1
|
Han Y, Zhang L, Tao H, Wu J, Zhai J. Genetic analysis and management of a familial hypercholesterolemia pedigree with polygenic variants: Case report. Medicine (Baltimore) 2023; 102:e34534. [PMID: 37565868 PMCID: PMC10419407 DOI: 10.1097/md.0000000000034534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
RATIONALE Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder typically caused by low density lipoprotein receptor (LDLR) gene mutation. Herein, we reported a FH pedigree with polygenic variants: LDLR, apolipoprotein B (APOB), and epoxide hydrolase 2 (EPHX2). PATIENT CONCERNS A 10-year-old boy mainly presented multiple skin xanthomas and hypercholesterolemia. His family visited our hospital and was performed with pedigree whole exome sequencing (WES) at 20 + 3 weeks gestation of the mother's second pregnancy. DIAGNOSES Based on the clinical features and genetic analysis, the pedigree was diagnosed with familial hypercholesterolemia. INTERVENTIONS After genetic counseling, the couple opted to continue the pregnancy. Treatment advice and follow-up were offered to them. OUTCOMES A novel compound heterozygous LDLR mutation: c.1009G>T and c.68-2A>G, derived from his parents respectively was revealed through pedigree WES, meanwhile, a maternal APOB gene variant: c.1670A>G and a paternal EPHX2 gene variant: c.548 dup of the proband were found together. Furthermore, the same compound heterozygous LDLR mutation as his was confirmed in his sister without APOB and EPHX2 variants in her fetal stage. LESSONS WES combined with clinical features is essential for the diagnosis of FH, however, prenatal genetic testing results might bring more challenges to prenatal genetic counseling. Furthermore, it is more important to provide the guidance and early intervention for such families in the long run.
Collapse
Affiliation(s)
- Yu Han
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Zhang
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Huimin Tao
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
| | - Jiebin Wu
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
| | - Jingfang Zhai
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
2
|
Diboun I, Al-Sarraj Y, Toor SM, Mohammed S, Qureshi N, Al Hail MSH, Jayyousi A, Al Suwaidi J, Albagha OME. The Prevalence and Genetic Spectrum of Familial Hypercholesterolemia in Qatar Based on Whole Genome Sequencing of 14,000 Subjects. Front Genet 2022; 13:927504. [PMID: 35910211 PMCID: PMC9337875 DOI: 10.3389/fgene.2022.927504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disease characterized by reduced efficiency of low-density lipoprotein-cholesterol (LDL-C) removal from the blood and, consequently, an increased risk of life-threatening early cardiovascular complications. In Qatar, the prevalence of FH has not been determined and the disease, as in many countries, is largely underdiagnosed. In this study, we combined whole-genome sequencing data from the Qatar Genome Program with deep phenotype data from Qatar Biobank for 14,056 subjects to determine the genetic spectrum and estimate the prevalence of FH in Qatar. We used the Dutch Lipid Clinic Network (DLCN) as a diagnostic tool and scrutinized 11 FH-related genes for known pathogenic and possibly pathogenic mutations. Results revealed an estimated prevalence of 0.8% (1:125) for definite/probable cases of FH in the Qatari population. We detected 16 known pathogenic/likely pathogenic mutations in LDLR and one in PCSK9; all in a heterozygous state with high penetrance. The most common mutation was rs1064793799 (c.313+3A >C) followed by rs771019366 (p.Asp90Gly); both in LDLR. In addition, we identified 18 highly penetrant possibly pathogenic variants, of which 5 were Qatari-specific, in LDLR, APOB, PCSK9 and APOE, which are predicted to be among the top 1% most deleterious mutations in the human genome but further validations are required to confirm their pathogenicity. We did not detect any homozygous FH or autosomal recessive mutations in our study cohort. This pioneering study provides a reliable estimate of FH prevalence in Qatar based on a significantly large population-based cohort, whilst uncovering the spectrum of genetic variants associated with FH.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Medical and Population Genomics Lab, Sidra Medicine, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Shaban Mohammed
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Nadeem Qureshi
- Primary Care Stratified Medicine Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Amin Jayyousi
- Department of Diabetes, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Jassim Al Suwaidi
- Adult Cardiology, Heart Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Omar M. E. Albagha,
| |
Collapse
|
3
|
A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene X 2022; 822:146340. [PMID: 35183688 DOI: 10.1016/j.gene.2022.146340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are protective factors against cardiovascular diseases (CVDs) because of their vasodilatory, cholesterol-lowering, and anti-inflammatory effects. Soluble epoxide hydrolase (sEH), encoded by the EPHX2 gene, degrades EETs into less biologically active metabolites. EPHX2 is highly polymorphic, and genetic polymorphisms in EPHX2 have been linked to various types of CVDs, such as coronary heart disease, essential hypertension, and atrial fibrillation recurrence. METHODS Based on a priori hypothesis that EPHX2 genetic polymorphisms play an important role in the pathogenesis of CVDs, we comprehensively investigated the associations between 210 genetic polymorphisms in the EPHX2 gene and an array of 118 diseases in the circulatory system using a large sample from the UK Biobank (N = 307,516). The diseases in electronic health records were mapped to the phecode system, which was more representative of independent phenotypes. Survival analyses were employed to examine the effects of EPHX2 variants on CVD incidence, and a phenome-wide association study was conducted to study the impact of EPHX2 polymorphisms on 62 traits, including blood pressure, blood lipid levels, and inflammatory indicators. RESULTS A novel association between the intronic variant rs116932590 and the phenotype "aneurysm and dissection of heart" was identified. In addition, the rs149467044 and rs200286838 variants showed nominal evidence of association with arterial aneurysm and cerebrovascular disease, respectively. Furthermore, the variant rs751141, which was linked with a lower hydrolase activity of sEH, was significantly associated with metabolic traits, including blood levels of triglycerides, creatinine, and urate. CONCLUSIONS Multiple novel associations observed in the present study highlight the important role of EPHX2 genetic variation in the pathogenesis of CVDs.
Collapse
|
4
|
Pillai KKB, Shah SAV, Reddy LL, Ashavaid TF, Vishwanathan S. Targeted Exome Sequencing in South Indian patients with Familial Hypercholesterolemia. Clin Chim Acta 2022; 527:47-55. [PMID: 34998859 DOI: 10.1016/j.cca.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder with elevated LDL-C levels which can ultimately lead to premature Coronary Artery Disease (CAD). OBJECTIVES In presence of limited genetic data on FH in India, the present study was aimed to determine the mutation spectrum in Indian FH patients using a targeted exome sequencing. METHODS 54 FH cases (31 index cases + 23 extended family members) were categorized according to Dutch Lipid Clinic Network Criteria (DLCNC). Targeted exome sequencing was performed using 23 gene panel associated with lipid metabolism. RESULTS All subjects showed the presence of family history of CAD, 38(70%) patients had corneal arcus whereas only 06(11%) subjects had xanthomas. As per the DLCNC, definite, probable, possible and unlikely FH were 48%, 30%, 11% and 11% respectively. Mutations were observed in 12 of the 23 gene panel with CETP, APOA5, EPHX2 and SREBP2 genes were identified for the first time in Indian FH patients. All 19 mutations including a novel frame-shift mutation in LDLR gene were reported for the first time in Indian FH patients. These mutations were identified in 28(52%) subjects and interestingly ∼73% of the clinically identified FH patients didn't harbour mutations in FH classical genes (LDLR, ApoB, PCSK9). CONCLUSION This is the first study in the South Indian FH patients to perform targeted exome sequencing. Absence of mutations in the FH classical genes strongly indicates the polygenic nature of FH, further underscoring the importance of targeted exome sequencing for identifying mutations in genetically diverse Indian population.
Collapse
Affiliation(s)
| | | | | | | | - Sunitha Vishwanathan
- Department of Cardiology, Government Medical College, Trivandrum, Kerala, India.
| |
Collapse
|
5
|
Pan T, Lin SC, Lee YC, Yu G, Song JH, Pan J, Titus M, Satcher RL, Panaretakis T, Logothetis C, Yu-Lee LY, Lin SH. Statins reduce castration-induced bone marrow adiposity and prostate cancer progression in bone. Oncogene 2021; 40:4592-4603. [PMID: 34127814 PMCID: PMC8384136 DOI: 10.1038/s41388-021-01874-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
A fraction of patients undergoing androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) will develop recurrent castrate-resistant PCa (CRPC) in bone. Strategies to prevent CRPC relapse in bone are lacking. Here we show that the cholesterol-lowering drugs statins decrease castration-induced bone marrow adiposity in the tumor microenvironment and reduce PCa progression in bone. Using primary bone marrow stromal cells (BMSC) and M2-10B4 cells, we showed that ADT increases bone marrow adiposity by enhancing BMSC-to-adipocyte transition in vitro. Knockdown of androgen receptor abrogated BMSC-to-adipocyte transition, suggesting an androgen receptor-dependent event. RNAseq analysis showed that androgens reduce the secretion of adipocyte hormones/cytokines including leptin during BMSC-to-adipocyte transition. Treatment of PCa C4-2b, C4-2B4, and PC3 cells with leptin led to an increase in cell cycle progression and nuclear Stat3. RNAseq analysis also showed that androgens inhibit cholesterol biosynthesis pathway, raising the possibility that inhibiting cholesterol biosynthesis may decrease BMSC-to-adipocyte transition. Indeed, statins decreased BMSC-to-adipocyte transition in vitro and castration-induced bone marrow adiposity in vivo. Statin pre-treatment reduced 22RV1 PCa progression in bone after ADT. Our findings with statin may provide one of the mechanisms to the clinical correlations that statin use in patients undergoing ADT seems to delay progression to "lethal" PCa.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Pan
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Khamees M, Jarrar Y, Al-Qirim T, Mahmoud IS, Hatmal MM, Alshaer W, Lee SJ. No impact of soluble epoxide hydrolase rs4149243, rs2234914 and rs751142 genetic variants on the development of type II diabetes and its hypertensive complication among Jordanian patients. Int J Clin Pract 2021; 75:e14036. [PMID: 33512081 DOI: 10.1111/ijcp.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Human soluble epoxide hydrolase plays a major role in cardiovascular homoeostasis. Genetic variants in the EPHX2 gene among different ethnic groups are associated with cardiovascular complications, such as hypertension. However, no reports regarding the association of EPHX2 genotype with hypertension among type II diabetic (T2D) patients of Middle Eastern Jordanian origin exist. OBJECTIVE The current study aimed to elucidate the association of the EPHX2 allele, genotype and haplotype with T2D, hypertension and parameters of lipid profile parameters among Jordanian T2D patients. METHODS Ninety-three genomic DNA samples of non-diabetic controls and 97 samples from T2D patients were genotyped for EPHX2 rs4149243, rs2234914 and rs751142 genetic variants. The DNA samples were amplified using polymerase chain reaction (PCR) and then sequenced using Applied Biosystems Model (ABI3730x1). The functionality of intronic EPHX2 variants was predicted using the in silico Berkely Drosophila Genome Project software. RESULTS We found no significant (P >.05) association between the EPHX2 rs4149243, rs2234914 and rs751142 allele, genotype and haplotype and the incidence of T2D and hypertension. Additionally, no association (P >.05) between these EPHX2 genetic variants with the baseline total cholesterol, low- and high-density lipoproteins and triglycerides among both non-diabetic and diabetic volunteers was found. However, we found an inter-ethnic variation (χ2 -test, P value ˂ .05) in the allele frequency of the EPHX2 rs4149243 and rs2234914 variants between Jordanians and other ethnic populations. Also, the in silico Berkely Drosophila Genome Project software predicted that the intronic EPHX2 rs4149243 could alter the splicing of intron 7. CONCLUSIONS It can be concluded from this study that EPHX2 rs4149243, rs2234914 and rs751142 genetic variants do not play a role in the development of T2D and hypertension among Jordanian T2D patients. Further genetic studies with larger sample sizes are needed to find out the association of other functional EPHX2 variants with cardiovascular diseases among T2D patients in Jordan.
Collapse
Affiliation(s)
- Maysoon Khamees
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Tariq Al-Qirim
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Centre, The University of Jordan, Amman, Jordan
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
7
|
The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int J Mol Sci 2020; 22:ijms22010013. [PMID: 33374956 PMCID: PMC7792612 DOI: 10.3390/ijms22010013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epoxide hydrolases (EHs) are key enzymes involved in the detoxification of xenobiotics and biotransformation of endogenous epoxides. They catalyze the hydrolysis of highly reactive epoxides to less reactive diols. EHs thereby orchestrate crucial signaling pathways for cell homeostasis. The EH family comprises 5 proteins and 2 candidate members, for which the corresponding genes are not yet identified. Although the first EHs were identified more than 30 years ago, the full spectrum of their substrates and associated biological functions remain partly unknown. The two best-known EHs are EPHX1 and EPHX2. Their wide expression pattern and multiple functions led to the development of specific inhibitors. This review summarizes the most important points regarding the current knowledge on this protein family and highlights the particularities of each EH. These different enzymes can be distinguished by their expression pattern, spectrum of associated substrates, sub-cellular localization, and enzymatic characteristics. We also reevaluated the pathogenicity of previously reported variants in genes that encode EHs and are involved in multiple disorders, in light of large datasets that were made available due to the broad development of next generation sequencing. Although association studies underline the pleiotropic and crucial role of EHs, no data on high-effect variants are confirmed to date.
Collapse
|
8
|
Samaha G, Wade CM, Beatty J, Lyons LA, Fleeman LM, Haase B. Mapping the genetic basis of diabetes mellitus in the Australian Burmese cat (Felis catus). Sci Rep 2020; 10:19194. [PMID: 33154479 PMCID: PMC7644637 DOI: 10.1038/s41598-020-76166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus, a common endocrinopathy affecting domestic cats, shares many clinical and pathologic features with type 2 diabetes in humans. In Australia and Europe, diabetes mellitus is almost four times more common among Burmese cats than in other breeds. As a genetically isolated population, the diabetic Australian Burmese cat provides a spontaneous genetic model for studying diabetes mellitus in humans. Studying complex diseases in pedigreed breeds facilitates tighter control of confounding factors including population stratification, allelic frequencies and environmental heterogeneity. We used the feline SNV array and whole genome sequence data to undertake a genome wide-association study and runs of homozygosity analysis, of a case–control cohort of Australian and European Burmese cats. Our results identified diabetes-associated haplotypes across chromosomes A3, B1 and E1 and selective sweeps across the Burmese breed on chromosomes B1, B3, D1 and D4. The locus on chromosome B1, common to both analyses, revealed coding and splice region variants in candidate genes, ANK1, EPHX2 and LOX2, implicated in diabetes mellitus and lipid dysregulation. Mapping this condition in Burmese cats has revealed a polygenic spectrum, implicating loci linked to pancreatic beta cell dysfunction, lipid dysregulation and insulin resistance in the pathogenesis of diabetes mellitus in the Burmese cat.
Collapse
Affiliation(s)
- Georgina Samaha
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Julia Beatty
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | | | - Bianca Haase
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Integrative analysis of proteomic and metabonomics data for identification of pathways related to Rhizoma Paridis-induced hepatotoxicity. Sci Rep 2020; 10:6540. [PMID: 32300172 PMCID: PMC7162872 DOI: 10.1038/s41598-020-63632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical reports on hepatotoxicity that arise from Rhizoma Paridis have recently received widespread attention. Because the hepatotoxicity mechanism is little understood, this research strived to investigate the hepatotoxicity mechanism of Rhizoma Paridis extracts based on iTRAQ quantitative proteomics and metabonomics. The extraction solutions were administrated to rats for 7 days by gavage, and the hepatotoxicity was assessed through quantification of biochemical indexes and Oil red O staining. Additionally, the mechanism of hepatotoxicity was investigated by metabonomics based upon GC-MS and iTRAQ quantitative proteomics. The biochemical and histopathological analysis stood out that Rhizoma Paridis extract could induce liver injury, which was proved by the formation of fat droplets, the changes of mitochondrial structure, and biochemical parameters. The iTRAQ proteomics and metabonomics revealed that Rhizoma Paridis-induced hepatotoxicity was chiefly connected with the abnormal activity of mitochondrion function, which brought about oxidative stress injuries and inflammation, finally causing cell apoptosis. Collectively, we have provided previously uncharacterized hepatotoxic mechanism induced by Rhizoma Paridis and a reference to ensure its safe use in the future.
Collapse
|
10
|
Domingues MF, Callai-Silva N, Piovesan AR, Carlini CR. Soluble Epoxide Hydrolase and Brain Cholesterol Metabolism. Front Mol Neurosci 2020; 12:325. [PMID: 32063836 PMCID: PMC7000630 DOI: 10.3389/fnmol.2019.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
The bifunctional enzyme soluble epoxide hydrolase (sEH) is found in all regions of the brain. It has two different catalytic activities, each assigned to one of its terminal domains: the C-terminal domain presents hydrolase activity, whereas the N-terminal domain exhibits phosphatase activity. The enzyme’s C-terminal domain has been linked to cardiovascular protective and anti-inflammatory effects. Cholesterol-related disorders have been associated with sEH, which plays an important role in the metabolism of cholesterol precursors. The role of sEH’s phosphatase activity has been so far poorly investigated in the context of the central nervous system physiology. Given that brain cholesterol disturbances play a role in the onset of Alzheimer’s disease (AD) as well as of other neurodegenerative diseases, understanding the functions of this enzyme could provide pivotal information on the pathophysiology of these conditions. Moreover, the sEH phosphatase domain could represent an underexplored target for drug design and therapeutic strategies to improve symptoms related to neurodegenerative diseases. This review discusses the function of sEH in mammals and its protein structure and catalytic activities. Particular attention was given to the distribution and expression of sEH in the human brain, deepening into the enzyme’s phosphatase activity and its participation in brain cholesterol synthesis. Finally, this review focused on the metabolism of cholesterol and its association with AD.
Collapse
Affiliation(s)
- Michelle Flores Domingues
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natalia Callai-Silva
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy Fatty Acids Are Promising Targets for Treatment of Pain, Cardiovascular Disease and Other Indications Characterized by Mitochondrial Dysfunction, Endoplasmic Stress and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:71-99. [PMID: 32894508 PMCID: PMC7737916 DOI: 10.1007/978-3-030-50621-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.
Collapse
Affiliation(s)
- Cindy McReynolds
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Association Analysis of 14 Candidate Gene Polymorphism with Depression and Stress among Gestational Diabetes Mellitus. Genes (Basel) 2019; 10:genes10120988. [PMID: 31801286 PMCID: PMC6947641 DOI: 10.3390/genes10120988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The association of candidate genes and psychological symptoms of depression, anxiety, and stress among women with gestational diabetes mellitus (GDM) in Malaysia was determined in this study, followed by the determination of their odds of getting psychological symptoms, adjusted for socio-demographical background, maternal, and clinical characteristics. Single nucleotide polymorphisms (SNPs) recorded a significant association between SNP of EPHX2 (rs17466684) and depression symptoms (AOR = 7.854, 95% CI = 1.330–46.360) and stress symptoms (AOR = 7.664, 95% CI = 1.579–37.197). Associations were also observed between stress symptoms and SNP of OXTR (rs53576) and (AOR = 2.981, 95% CI = 1.058–8.402) and SNP of NRG1 (rs2919375) (AOR = 9.894, 95% CI = 1.159–84.427). The SNP of EPHX2 (rs17466684) gene polymorphism is associated with depression symptoms among Malaysian women with GDM. SNP of EPHX2 (rs17466684), OXTR (rs53576) and NRG1 (rs2919375) are also associated with stress symptoms.
Collapse
|
13
|
Abstract
Adaptive thermogenesis is a catabolic process that consumes energy-storing molecules and expends that energy as heat in response to environmental changes. This process occurs primarily in brown and beige adipose tissue. Thermogenesis is regulated by many factors, including lipid derived paracrine and endocrine hormones called lipokines. Recently, technologic advances for identifying new lipid biomarkers of thermogenic activity have shed light on a diverse set of lipokines that act through different pathways to regulate energy expenditure. In this review, we highlight a few examples of lipokines that regulate thermogenesis. The biosynthesis, regulation, and effects of the thermogenic lipokines in several families are reviewed, including oloeylethanolamine, endocannabinoids, prostaglandin E2, and 12,13-diHOME. These thermogenic lipokines present potential therapeutic targets to combat states of excess energy storage, such as obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Sean D Kodani
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
14
|
Lien CC, Chen CH, Lee YM, Guo BC, Cheng LC, Pan CC, Shyue SK, Lee TS. The phosphatase activity of soluble epoxide hydrolase regulates ATP-binding cassette transporter-A1-dependent cholesterol efflux. J Cell Mol Med 2019; 23:6611-6621. [PMID: 31436906 PMCID: PMC6787517 DOI: 10.1111/jcmm.14519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
The contribution of soluble epoxide hydrolase (sEH) to atherosclerosis has been well defined. However, less is understood about the role of sEH and its underlying mechanism in the cholesterol metabolism of macrophages. The expression of sEH protein was increased in atherosclerotic aortas of apolipoprotein E‐deficient mice, primarily in macrophage foam cells. Oxidized low‐density lipoprotein (oxLDL) increased sEH expression in macrophages. Genetic deletion of sEH (sEH−/−) in macrophages markedly exacerbated oxLDL‐induced lipid accumulation and decreased the expression of ATP‐binding cassette transporters‐A1 (ABCA1) and apolipoprotein AI‐dependent cholesterol efflux following oxLDL treatment. The down‐regulation of ABCA1 in sEH−/− macrophages was due to an increase in the turnover rate of ABCA1 protein but not in mRNA transcription. Inhibition of phosphatase activity, but not hydrolase activity, of sEH decreased ABCA1 expression and cholesterol efflux following oxLDL challenge, which resulted in increased cholesterol accumulation. Additionally, oxLDL increased the phosphatase activity, promoted the sEH‐ABCA1 complex formation and decreased the phosphorylated level of ABCA1 at threonine residues. Overexpression of phosphatase domain of sEH abrogated the oxLDL‐induced ABCA1 phosphorylation and further increased ABCA1 expression and cholesterol efflux, leading to the attenuation of oxLDL‐induced cholesterol accumulation. Our findings suggest that the phosphatase domain of sEH plays a crucial role in the cholesterol metabolism of macrophages.
Collapse
Affiliation(s)
- Chih-Chan Lien
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yeng-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ching Cheng
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ching-Chien Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
16
|
Tang L, Wang G, Jiang L, Chen P, Wang W, Chen J, Wang L. Role of sEH R287Q in LDLR expression, LDL binding to LDLR and LDL internalization in BEL-7402 cells. Gene 2018; 667:95-100. [PMID: 29665449 DOI: 10.1016/j.gene.2018.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Familial hypercholesterolemia (FH) is an autosomal dominant disorder of cholesterol metabolism. Three recognized genes (LDLR, APOB and PCSK9) present in only 20-30% of patients with possible FH cases. Additional FH-causing genes need to be explored. The present study found an isolated gene change, sEH R287Q, in a core family of FH. In this study, we aimed to investigate the roles of R287Q on sEH expression and on LDLR expression, LDL binding to LDLR and LDL internalization. MATERIALS AND METHODS 167 lipid-related genes of a core FH family were sequenced using a gene-capture chip. Through carrier dependent protein expression, the expression level (western blot), hydrolase activity (fluorescent chemistry) and intracellular localization (immunofluorescence and Confocal Laser Scanning Microscope) of recombinant sEH R287Q in cultured BEL-7402 cells were conducted. The effect of wild type and R287Q of sEH on LDLR expression, LDL binding to LDLR and LDL internalization were also conducted through Flow Cytometry. RESULTS sEH R287Q was the only gene changes among 167 lipid-related genes in the FH core family. Both expression level and hydrolase activity of recombinant sEH R287Q in cultured cells were significantly declined compared with that of the wild type sEH. sEH R287Q also decreased the binding of LDL to LDLR and LDL internalization and had no effect on cell-surface LDLR protein level. CONCLUSION Our results suggest that sEH R287Q may have a role in the elevation of blood LDL in FH. The exactly role of sEH R287Q on FH deserves further study.
Collapse
Affiliation(s)
- Ling Tang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Guoliang Wang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Long Jiang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Panpan Chen
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; University of South China, Hengyang 421001, China
| | - Wei Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; The Affiliated Hospital of North China University of Science and Technology, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Pilling LC, Kuo CL, Sicinski K, Tamosauskaite J, Kuchel GA, Harries LW, Herd P, Wallace R, Ferrucci L, Melzer D. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging (Albany NY) 2017; 9:2504-2520. [PMID: 29227965 PMCID: PMC5764389 DOI: 10.18632/aging.101334] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Abstract
We undertook a genome-wide association study (GWAS) of parental longevity in European descent UK Biobank participants. For combined mothers' and fathers' attained age, 10 loci were associated (p<5*10-8), including 8 previously identified for traits including survival, Alzheimer's and cardiovascular disease. Of these, 4 were also associated with longest 10% survival (mothers age ≥90 years, fathers ≥87 years), with 2 additional associations including MC2R intronic variants (coding for the adrenocorticotropic hormone receptor). Mother's age at death was associated with 3 additional loci (2 linked to autoimmune conditions), and 8 for fathers only. An attained age genetic risk score associated with parental survival in the US Health and Retirement Study and the Wisconsin Longitudinal Study and with having a centenarian parent (n=1,181) in UK Biobank. The results suggest that human longevity is highly polygenic with prominent roles for loci likely involved in cellular senescence and inflammation, plus lipid metabolism and cardiovascular conditions. There may also be gender specific routes to longevity.
Collapse
Affiliation(s)
- Luke C. Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - Chia-Ling Kuo
- Department of Community Medicine and Health Care, Connecticut Institute for Clinical and Translational Science, Institute for Systems Genomics, University of Connecticut Health Center, CT 06269 USA
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin, Madison, WI 53706, USA
| | - Jone Tamosauskaite
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - George A. Kuchel
- UConn Center on Aging, University of Connecticut, Farmington, CT 06030, USA
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, UK
| | - Pamela Herd
- La Follette School of Public Affairs and the Department of Sociology, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Wallace
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
- UConn Center on Aging, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
18
|
Yi X, Lin J, Li J, Zhou Q, Han Z. Epoxyeicosatrienoic Acids are Mediated by EPHX2 Variants and may be a Predictor of Early Neurological Deterioration in Acute Minor Ischemic Stroke. J Atheroscler Thromb 2017; 24:1258-1266. [PMID: 28835580 PMCID: PMC5742371 DOI: 10.5551/jat.41145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigatethe association of plasma epoxyeicosatrienoic acids (EETs) with early neurologic deterioration (END), and whether EETs are mediated by EPHX2 variants in patients with minor ischemic stroke (MIS). Method: This was a prospective, multi-center observational study in patients with acute MIS in the Chinese population.Plasma EETs levels were measured on admission. Single nucleotide polymorphisms (SNPs) of EPHX2rs751141 were genotyped using mass spectrometry. The primary outcome was END within 10 days after admission. END was defined as an increase in NIHSS of 2 or more points. The degree of disability was assessed using the modified Rankin Scale (mRS) at 3 months after admission. Results: A total of 322 patients were enrolled, of which 85 patients (26.4%) experienced END. The mean EETs level was 64.1 ± 7.5 nmol/L. EETs levels were significantly lower in patients with END compared to patients without END. Frequency of EPHX2 rs751141 GG was higher in patients with END than in patients without END, and EPHX2 rs751141 GG genotype was associated with lower EETs levels. Low level (< 64.4 nmol/L) of EETs was an independent predictor of END (first and second quartiles) in multivariate analyses. END was associated with a higher risk of poor outcome (mRS scores 3–6) at 3 months. Conclusion: END is fairly common and associated with poor outcomes in acute MIS. EPHX2 variants may mediate EETs levels, and low levels of EETs may be a predictor for END in acute MIS.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City
| | - Jing Lin
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University
| | - Jie Li
- Department of Neurology, People's Hospital of Deyang City
| | - Qiang Zhou
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University
| | - Zhao Han
- Department of Neurology, the Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University
| |
Collapse
|
19
|
Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017; 132:69-76. [PMID: 28232135 DOI: 10.1016/j.prostaglandins.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Anorexia Nervosa (AN) is a serious mental illness characterized by emaciation, an intense fear of gaining weight despite being underweight, and distorted body image. Few treatments reverse the core symptoms in AN such as profound aversion to food and food avoidance. Consequently, AN has a chronic and relapsing course and the highest mortality rate of any psychiatric illness. A more complete understanding of the disease pathogenesis is needed in order to develop better treatments and improve AN outcome. The pathogenesis and psychopathophysiology of AN can be better elucidated by combining longitudinal phenotyping with multiple "omics" techniques, including genomics, proteomics, lipidomics, and metabolomics. DESIGN This paper summarizes the key findings of a series of interrelated studies including new experimental data and previously published data, and describes our current initiatives and future directions. RESULTS Exon sequencing data was analyzed in 1205 AN and 1948 controls. Targeted metabolomics, lipidomics, and proteomics data were collected in two independent convenience samples consisting of 75 subjects with eating disorders and 61 sex- and age-matched healthy controls. Study participants were female and the mean age was 22.9 (4.9 [SD]) years. Epoxide hydrolase 2 (EPHX2) genetic variations were significantly associated with AN risk, and epoxide hydrolase (sEH) activity was elevated in AN compared to controls. The polyunsaturated fatty acids (PUFAs) and eicosanoids data revealed that cytochrome P450 pathway was implicated in AN, and AN displayed a dysregulated postprandial metabolism of PUFAs and sEH-dependent eicosanoids. IMPLICATION AND CURRENT INITIATIVES Collectively, our data suggest that dietary factors may contribute to the burden of EPHX2-associated AN susceptibility and affect disease outcome. We are implementing new investigations using a longitudinal study design in order to validate and develop an EPHX2 multi-omics biomarker system. We will test whether sEH-associated postprandial metabolism increases AN risk and affects treatment outcome through an ω-6 rich breakfast challenge. Participants will include 100 ill AN patients, 100 recovered AN patients, and 100 age- and race-matched healthy women. These data will allow us to investigate 1) how genetic and dietary factors independently and synergistically contribute to AN risk and progression, and 2) if clinical severity and treatment response in AN are affected by sEH activity and eicosanoid dysregulation. Results of our study will 1) identify clinically relevant biomarkers, 2) unravel mechanistic functions of sEH, and 3) delineate contributory roles of dietary PUFAs and cytochrome P450 pathway eicosanoids for the purpose of developing novel AN treatments and improving disease prognosis.
Collapse
|
20
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
21
|
The soluble epoxide hydrolase determines cholesterol homeostasis by regulating AMPK and SREBP activity. Prostaglandins Other Lipid Mediat 2016; 125:30-9. [DOI: 10.1016/j.prostaglandins.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022]
|
22
|
Hye Khan MA, Hwang SH, Sharma A, Corbett JA, Hammock BD, Imig JD. A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. Prostaglandins Other Lipid Mediat 2016; 125:40-7. [PMID: 27432695 PMCID: PMC5035206 DOI: 10.1016/j.prostaglandins.2016.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX) and soluble epoxide hydrolase (sEH) inhibitors have therapeutic potential. The present study investigated efficacy of a novel dual acting COX-2/sEH inhibitor, PTUPB in type 2 diabetic Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were treated with vehicle or PTUPB (10mg/kg/d, i.p.) for 8 weeks. At the end of the 8-week experimental period, ZDF rats were diabetic (fasting blood glucose, 287±45mg/dL) compared to Zucker Diabetic Lean rats (ZDL, 99±6mg/dL), and PTUPB treatment improved glycemic status in ZDF rats (146±6mg/dL). Kidney injury was evident in ZDF compared to ZDL rats with elevated albuminurea (44±4 vs 4±2mg/d) and nephrinurea (496±127 vs 16±4μg/d). Marked renal fibrosis, tubular cast formation and glomerular injury were also present in ZDF compared to ZDL rats. In ZDF rats, PTUPB treatment reduced kidney injury parameters by 30-80% compared to vehicle. The ZDF rats also demonstrated increased inflammation and oxidative stress with elevated levels of urinary monocyte chemoattractant protein-1 excretion (862±300 vs 319±75ng/d), renal macrophage infiltration (53±2 vs 37±4/mm(2)) and kidney malondialdehyde/protein ratio (10±1 vs 5±1μmol/mg). PTUPB treatment decreased these inflammatory and oxidative stress markers in the kidney of ZDF rats by 25-57%. These data demonstrate protective actions of a novel dual acting COX-2/sEH inhibitor on the metabolic abnormalities and kidney function in ZDF rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Amit Sharma
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
23
|
Schäfer A, Neschen S, Kahle M, Sarioglu H, Gaisbauer T, Imhof A, Adamski J, Hauck SM, Ueffing M. The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver. Mol Cell Proteomics 2015; 14:2764-74. [PMID: 26070664 PMCID: PMC4597150 DOI: 10.1074/mcp.m115.049064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized. Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation.
Collapse
Affiliation(s)
- Alexander Schäfer
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanne Neschen
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Melanie Kahle
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Hakan Sarioglu
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tobias Gaisbauer
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Axel Imhof
- ‖Munich Center of Integrated Protein Science, Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Germany, Schillerstraβe 44, 80336 Munich
| | - Jerzy Adamski
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; **Institute of Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany;
| | - Marius Ueffing
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany; ‡‡Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany, Röntgenweg 11,72076 Tübingen
| |
Collapse
|
24
|
Shen L, Peng H, Peng R, Fan Q, Zhao S, Xu D, Morisseau C, Chiamvimonvat N, Hammock BD. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis. Atherosclerosis 2015; 239:557-65. [PMID: 25733327 PMCID: PMC4527317 DOI: 10.1016/j.atherosclerosis.2015.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li Shen
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Hongchun Peng
- Department of Orthopaedics and Emergency, Changsha Central Hospital, Changsha, 410011, PR China
| | - Ran Peng
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Qingsong Fan
- Department of Pathology, Xiangya Second Hospital, Central South University, Changsha, Hunan Province, 410001, PR China
| | - Shuiping Zhao
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China.
| | - Christophe Morisseau
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
25
|
Purba ER, Leuhery EA, Oguro A, Imaoka S. The metabolism of lysophosphatidic acids by allelic variants of human soluble epoxide hydrolase. Drug Metab Pharmacokinet 2015; 30:75-81. [DOI: 10.1016/j.dmpk.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
26
|
Genetic markers in the EET metabolic pathway are associated with outcomes in patients with aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2015; 35:267-76. [PMID: 25388680 PMCID: PMC4426743 DOI: 10.1038/jcbfm.2014.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022]
Abstract
Preclinical studies show that epoxyeicosatrienoic acids (EETs) regulate cerebrovascular tone and protect against cerebral ischemia. We investigated the relationship between polymorphic genes involved in EET biosynthesis/metabolism, cytochrome P450 (CYP) eicosanoid levels, and outcomes in 363 patients with aneurysmal subarachnoid hemorrhage (aSAH). Epoxyeicosatrienoic acids and dihydroxyeicosatetraenoic acid (DHET) cerebrospinal fluid (CSF) levels, as well as acute outcomes defined by delayed cerebral ischemia (DCI) or clinical neurologic deterioration (CND), were assessed over 14 days. Long-term outcomes were defined by Modified Rankin Scale (MRS) at 3 and 12 months. CYP2C8*4 allele carriers had 44% and 36% lower mean EET and DHET CSF levels (P=0.003 and P=0.007) and were 2.2- and 2.5-fold more likely to develop DCI and CND (P=0.039 and P=0.041), respectively. EPHX2 55Arg, CYP2J2*7, CYP2C8*1B, and CYP2C8 g.36785A allele carriers had lower EET and DHET CSF levels. CYP2C8 g.25369T and CYP2C8 g.36755A allele carriers had higher EET levels. Patients with CYP2C8*2C and EPHX2 404del variants had worse long-term outcomes while those with EPHX2 287Gln, CYP2J2*7, and CYP2C9 g.816G variants had favorable outcomes. Epoxyeicosatrienoic acid levels were associated with Fisher grade and unfavorable 3-month outcomes. Dihydroxyeicosatetraenoic acids were not associated with outcomes. No associations passed Bonferroni multiple testing correction. These are the first clinical data demonstrating the association between the EET biosynthesis/metabolic pathway and the pathophysiology of aSAH.
Collapse
|
27
|
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 2014; 66:1106-40. [PMID: 25244930 DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Scott-Van Zeeland AA, Bloss CS, Tewhey R, Bansal V, Torkamani A, Libiger O, Duvvuri V, Wineinger N, Galvez L, Darst BF, Smith EN, Carson A, Pham P, Phillips T, Villarasa N, Tisch R, Zhang G, Levy S, Murray S, Chen W, Srinivasan S, Berenson G, Brandt H, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, La Via M, Mitchell JE, Strober M, Rotondo A, Treasure J, Woodside DB, Bulik CM, Keel P, Klump KL, Lilenfeld L, Plotnicov K, Topol EJ, Shih PB, Magistretti P, Bergen AW, Berrettini W, Kaye W, Schork NJ. Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry 2014; 19:724-32. [PMID: 23999524 PMCID: PMC3852189 DOI: 10.1038/mp.2013.91] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition.
Collapse
Affiliation(s)
- A A Scott-Van Zeeland
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - C S Bloss
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - R Tewhey
- Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - V Bansal
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - A Torkamani
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - O Libiger
- The Scripps Translational Science Institute, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - V Duvvuri
- Department of Pediatrics, The University of California, San Diego, La Jolla, CA, USA
| | - N Wineinger
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - L Galvez
- The Scripps Translational Science Institute, La Jolla, CA, USA
| | - B F Darst
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - E N Smith
- Department of Pediatrics, The University of California, San Diego, La Jolla, CA, USA
| | - A Carson
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - P Pham
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - T Phillips
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - N Villarasa
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - R Tisch
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - G Zhang
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA
| | - S Levy
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - S Murray
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - W Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - S Srinivasan
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - G Berenson
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - H Brandt
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Crawford
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - M M Fichter
- Roseneck Hospital for Behavioral Medicine, Prien, Germany
| | - K A Halmi
- Eating Disorder Research Program Weill Cornell Medical College, White Plains, NY, USA
| | - C Johnson
- Eating Recovery Center, Denver, CO, USA
| | - A S Kaplan
- Center for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - M La Via
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J E Mitchell
- Neuropsychiatric Research Institute, Fargo, ND, USA,Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - M Strober
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - A Rotondo
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Pisa, Italy
| | - J Treasure
- Department of Academic Psychiatry, Bermondsey Wing Guys Hospital, University of London, London, UK
| | - D B Woodside
- Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - C M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - P Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - K L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - L Lilenfeld
- Clinical Psychology Program, American School of Professional Psychology at Argosy University, Washington, DC, USA
| | - K Plotnicov
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - E J Topol
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - P B Shih
- Department of Pediatrics, The University of California, San Diego, La Jolla, CA, USA
| | - P Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, The University of Lausanne, Lausanne, Switzerland
| | - A W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - W Berrettini
- Department of Psychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| | - W Kaye
- Department of Pediatrics, The University of California, San Diego, La Jolla, CA, USA
| | - N J Schork
- The Scripps Translational Science Institute, La Jolla, CA, USA,Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, 3344 N Torrey Pines Court, Room 306, La Jolla, CA 92037, USA. E-mail:
| |
Collapse
|
29
|
Duflot T, Roche C, Lamoureux F, Guerrot D, Bellien J. Design and discovery of soluble epoxide hydrolase inhibitors for the treatment of cardiovascular diseases. Expert Opin Drug Discov 2014; 9:229-43. [PMID: 24490654 DOI: 10.1517/17460441.2014.881354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Cardiovascular diseases are a leading cause of death in developed countries. Increasing evidence shows that the alteration in the normal functions of the vascular endothelium plays a major role in the development of cardiovascular diseases. However, specific agents designed to prevent endothelial dysfunction and related cardiovascular complications are still lacking. One emerging strategy is to increase the bioavailability of epoxyeicosatrienoic acids (EETs), synthesized by cytochrome P450 epoxygenases from arachidonic acid. EETs are endothelium-derived hyperpolarising and relaxing factors and display attractive anti-inflammatory and metabolic properties. Genetic polymorphism studies in humans, and experiments in animal models of diseases, have identified soluble epoxide hydrolase (sEH), the major enzyme involved in EET degradation, as a potential pharmacological target. AREAS COVERED This review presents EET pathway and its functions and summarises the data supporting the development of sEH inhibitors for the treatment of cardiovascular and metabolic diseases. Furthermore, the authors present the different chemical families of sEH inhibitors developed and their effects in animal models of cardiovascular and metabolic diseases. EXPERT OPINION Several generations of sEH inhibitors have now been designed to treat endothelial dysfunction and cardiovascular complications for a variety of diseases. The safety of these drugs remains to be carefully investigated, particularly in relation to carcinogenesis. The increasing knowledge of the biological role of each of the EET isomers and of their metabolites may improve their pharmacological profile. This, in turn, could potentially lead to the identification of new pharmacological agents that achieve the cellular effects needed without the deleterious side effects.
Collapse
Affiliation(s)
- Thomas Duflot
- Rouen University Hospital, Department of Pharmacology , Rouen , France
| | | | | | | | | |
Collapse
|
30
|
Seo DM, Goldschmidt-Clermont PJ. Unraveling the genetics of atherosclerosis: implications for diagnosis and treatment. Expert Rev Mol Diagn 2014; 7:45-51. [PMID: 17187483 DOI: 10.1586/14737159.7.1.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hereditary aspect of atherosclerosis has been known for some time in clinical medicine. Over the past three decades, a great deal of research has focused on defining the genetic component of this disease with the hopes that detailed knowledge of the genes and gene variants will lead to improvements in the diagnosis and treatment. This article reviews the different approaches for studying the genetics of atherosclerosis and the potential for using the results in clinical practice.
Collapse
Affiliation(s)
- David M Seo
- Duke University, Division of Cardiology, Department of Medicine and Institute for Genome Sciences and Policy, Durham, NC, USA.
| | | |
Collapse
|
31
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
32
|
Liu Y, Dang H, Li D, Pang W, Hammock BD, Zhu Y. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS One 2012; 7:e39165. [PMID: 22720061 PMCID: PMC3375303 DOI: 10.1371/journal.pone.0039165] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH) is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF)-diet–induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term) or 16 weeks (long-term) and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet–increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet–induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet–induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet–induced hepatic steatosis in inhibiting systemic inflammation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, China.
| | | | | | | | | | | |
Collapse
|
33
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
34
|
Nelson JW, Alkayed NJ. Soluble Epoxide Hydrolase as a Stroke Target. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Bellien J, Joannides R, Richard V, Thuillez C. Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: A promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases? Pharmacol Ther 2011; 131:1-17. [DOI: 10.1016/j.pharmthera.2011.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/11/2023]
|
36
|
Zhao TT, Wasti B, Xu DY, Shen L, Du JQ, Zhao SP. Soluble epoxide hydrolase and ischemic cardiomyopathy. Int J Cardiol 2011; 155:181-7. [PMID: 21704394 DOI: 10.1016/j.ijcard.2011.05.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/08/2011] [Accepted: 05/13/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND The development of cardiovascular disease has been linked to lowered levels of epoxyeicosatrienoic acids (EETs) in the cardiovascular system. Ischemic cardiomyopathy is caused by atherosclerotic lesions in multi-coronary arteries especially diffusive lesions, which can lead to severe myocardial dysfunction, heart enlargement, heart failure, or arrhythmia, and so on. The EETs are metabolized by the soluble epoxide hydrolase (sEH) encoded by the EPHX2 gene that has several known polymorphisms. CONTENT The EPHX2 gene polymorphism is associated with sEH catalytic activity and various cardiovascular diseases. sEH is distributed in a variety of organs and tissues and regulated by multiple factors. Research in the area has led to the presence of multiple powerful soluble epoxide hydrolase inhibitors (sEHIs), whose molecular structure and function has been optimized gradually. sEHIs increase EETs' concentration by inhibiting hydration of EETs into their corresponding vicinal diols. EETs are important signaling molecules and known as endothelium-derived hyperpolarizing factors (EDHF). sEHIs have been developed for their ability to prevent atherosclerosis, dilate the coronary artery, promote angiogenesis, ameliorate postischemic recovery of heart contractile function, decrease ischemia/reperfusion injury, modulate postischemic arrhythmia, and prevent heart failure. SUMMARY sEH is one of the etiological factors of cardiovascular diseases, and plays an important role in the progression of myocardium ischemia. This indicates that sEHIs provide a new method for the prevention and treatment of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Department of Cardiovascular Internal Medicine, Second Xiangya Hospital, Central South University Changsha, 410011, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Lee JP, Yang SH, Kim DK, Lee H, Kim B, Cho JY, Yu KS, Paik JH, Kim M, Lim CS, Kim YS. In vivo activity of epoxide hydrolase according to sequence variation affects the progression of human IgA nephropathy. Am J Physiol Renal Physiol 2011; 300:F1283-90. [PMID: 21429967 DOI: 10.1152/ajprenal.00733.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) regulates the functional integrity of the endothelium. It is hypothesized that the activity of epoxide hydrolase (EPHX2), which determines EET concentration through hydrolysis, may affect the progression of glomerulonephritis. Here, we evaluated the relationship between genetic variations, the in vivo activity of EPHX2, and progression of IgA nephropathy (IgAN). Three single-nucleotide polymorphisms (SNPs) [rs41507953 (K55R), rs751141 (R287Q), and rs1042032] were traced in 401 IgAN patients and 402 normal healthy controls. The in vivo activity of EPHX2 was assessed by measuring substrates/metabolites of the enzyme. None of the polymorphism frequencies differed significantly between patients and controls. However, patients carrying the variant allele (A) of rs751141 possessed better kidney survival than those with the wild-type allele (G; P < 0.001). This association remained significant after adjustment for several risk factors (hazard ratio 1.83, 95% confidence interval 1.13-2.96, P = 0.014). Vascular damage was more prominent in kidney biopsies from patients carrying the G allele of rs751141. The in vivo activity of EPHX2, assessed by the epoxyoctadecenoic acid/dihydroxyoctadecenoic acid ratio using liquid chromatography/mass spectrometry analysis, was elevated in patients with the G allele. The expression of EPHX2 in the human kidney was independent of the sequence variation of the rs751141 allele. Variant rs41507953 was not present in this cohort, and rs1042032 was not associated with progression. Thus the specific measures which regulate EPHX2 activity should be designed for potential therapeutics.
Collapse
Affiliation(s)
- Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Like many eicosanoids, epoxyeicosatrienoic acids (EETs) have multiple biological functions, including reduction of blood pressure, inflammation, and atherosclerosis in multiple species. Hydration of EETs by the soluble epoxide hydrolase (sEH) is the major route of their degradation to the less bioactive diols. Inhibition of the sEH stabilizes EETs, thus, enhancing the beneficial effects of EETs. Human data show an association of sEH (Ephx2) gene polymorphisms with increased risk of atherosclerosis and cardiovascular diseases. These data suggest a potential therapeutic effect of sEH inhibitors (sEHI) in the treatment of atherosclerosis. Indeed, two laboratories reported independently that using different sEHIs in apolipoprotein E-deficient mice significantly attenuated atherosclerosis development and aneurysm formation. The antiatherosclerotic effects of sEHI are correlated with elevation in EET levels and associated with reduction of low-density lipoprotein and elevation of high-density lipoprotein cholesterols, as well as attenuation of expression of proinflammatory genes and proteins. In addition, the antihypertensive effects and improvement of endothelial function also contribute to the mechanism of the antiatherosclerotic effects of sEHI. The broad spectrum of biological action of EETs and sEHIs with multiple biological beneficial actions provides a promising new class of therapeutics for atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Xin Jim Wang
- Arete Therapeutics Inc., 7000 Shoreline Court, Suite 201, South San Francisco, CA 94080 USA
| | - Arzu Ulu
- Department of Entomology and Cancer Center, University of California, 1 Shields Avenue, Davis, CA 95616 USA
| | | | - Bruce Hammock
- Department of Entomology and Cancer Center, University of California, 1 Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
39
|
Iliff JJ, Jia J, Nelson J, Goyagi T, Klaus J, Alkayed NJ. Epoxyeicosanoid signaling in CNS function and disease. Prostaglandins Other Lipid Mediat 2010; 91:68-84. [PMID: 19545642 PMCID: PMC2844927 DOI: 10.1016/j.prostaglandins.2009.06.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase enzymes recognized as key players in vascular function and disease, primarily attributed to their potent vasodilator, anti-inflammatory and pro-angiogenic effects. Although EETs' actions in the central nervous system (CNS) appear to parallel those in peripheral tissue, accumulating evidence suggests that epoxyeicosanoid signaling plays different roles in neural tissue compared to peripheral tissue; roles that reflect distinct CNS functions, cellular makeup and intercellular relationships. This is exhibited at many levels including the expression of EETs-synthetic and -metabolic enzymes in central neurons and glial cells, EETs' role in neuro-glio-vascular coupling during cortical functional activation, the capacity for interaction between epoxyeicosanoid and neuroactive endocannabinoid signaling pathways, and the regulation of neurohormone and neuropeptide release by endogenous EETs. The ability of several CNS cell types to produce and respond to EETs suggests that epoxyeicosanoid signaling is a key integrator of cell-cell communication in the CNS, coordinating cellular responses across different cell types. Under pathophysiological conditions, such as cerebral ischemia, EETs protect neurons, astroglia and vascular endothelium, thus preserving the integrity of cellular networks unique to and essential for proper CNS function. Recognition of EETs' intimate involvement in CNS function in addition to their multi-cellular protective profile has inspired the development of therapeutic strategies against CNS diseases such as cerebral ischemia, tumors, and neural pain and inflammation that are based on targeting the cellular actions of EETs or their biosynthetic and metabolizing enzymes. Based upon the emerging importance of epoxyeicosanoids in cellular function and disease unique to neural systems, we propose that the actions of "neuroactive EETs" are best considered separately, and not in aggregate with all other peripheral EETs functions.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
40
|
Homozygosity for the EPHX2 K55R polymorphism increases the long-term risk of ischemic stroke in men: a study in Swedes. Pharmacogenet Genomics 2010; 20:94-103. [PMID: 20065888 DOI: 10.1097/fpc.0b013e3283349ec9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The soluble epoxide hydrolase (gene name EPHX2) is responsible for metabolism of 8,9 11,12 and 14,15-epoxyeicosatrienoic acids, vasodilator and anti-inflammatory substances. There are several functional polymorphisms in the EPHX2 gene: two of them, the K55R and R287Q, showing an altered metabolic activity in vitro, were associated with coronary heart disease and ischemic stroke in previous studies. The aim of this study was to evaluate the effect of four polymorphisms in the EPHX2 gene on blood pressure levels, hypertension prevalence, and risk of incident cardiovascular events in a large sample of middle-aged Swedes. METHODS The incidence of cardiovascular events (coronary events, n = 274; ischemic stroke, n = 197) was monitored over 10 years of follow-up. RESULTS In the whole population, all polymorphisms had no effect on the studied parameters but a positive interaction between male sex and three SNPs including the K55R was evident: male, but not female, EPHX2 R55R homozygotes had significantly higher crude and adjusted systolic blood pressure and higher hypertension prevalence with respect to K-carriers. Kaplan-Meier curves showed higher incidence of ischemic strokes in male R55R homozygotes with respect to K-carriers (P = 0.015 by log-rank test). After adjustment for major cardiovascular risk factors, the hazard ratio for incident ischemic stroke in male R55R homozygotes remained significantly higher (hazard ratio: 4.8; 95% confidence interval: 1.2-19.9). CONCLUSION The functional K55R polymorphism of the EPHX2 gene confers a higher risk of hypertension prevalence and increases the risk of incident ischemic stroke in male homozygotes. Additional studies are needed to confirm these data and to elucidate the interaction between sex and the EPHX2 K55R polymorphism.
Collapse
|
41
|
Zordoky BNM, El-Kadi AOS. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 2010; 125:446-63. [PMID: 20093140 DOI: 10.1016/j.pharmthera.2009.12.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 01/27/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death in the developed countries. Taking into account the mounting evidence about the role of cytochrome P450 (CYP) enzymes in cardiovascular physiology, CYP polymorphisms can be considered one of the major determinants of individual susceptibility to CVDs. One of the important physiological roles of CYP enzymes is the metabolism of arachidonic acid. CYP epoxygenases such as CYP1A2, CYP2C, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which generally possess vasodilating, anti-inflammatory, anti-apoptotic, anti-thrombotic, natriuretic, and cardioprotective effects. Therefore, genetic polymorphisms causing lower activity of these enzymes are generally associated with an increased risk of several CVDs such as hypertension and coronary artery disease. EETs are further metabolized by soluble epoxide hydrolase (sEH) to the less biologically active dihydroxyeicosatrienoic acids (DHETs). Therefore, sEH polymorphism has also been shown to affect arachidonic acid metabolism and to be associated with CVDs. On the other hand, CYP omega-hydroxylases such as CYP4A11 and CYP4F2 metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) which has both vasoconstricting and natriuretic effects. Genetic polymorphisms causing lower activity of these enzymes are generally associated with higher risk of hypertension. Nevertheless, some studies have denied the association between polymorphisms in the arachidonic acid pathway and CVDs. Therefore, more research is needed to confirm this association and to better understand the pathophysiologic mechanisms behind it.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|
42
|
Lee J, Dahl M, Grande P, Tybjaerg-Hansen A, Nordestgaard BG. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease. Stroke 2009; 41:27-33. [PMID: 19940276 DOI: 10.1161/strokeaha.109.567768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble epoxide hydrolase activity is associated with risk of ischemic stroke, myocardial infarction, and ischemic heart disease. METHODS We genotyped participants from the Copenhagen City Heart Study (n=10 352), the Copenhagen General Population Study (n=26 042), the Copenhagen Carotid Stroke Study (n=398 cases+796 control subjects), and the Copenhagen Ischemic Heart Disease Study (n=4901 cases+9798 control subjects) for the R103C, R287Q, and Arg(402-403ins) variants in the EPHX2 gene and recorded hospital admissions due to ischemic stroke, myocardial infarction, and ischemic heart disease. RESULTS The hazard/odds ratio for ischemic stroke did not differ from 1.0 for any of the EPHX2 genotypes or genotype combinations in the Copenhagen City Heart Study (P for trend=0.15 to 0.76), in the Copenhagen General Population Study (P for trend=0.75 to 0.95), and the Copenhagen Carotid Stroke Study (P for trend=0.08 to 1.00). Similar results were obtained for myocardial infarction and ischemic heart disease in the 3 studies. CONCLUSIONS Our results show with significant power that genetically reduced soluble epoxide hydrolase activity is not a major risk factor for ischemic stroke, myocardial infarction, or ischemic heart disease in the Danish population. This suggests that the relationship between the EPHX2 gene and risk of ischemic stroke and other cardiovascular disease does not exist or its effect size is likely to be quite small.
Collapse
Affiliation(s)
- Julie Lee
- Department of Clinical Biochemistry K54M1, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
43
|
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 2009; 8:794-805. [PMID: 19794443 PMCID: PMC3021468 DOI: 10.1038/nrd2875] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiovascular effects of epoxyeicosatrienoic acids (EETs) include vasodilation, antimigratory actions on vascular smooth muscle cells and anti-inflammatory actions. These endogenous lipid mediators are broken down into diols by soluble epoxide hydrolase (sEH), and so inhibiting this enzyme would be expected to enhance the beneficial cardiovascular properties of EETs. sEH inhibitors (sEHIs) that are based on 1,3-disubstituted urea have been rapidly developed, and have been shown to be antihypertensive and anti-inflammatory, and to protect the brain, heart and kidney from damage. Although challenges for the future exist - including improving the drug-like properties of sEHIs and finding better ways to target sEHIs to specific tissues - the recent initiation of the first clinical trials of sEHIs has highlighted the therapeutic potential of these agents.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
44
|
Luria A, Morisseau C, Tsai HJ, Yang J, Inceoglu B, De Taeye B, Watkins SM, Wiest MM, German JB, Hammock BD. Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. Am J Physiol Endocrinol Metab 2009; 297:E375-83. [PMID: 19458064 PMCID: PMC2724109 DOI: 10.1152/ajpendo.00131.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/04/2009] [Indexed: 12/30/2022]
Abstract
Soluble epoxide hydrolase (Ephx2, sEH) is a bifunctional enzyme with COOH-terminal hydrolase and NH(2)-terminal phosphatase activities. sEH converts epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), and the phosphatase activity is suggested to be involved in cholesterol metabolism. EETs participate in a wide range of biological functions, including regulation of vascular tone, renal tubular transport, cardiac contractility, and inflammation. Inhibition of sEH is a potential approach for enhancing the biological activity of EETs. Therefore, disruption of sEH activity is becoming an attractive therapeutic target for both cardiovascular and inflammatory diseases. To define the physiological role of sEH, we characterized a knockout mouse colony lacking expression of the Ephx2 gene. Lack of sEH enzyme is characterized by elevation of EET to DHET ratios in both the linoleate and arachidonate series in plasma and tissues of both female and male mice. In male mice, this lack of expression was also associated with decreased plasma testosterone levels, sperm count, and testicular size. However, this genotype was still able to sire litters. Plasma cholesterol levels also declined in this genotype. Behavior tests such as anxiety-like behavior and hedonic response were also examined in Ephx2-null and WT mice, as all can be related to hormonal changes. Null mice showed a level of anxiety with a decreased hedonic response. In conclusion, this study provides a broad biochemical, physiological, and behavioral characterization of the Ephx2-null mouse colony and suggests a mechanism by which sEH and its substrates may regulate circulating levels of testosterone through cholesterol biosynthesis and metabolism.
Collapse
Affiliation(s)
- Ayala Luria
- Departmentsof Entomology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Decker M, Arand M, Cronin A. Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 2009; 83:297-318. [PMID: 19340413 DOI: 10.1007/s00204-009-0416-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 12/14/2022]
Abstract
Epoxide hydrolases catalyse the hydrolysis of electrophilic--and therefore potentially genotoxic--epoxides to the corresponding less reactive vicinal diols, which explains the classification of epoxide hydrolases as typical detoxifying enzymes. The best example is mammalian microsomal epoxide hydrolase (mEH)-an enzyme prone to detoxification-due to a high expression level in the liver, a broad substrate selectivity, as well as inducibility by foreign compounds. The mEH is capable of inactivating a large number of structurally different, highly reactive epoxides and hence is an important part of the enzymatic defence of our organism against adverse effects of foreign compounds. Furthermore, evidence is accumulating that mammalian epoxide hydrolases play physiological roles other than detoxification, particularly through involvement in signalling processes. This certainly holds true for soluble epoxide hydrolase (sEH) whose main function seems to be the turnover of lipid derived epoxides, which are signalling lipids with diverse functions in regulatory processes, such as control of blood pressure, inflammatory processes, cell proliferation and nociception. In recent years, the sEH has attracted attention as a promising target for pharmacological inhibition to treat hypertension and possibly other diseases. Recently, new hitherto uncharacterised epoxide hydrolases could be identified in mammals by genome analysis. The expression pattern and substrate selectivity of these new epoxide hydrolases suggests their participation in signalling processes rather than a role in detoxification. Taken together, epoxide hydrolases (1) play a central role in the detoxification of genotoxic epoxides and (2) have an important function in the regulation of physiological processes by the control of signalling molecules with an epoxide structure.
Collapse
Affiliation(s)
- Martina Decker
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurer Str. 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
46
|
EnayetAllah AE, Luria A, Luo B, Tsai HJ, Sura P, Hammock BD, Grant DF. Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem 2008; 283:36592-8. [PMID: 18974052 DOI: 10.1074/jbc.m806315200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with two catalytic domains: a C-terminal epoxide hydrolase domain and an N-terminal phosphatase domain. Epidemiology and animal studies have attributed a variety of cardiovascular and anti-inflammatory effects to the C-terminal epoxide hydrolase domain. The recent association of sEH with cholesterol-related disorders, peroxisome proliferator-activated receptor activity, and the isoprenoid/cholesterol biosynthesis pathway additionally suggest a role of sEH in regulating cholesterol metabolism. Here we used sEH knock-out (sEH-KO) mice and transfected HepG2 cells to evaluate the phosphatase and hydrolase domains in regulating cholesterol levels. In sEH-KO male mice we found a approximately 25% decrease in plasma total cholesterol as compared with wild type (sEH-WT) male mice. Consistent with plasma cholesterol levels, liver expression of HMG-CoA reductase was found to be approximately 2-fold lower in sEH-KO male mice. Additionally, HepG2 cells stably expressing human sEH with phosphatase only or hydrolase only activity demonstrate independent and opposite roles of the two sEH domains. Whereas the phosphatase domain elevated cholesterol levels, the hydrolase domain lowered cholesterol levels. Hydrolase inhibitor treatment in sEH-WT male and female mice as well as HepG2 cells expressing human sEH resulted in higher cholesterol levels, thus mimicking the effect of expressing the phosphatase domain in HepG2 cells. In conclusion, we show that sEH regulates cholesterol levels in vivo and in vitro, and we propose the phosphatase domain as a potential therapeutic target in hypercholesterolemia-related disorders.
Collapse
Affiliation(s)
- Ahmed E EnayetAllah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Luo B, Norris C, Bolstad ESD, Knecht DA, Grant DF. Protein quaternary structure and expression levels contribute to peroxisomal-targeting-sequence-1-mediated peroxisomal import of human soluble epoxide hydrolase. J Mol Biol 2008; 380:31-41. [PMID: 18513744 PMCID: PMC2515390 DOI: 10.1016/j.jmb.2008.04.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 01/26/2023]
Abstract
The peroxisomal targeting sequence 1 (PTS1) is a consensus tripeptide 1 (S/C/A)(K/R/H)(L/M) that is found at the C-terminus of most peroxisomal proteins. However, the only known mammalian protein containing a terminal methionine PTS1 (SKM), human soluble epoxide hydrolase (hsEH), shows both peroxisomal and cytosolic localizations in vivo. Mechanisms regulating the subcellular localization of hsEH thus remain unclear. Here we utilized green fluorescent protein-hsEH fusion constructs to study the peroxisomal targeting of hsEH in transiently and stably transfected Chinese hamster ovary cells. Our results suggest that the peroxisomal import of hsEH is regulated by three factors. First, we show that SKM is required, but not sufficient, for peroxisomal import. Second, by manipulating protein expression levels, we show that SKM mediates peroxisomal import of wild-type hsEH only when expression levels are high. Third, we show that amino acid modifications that decrease subunit oligomerization and presumably enhance accessibility of the SKM motif confer peroxisomal targeting even at low protein expression levels. We conclude that, in hsEH, SKM is a necessary but inefficient and context-dependent PTS1. Peroxisomal import occurs when expression levels are high or when the SKM motif is accessible. These results provide a mechanistic basis for understanding the cell-specific and tissue-specific localization of hsEH in vivo.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | - Carol Norris
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, USA
| | - Erin S. D. Bolstad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, USA
| | - David F. Grant
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| |
Collapse
|
48
|
Sura P, Sura R, Enayetallah AE, Grant DF. Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 2008; 56:551-9. [PMID: 18319271 DOI: 10.1369/jhc.2008.950659] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid, which function in the brain to regulate cerebral blood flow and protect against ischemic brain injury. EETs are converted by soluble epoxide hydrolase (sEH) to the corresponding inactive diol metabolites. Previous animal studies have indicated that sEH gene deletion or treatment with sEH inhibitors results in increased levels of EETs and protection against stroke-induced brain damage. To begin elucidating the underlying mechanism for these effects, we sought to determine the distribution, expression, and activity of sEH in human brain samples obtained from patients with no neurological changes/pathologies. Immunohistochemical analyses showed the distribution of sEH mainly in the neuronal cell bodies, oligodendrocytes, and scattered astrocytes. Surprisingly, in the choroid plexus, sEH was found to be highly expressed in ependymal cells. Vascular localization of sEH was evident in several regions, where it was highly expressed in the smooth muscles of the arterioles. Western blot analysis and enzyme assays confirmed the presence of sEH in the normal brain. Our results indicate differential localization of sEH in the human brain, thus suggestive of an essential role for this enzyme in the central nervous system. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Priyanka Sura
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
49
|
Corenblum MJ, Wise VE, Georgi K, Hammock BD, Doris PA, Fornage M. Altered Soluble Epoxide Hydrolase Gene Expression and Function and Vascular Disease Risk in the Stroke-Prone Spontaneously Hypertensive Rat. Hypertension 2008; 51:567-73. [DOI: 10.1161/hypertensionaha.107.102160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids and represents a novel therapeutic target in cardiovascular disease treatment. We investigated the relationship among sequence variation in the sEH gene (Ephx2), sEH function, and risk of end-organ injury in strains of spontaneously hypertensive rat (SHRs) differing in their susceptibility to develop brain vascular disease. Brain Ephx2 expression was significantly lower in stroke-prone (SHR/A3) than in stroke-resistant (SHR/N) SHRs (5-fold;
P
<0.0001). Resequencing of the Ephx2 promoter in the 2 strains identified 3 polymorphisms that significantly influenced promoter transcriptional activity in vitro. Measurements of brain sEH enzyme activity and plasma levels of arachidonate and linoleate metabolites of sEH further suggested significant differences between the 2 strains. Ratios of epoxyoctadecenoic acids to dihydroxyoctadecenoic acids were significantly higher, indicating a lower sEH activity in SHR/A3 than in SHR/N (
P
<0.0001). Plasma dihydroxyeicosatrienoic acid levels were lower in SHR/A3 than in SHR/N (
P
<0.0001), but plasma epoxyeicosatrienoic acids levels were similar in the 2 strains. Association analysis of Ephx2 polymorphism in the F2 progeny of an SHR/A3×SHR/N cross showed that animals carrying the SHR/A3 allele of Ephx2 had a greater risk of stroke and associated urinary proteinuria than animals that do not. Investigation of patterns of allelic similarities and differences among multiple stroke-prone and stroke-resistant SHR substrains showed that Ephx2 belongs to a haplotype block shared among all of the stroke-prone but no stroke-resistant substrains. These data support a role for Ephx2 polymorphism on sEH gene expression and function and risk of end-organ injury in the stroke-prone SHR.
Collapse
Affiliation(s)
- Mandi J. Corenblum
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| | - Vance E. Wise
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| | - Katrin Georgi
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| | - Bruce D. Hammock
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| | - Peter A. Doris
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| | - Myriam Fornage
- From the Brown Foundation Institute of Molecular Medicine (M.J.C., V.E.W., P.A.D., M.F.), University of Texas Health Science Center at Houston, and the Department of Entomology and Cancer Research Center (K.G., B.D.H.), University of California at Davis
| |
Collapse
|
50
|
Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A. Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet 2008; 4:e32. [PMID: 18282109 PMCID: PMC2242814 DOI: 10.1371/journal.pgen.0040032] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 12/26/2007] [Indexed: 12/25/2022] Open
Abstract
Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.
Collapse
Affiliation(s)
- Angela M Hancock
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Adam S Gordon
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Gidon Eshel
- Department of Geophysical Sciences, University of Chicago, Illinois, United States of America
| | - Jonathan K Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Graham Coop
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|