2007; 92:4706-11. [PMID: 17895314 DOI: 10.1210/jc.2007-1637] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Focal lesions in infants with congenital hyperinsulinism (HI) represent areas of adenomatosis that express a paternally derived ATP-sensitive potassium channel mutation due to embryonic loss of heterozygosity for the maternal 11p region. This study evaluated the accuracy of 18F-fluoro-l-dihydroxyphenylalanine ([18F]DOPA) positron emission tomography (PET) scans in diagnosing focal vs. diffuse disease and identifying the location of focal lesions. DESIGN A total of 50 infants with HI unresponsive to medical therapy were studied. Patients were injected iv with [18F]DOPA, and PET scans were obtained for 50-60 min. Images were coregistered with abdominal computed tomography scans. PET scan interpretations were compared with histological diagnoses. RESULTS The diagnosis of focal or diffuse HI was correct in 44 of the 50 cases (88%). [18F]DOPA PET identified focal areas of high uptake of radiopharmaceutical in 18 of 24 patients with focal disease. The locations of these lesions matched the areas of increased [18F]DOPA uptake on the PET scans in all of the cases. PET scan correctly located five lesions that could not be visualized at surgery. The positive predictive value of [18F]DOPA in diagnosing focal adenomatosis was 100%, and the negative predictive value was 81%. CONCLUSIONS [18F]DOPA PET scans correctly diagnosed 75% of focal cases and were 100% accurate in identifying the location of the lesion. These results suggest that [18F]DOPA PET imaging provides a useful guide to surgical resection of focal adenomatosis and should be considered as a guide to surgery in all infants with congenital HI who have medically uncontrollable disease.
Collapse
Affiliation(s)
- Olga T Hardy
- Division of Endocrinology, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 2007; 56:2339-48. [PMID: 17575084 PMCID: PMC2225993 DOI: 10.2337/db07-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
35
|
|
36
|
Muzyamba M, Farzaneh T, Behe P, Thomas A, Christesen HBT, Brusgaard K, Hussain K, Tinker A. Complex ABCC8 DNA variations in congenital hyperinsulinism: lessons from functional studies. Clin Endocrinol (Oxf) 2007; 67:115-24. [PMID: 17466004 DOI: 10.1111/j.1365-2265.2007.02847.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) is a cause of persistent and severe hypoglycaemia in infancy. Mutations in the genes ABCC8 and KCNJ11 encoding SUR1 and Kir6.2, respectively, are the commonest cause of CHI. We investigated whether the possession of two DNA variants leading to coding changes in a single allele of ABCC8 can affect the potential mechanism of disease pathogenesis. DESIGN AND PATIENTS We studied two patients with complex mutations in the ABCC8 gene with CHI and used in vitro studies to explore the potential disease mechanism and the contribution of the various mutant allelles. RESULTS The first case had diffuse disease and was homozygous for the mutations D1193V and R1436Q in SUR1. Channel complexes containing the D1193V mutant were delivered to the plasma membrane and were functional and those containing R1436Q were also present at the plasma membrane but were nonfunctional. Combining the two mutations (SUR1D1193V/R1436Q) led to intracellular retention of the channel complex. In a second family, the patient had histologically focal disease and was heterozygous for two mutations from his father (G228D and D1471N) and one from his mother (V1572I). SUR1 G228D and D1471N singly or in combination led to intracellular retention of the channel complex and loss of function. By contrast, V1572I is trafficked appropriately and is functional, consistent with a mechanism of reduction to hemizygosity of paternal ABCC8 in focal disease. V1572I is likely to be a benign DNA variant. CONCLUSION In one patient the combination of two coding variants led to intracellular retention of channel complex. In a second patient, functional studies allowed us to unravel the DNA variants likely to be causing the abrogation of ATP-sensitive K(+) channel function.
Collapse
Affiliation(s)
- Morris Muzyamba
- BHF Laboratories and Department of Medicine, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cajaiba MM, Sarita-Reyes C, Zambrano E, Reyes-Múgica M. Mesenchymal hamartoma of the liver associated with features of Beckwith-Wiedemann syndrome and high serum alpha-fetoprotein levels. Pediatr Dev Pathol 2007; 10:233-8. [PMID: 17535089 DOI: 10.2350/06-07-0128.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/25/2006] [Indexed: 11/20/2022]
Abstract
A 5-month-old girl with clinical features of Beckwith-Wiedemann syndrome (BWS), including a repaired omphalocele, an earlobe crease, enlarged adrenal glands, renal size discrepancy, and hyperinsulinemic hyperglycemia, presented with a 1.9-cm liver nodule. Markedly increased serum alpha-fetoprotein (AFP) levels (1,060,000 mg/L), highly suspicious for hepatoblastoma, were detected, and resection of the liver mass was performed. Histologic sections showed features characteristic of a mesenchymal hamartoma of the liver (MHL). No features of embryonal or fetal hepatocellular proliferation or heterologous stromal components were noted. By immunohistochemistry, the hepatocytes expressed AFP, but no nuclear accumulation of beta-catenin was present. Electron microscopy revealed normal, mature hepatocytes. Here we address the diagnostic challenge of the uncommon association of MHL and BWS in the setting of markedly elevated serum AFP levels. In addition, we analyze the unusual pancreatic lesion (focal endocrine adenomatosis) leading to severe hyperinsulinemic hypoglycemia in a patient with possible BWS. We emphasize that MHLs may present with markedly increased serum AFP levels, mimicking hepatoblastomas, and may also be part of the expanding spectrum of findings of BWS.
Collapse
Affiliation(s)
- Mariana M Cajaiba
- Department of Pathology, Program of Pediatric and Developmental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
38
|
Raffel A, Krausch M M, Anlauf M, Wieben D, Braunstein S, Klöppel G, Röher HD, Knoefel WT. Diffuse nesidioblastosis as a cause of hyperinsulinemic hypoglycemia in adults: a diagnostic and therapeutic challenge. Surgery 2007; 141:179-84; discussion 185-6. [PMID: 17263973 DOI: 10.1016/j.surg.2006.04.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/31/2006] [Accepted: 04/15/2006] [Indexed: 11/28/2022]
Abstract
Hyperinsulinemic hypoglycemia is caused by uncontrolled insulin release either from neoplastic pancreatic beta-cells or from functionally defective beta-cells. The latter disorder, which is usually seen in newborns, has been called nesidioblastosis and is divided histopathologically into a focal and diffuse type. In adults, nesidioblastosis is rare, and therefore its histopathologic and clinical features are not well known. In our institution, 4 of 128 adult patients (>3%) suffering from hyperinsulinemic hypoglycemia were found to have diffuse nesidioblastosis. The remaining patients had an insulinoma resected successfully in all but one patient. The diagnosis of diffuse nesidioblastosis was established histopathologically after removing a segment of the distal pancreas. Resection of up to 90% of the pancreas relieved 2 of the 4 patients of their symptoms. We conclude that diffuse nesidioblastosis is rare in adults but may account for more than 3% of patients with hyperinsulinemic hypoglycemia. The histopathologic diagnosis relies predominantly on demonstration of beta-cell hypertrophy. The cause of the disease is not known but may be related to defects in the glucose recognition system of the beta-cell. Treatment consists of operative reduction of the beta-cell mass, but the extent of pancreatic resection required is hard to judge, and there is a thin line between successful treatment, persistence of the disease, and pancreatic endocrine insufficiency.
Collapse
Affiliation(s)
- Andreas Raffel
- Department of General and Visceral Surgery, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Delonlay P, Simon A, Galmiche-Rolland L, Giurgea I, Verkarre V, Aigrain Y, Santiago-Ribeiro MJ, Polak M, Robert JJ, Bellanne-Chantelot C, Brunelle F, Nihoul-Fekete C, Jaubert F. Neonatal hyperinsulinism: clinicopathologic correlation. Hum Pathol 2007; 38:387-99. [PMID: 17303499 DOI: 10.1016/j.humpath.2006.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Neonatal hyperinsulinism is a life-threatening disease that, when treated by total pancreatectomy, leads to diabetes and pancreatic insufficiency. A more conservative approach is now possible since the separation of the disease into a nonrecurring focal form, which is cured by partial surgery, and a diffuse form, which necessitates total pancreas removal only in cases of medical treatment failure. The pathogenesis of the disease is now divided into K-channel disease (hyperinsulinemic hypoglycemia, familial [HHF] 1 and 2), which can mandate surgery, and other metabolic causes, HHF 3 to 6, which are treated medically in most patients. The diffuse form is inherited as a recessive gene on chromosome 11, whereas most cases of the focal form are caused by a sulfonylurea receptor 1 defect inherited from the father, which is associated with a loss of heterozygosity on the corresponding part of the mother's chromosome 11. The rare bifocal forms result from a maternal loss of heterozygosity specific to each focus. Paternal disomy of chromosome 11 is a rare cause of a condition similar to Beckwith-Wiedemann syndrome. A preoperative PET scan with fluorodihydroxyphenylalanine and perioperative frozen-section confirmation are the types of studies done before surgery when needed. Adult variants of the disease are less well defined at the present time.
Collapse
Affiliation(s)
- P Delonlay
- Department of Pediatrics, Hospital Necker-Enfants Malades, Paris 75743, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
De León DD, Stanley CA. Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. ACTA ACUST UNITED AC 2007; 3:57-68. [PMID: 17179930 DOI: 10.1038/ncpendmet0368] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 08/25/2006] [Indexed: 11/09/2022]
Abstract
Hyperinsulinism is the single most common mechanism of hypoglycemia in neonates. Dysregulated insulin secretion is responsible for the transient and prolonged forms of neonatal hypoglycemia, and congenital genetic disorders of insulin regulation represent the most common of the permanent disorders of hypoglycemia. Mutations in at least five genes have been associated with congenital hyperinsulinism: they encode glucokinase, glutamate dehydrogenase, the mitochondrial enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase, and the two components (sulfonylurea receptor 1 and potassium inward rectifying channel, subfamily J, member 11) of the ATP-sensitive potassium channels (K(ATP) channels). K(ATP) hyperinsulinism is the most common and severe form of congenital hyperinsulinism. Infants suffering from K(ATP) hyperinsulinism present shortly after birth with severe and persistent hypoglycemia, and the majority are unresponsive to medical therapy, thus requiring pancreatectomy. In up to 40-60% of the children with K(ATP) hyperinsulinism, the defect is limited to a focal lesion in the pancreas. In these children, local resection results in cure with avoidance of the complications inherent to a near-total pancreatectomy. Hyperinsulinism can also be part of other disorders such as Beckwith-Wiedemann syndrome and congenital disorders of glycosylation. The diagnosis and management of children with congenital hyperinsulinism requires a multidisciplinary approach to achieve the goal of therapy: prevention of permanent brain damage due to recurrent hypoglycemia.
Collapse
|
41
|
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Suchi M, Ruchelli E, Zhuang H, Ganguly A, Freifelder R, Adzick NS, Alavi A, Stanley CA. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 2007; 150:140-5. [PMID: 17236890 DOI: 10.1016/j.jpeds.2006.08.028] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 07/05/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To assess the accuracy of 18F-fluoro-L-dihydroxyphenylalanine ([18F]-DOPA) PET scans to diagnose focal versus diffuse disease and to localize focal lesions in infants with congenital hyperinsulinism. STUDY DESIGN Twenty-four infants with hyperinsulinism unresponsive to medical therapy were studied. Patients were injected intravenously with [18F]-DOPA, and PET scans were obtained for 1 hour. Images were coregistered with abdominal CT scans. RESULTS The diagnosis of focal or diffuse hyperinsulinism was correct in 23 of the 24 cases (96%) and equivocal in 1 case. [18F]-DOPA PET identified focal areas of high uptake of radiopharmaceutical in 11 patients. Pathology results confirmed that all 11 had focal adenomatosis, and the locations of these lesions matched the areas of increased [18F]-DOPA uptake on the PET scans in all of the cases. CONCLUSIONS [18F]-DOPA PET scans were 96% accurate in diagnosing focal or diffuse disease and 100% accurate in localizing the focal lesion. These results suggest that [18F]-DOPA PET imaging should be considered in all infants with congenital hyperinsulinism who need to have pancreatectomy.
Collapse
Affiliation(s)
- Olga T Hardy
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Greer RM, Shah J, Jeske YW, Brown D, Walker RM, Cowley D, Bowling FG, Liaskou D, Harris M, Thomsett MJ, Choong C, Bell JR, Jack MM, Cotterill AM. Genotype-phenotype associations in patients with severe hyperinsulinism of infancy. Pediatr Dev Pathol 2007; 10:25-34. [PMID: 17378627 DOI: 10.2350/06-04-0083.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/01/2006] [Indexed: 11/20/2022]
Abstract
In hyperinsulinism of infancy (HI), unregulated insulin secretion causes hypoglycemia. Pancreatectomy may be required in severe cases, most of which result from a defect in the beta-cell KATP channel, encoded by ABCC8 and KCNJ11. Pancreatic histology may be classified as diffuse or focal disease (the latter associated with single paternal ABCC8 mutations), indicated by the presence of islet cell nuclear enlargement in areas of diffuse abnormality. We investigated genotype-phenotype associations in a heterogeneous Australian cohort. ABCC8 and KCNJ11 genes were sequenced and case histology was reviewed in 21 infants who had pancreatectomy. Ninety-eight control DNA samples were tested by single nucleotide polymorphism analysis. Eighteen ABCC8 mutations were identified, 10 novel. Eleven patients (4 compound heterozygote, 4 single mutation, 3 no mutation detected) had diffuse hyperinsulinism. Nine patients had focal hyperinsulinism (6 single paternal mutation, 2 single mutation of undetermined parental origin, 1 none found) with absence of islet cell nuclear enlargement outside the focal area, although centroacinar cell proliferation and/or nesidiodysplasia was present in 7 cases. Regeneration after near-total pancreatectomy was documented in 4 patients, with aggregates of endocrine tissue observed at subsequent operations in 3. Although the absence of enlarged islet cell nuclei is a useful discriminant of focal hyperinsulinism associated with a paternal ABCC8 mutation, further research is needed to understand the pathophysiology of other histological abnormalities in patients with HI, which may have implications for mechanisms of ductal and islet cell proliferation. Previous surgery should be taken into account when interpreting pancreatic histology.
Collapse
Affiliation(s)
- Ristan M Greer
- Department of Paediatrics and Child Health, University of Queensland, Brisbane, and Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gloyn AL, Siddiqui J, Ellard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27:220-31. [PMID: 16416420 DOI: 10.1002/humu.20292] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta-cell ATP-sensitive potassium channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events, bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis, it is not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1. It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinemia (HI) of infancy; however, heterozygous activating mutations in KCNJ11 that result in the opposite phenotype of diabetes have recently been described. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment when patients are diagnosed with mutations in these genes.
Collapse
Affiliation(s)
- Anna L Gloyn
- Diabetes Research Laboratories, Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
44
|
Suchi M, MacMullen CM, Thornton PS, Adzick NS, Ganguly A, Ruchelli ED, Stanley CA. Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. Mod Pathol 2006; 19:122-9. [PMID: 16357843 DOI: 10.1038/modpathol.3800497] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital hyperinsulinism is a rare pancreatic endocrine cell disorder that has been categorized histologically into diffuse and focal forms. In focal hyperinsulinism, the pancreas contains a focus of endocrine cell adenomatous hyperplasia, and the patients have been reported to possess paternally inherited mutations of the ABCC8 and KCNJ11 genes, which encode subunits of an ATP-sensitive potassium channel (K(ATP)). In addition, the hyperplastic endocrine cells show loss of maternal 11p15, where imprinted genes such as p57(kip2) reside. In order to evaluate whether all cases of focal hyperinsulinism are caused by this mechanism, 56 pancreatectomy specimens with focal hyperinsulinism were tested for the loss of maternal allele by two methods: immunohistochemistry for p57(kip2) (n=56) and microsatellite marker analysis (n=27). Additionally, 49 patients were analyzed for K(ATP) mutations. Out of 56 focal lesions, 48 demonstrated clear loss of p57(kip2) expression by immunohistochemistry. The other eight lesions similarly showed no nuclear labeling, but the available tissue was not ideal for definitive interpretation. Five of these eight patients had paternal K(ATP) mutations, of which four demonstrated loss of maternal 11p15 within the lesion by microsatellite marker analysis. All of the other three without a paternal K(ATP) mutation showed loss of maternal 11p15. K(ATP) mutation analysis identified 32/49 cases with paternal mutations. There were seven patients with nonmaternal mutations whose paternal DNA material was not available, and one patient with a mutation that was not present in either parent's DNA. These eight patients showed either loss of p57(kip2) expression or loss of maternal 11p15 region by microsatellite marker analysis, as did the remaining nine patients with no identifiable K(ATP) coding region mutations. The combined results from the immunohistochemical and molecular methods indicate that maternal 11p15 loss together with paternal K(ATP) mutation is the predominant causative mechanism of focal hyperinsulinism.
Collapse
Affiliation(s)
- Mariko Suchi
- Department of Pathology and Laboratory Medicine, The Childrens' Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Henwood MJ, Kelly A, Macmullen C, Bhatia P, Ganguly A, Thornton PS, Stanley CA. Genotype-phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. J Clin Endocrinol Metab 2005; 90:789-94. [PMID: 15562009 DOI: 10.1210/jc.2004-1604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Congenital hyperinsulinism (HI) is most commonly caused by recessive mutations of the pancreatic beta-cell ATP-sensitive potassium channel (K(ATP)), encoded by two genes on chromosome 11p, SUR1 and Kir6.2. The two mutations that have been best studied, SUR1 g3992-9a and SUR1 delF1388, are null mutations yielding nonfunctional channels and are characterized by nonresponsiveness to diazoxide, a channel agonist, and absence of acute insulin responses (AIRs) to tolbutamide, a channel antagonist, or leucine. To examine phenotypes of other K(ATP) mutations, we measured AIRs to calcium, leucine, glucose, and tolbutamide in infants with recessive SUR1 or Kir6.2 mutations expressed as diffuse HI (n = 8) or focal HI (n = 14). Of the 24 total mutations, at least seven showed evidence of residual K(ATP) channel function. This included positive AIR to both tolbutamide and leucine in diffuse HI cases or positive AIR to leucine in focal HI cases. One patient with partial K(ATP) function also responded to treatment with the channel agonist, diazoxide. Six of the seven patients with partial defects had amino acid substitutions or insertions; whereas, the other patient was compound heterozygous for two premature stop codons. These results indicate that some K(ATP) mutations can yield partially functioning channels, including cases of hyperinsulinism that are fully responsive to diazoxide therapy.
Collapse
Affiliation(s)
- Maria J Henwood
- Division of Endocrinology/Diabetes, The Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Suchi M, Thornton PS, Adzick NS, MacMullen C, Ganguly A, Stanley CA, Ruchelli ED. Congenital Hyperinsulinism. Am J Surg Pathol 2004; 28:1326-35. [PMID: 15371948 DOI: 10.1097/01.pas.0000138000.61897.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most cases of congenital hyperinsulinism (HI) manifest as either a diffuse or focal form. Diffuse HI is characterized by the presence of enlarged islet cell nuclei, defined as those occupying an area 3 times larger than the surrounding nuclei, throughout the pancreas, and usually requires near total pancreatectomy. Focal HI contains, within an otherwise normal pancreas with islet cell nuclei of normal size, a focus of adenomatous hyperplasia characterized by endocrine cell overgrowth occupying more than 40% of a given area. This form of HI is amenable to partial pancreatectomy. The current study assesses whether intraoperative frozen section evaluation can distinguish the 2 forms and guide the extent of pancreatectomy. By frozen section analysis, diffuse HI is diagnosed when enlarged islet cell nuclei are present in random intraoperative biopsies from the head, body, and tail of the pancreas. Focal HI is suggested when random biopsies contain no large islet cell nuclei, prompting a further search for a focal lesion. Fifty-two HI patients who underwent pancreatectomy from October 1, 1998 to September 30, 2002 were reviewed. On permanent sections, 18 were classified as diffuse HI, 30 had focal HI, and 4 could not be categorized as either. Among 18 diffuse HI patients, 17 were correctly diagnosed by frozen section; all underwent near total pancreatectomy. One case was interpreted as not belonging to typical diffuse or focal HI; however, the permanent sections showed diffuse HI. Twenty-six of 30 focal HI cases were correctly diagnosed by frozen section. The remaining 4 focal HI cases posed diagnostic difficulties on frozen sections because of one the following reasons: 1) presence of equivocally large islet cell nuclei or rare truly large islet cell nuclei in areas nonadjacent to the focal lesion, and 2) large and/or ill defined focus of adenomatous hyperplasia. Twenty-one of 30 focal HI patients eventually had 10% to 93% (mean, 41.8%) of their pancreas resected. In addition to cases typical for diffuse and focal HI, there were 4 other cases whose pancreata did not fit well with either category. These pancreata showed islet cell nuclear enlargement, as characteristically seen in diffuse HI, but only in confined areas of the pancreas. Examination of routinely processed tissue confirmed frozen section findings in all 4 cases. Intraoperative frozen section evaluation, therefore, can assume an essential role in identifying patients with focal HI to limit the extent of pancreatectomy. However, a small number of cases with unusual histology warrant caution when performing frozen section evaluation.
Collapse
Affiliation(s)
- Mariko Suchi
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, 5203 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous entity and causes severe hypoglycemia in neonates and infants. The clinical heterogeneity is manifested by severity ranging from extremely severe, life-threatening disease to very mild clinical symptoms, which may even be difficult to identify. Furthermore, clinical responsiveness to medical and surgical management is extremely variable. Recent discoveries have begun to clarify the molecular etiology of this disease in about 50% of cases. Mutations in five different genes have been identified in patients with this clinical syndrome. Most cases are caused by mutations in the genes ABCC8 and KCNJ11 coding for either of the two subunits of the beta-cell KATP channel (SUR1 and Kir6.2). Recessive mutations of the beta-cell K(ATP) channel genes cause diffuse HI, whereas loss of heterozygosity together with inheritance of a paternal mutation causes focal adenomatous HI. In other cases, CHI is caused by mutations in genes coding for the beta-cell enzymes glucokinase (GK), glutamate dehydrogenase (GDH), and SCHAD. However, for as many as 50% of the cases, no genetic etiology has yet been determined. The study of the genetics of this disease has provided important new information regarding beta-cell physiology.
Collapse
|