1
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Burgis NE, VanWormer K, Robbins D, Smith J. An ITPA Enzyme with Improved Substrate Selectivity. Protein J 2024; 43:62-71. [PMID: 38066288 PMCID: PMC10901923 DOI: 10.1007/s10930-023-10162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 02/29/2024]
Abstract
Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.
| | - Kandise VanWormer
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Devin Robbins
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Jonathan Smith
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| |
Collapse
|
3
|
Jena A, Grover N, Bhatia P, Singh M, Lad D, Prasad K, Singh H, Dutta U, Sharma V. Los polimorfismos de ITPA no predicen un riesgo adicional más allá de TPMT y NUDT15 para citopenia inducida por tiopurina en la enfermedad inflamatoria intestinal. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2024; 89:25-30. [DOI: 10.1016/j.rgmx.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
4
|
Jena A, Grover N, Bhatia P, Singh M, Lad D, Prasad KK, Singh H, Dutta U, Sharma V. ITPA polymorphisms do not predict additional risk beyond TPMT and NUDT15 for thiopurine-induced cytopenia in inflammatory bowel disease. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:25-30. [PMID: 36707393 DOI: 10.1016/j.rgmxen.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND AIM Thiopurine-related leukopenia is associated with polymorphisms in the thiopurine methyltransferase (TPMT) and nucleoside diphosphate-linked moiety X type motif 15 (NUDT15) genes. However, those polymorphisms explain only a fraction of thiopurine-related leukopenia. Our aim was to study the role of an inosine triphosphate pyrophosphatase (ITPA) polymorphism in patients with inflammatory bowel disease (IBD) and thiopurine-related leukopenia that was unexplained by the TPMT and NUDT15 polymorphisms. MATERIAL AND METHODS We enrolled consecutive IBD patients on thiopurines (azathioprine or 6-mercaptopurine) from January 2019-March 2020, at a tertiary care center in North India. The presence of the ITPA (C.94C > A) polymorphism was evaluated in all patients, along with its association with thiopurine-related leukopenia. RESULTS Of the 33 patients (from a total of 119 patients) that developed leukopenia, 8 had the TPMT (n = 1) or NUDT15 (n = 7) polymorphism. Of the remaining 111 patients, their mean age was 36.36 ± 13.54 years and 57 (51.3%) were males. Twenty-five (21.01%) had unexplained leukopenia. The ITPA polymorphism was detected in 4 (16%) patients in the unexplained leukopenia group and 24 (27.9%) patients in the non-leukopenia group (p = 0.228). The odds ratio for predicting leukopenia with the ITPA polymorphism was 0.4921 (95% CI 0.1520-1.5830, p = 0.234). CONCLUSION The ITPA (C.94C > A) polymorphism was frequently detected in the study population but was not predictive for leukopenia in patients with IBD on thiopurine therapy.
Collapse
Affiliation(s)
- A Jena
- Departamento de Gastroenterología, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - N Grover
- Departamento de Medicina Interna, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - P Bhatia
- Departamento de Hemato-Oncología Pediátrica, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - M Singh
- Departamento de Hemato-Oncología Pediátrica, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - D Lad
- Departamento de Hematología Clínica, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - K K Prasad
- Departamento de Gastroenterología, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - H Singh
- Departamento de Gastroenterología Quirúrgica, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - U Dutta
- Departamento de Gastroenterología, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India
| | - V Sharma
- Departamento de Gastroenterología, Instituto de Posgrado de Educación e Investigación Médica, Chandigarh, India.
| |
Collapse
|
5
|
Heidari M, Khalili M, Balouchi F, Roozbeh J, Shamsaefar AR, Malek Hosseini SA, Karimi MH. Investigation of the Association Between ITPA Gene 94C>A Sequence Variant and Kidney Transplant Rejection in Iranian Kidney Transplant Recipients. EXP CLIN TRANSPLANT 2023; 21:652-656. [PMID: 37698399 DOI: 10.6002/ect.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
OBJECTIVES Thiopurine prodrugs are commonly used in kidney transplant recipients. Inosine triphosphate pyrophosphatase is an enzyme encoded by the ITPA gene. Alteration of ITPA gene is one of the pharmacogenetic sequence variants possibly involved in thiopurine metabolism. The ITPA 94C>A sequence variant (C-to-A substitution at nucleotide 94) is associated with an increased risk of adverse drug reactions in patients treated with the thiopurine drug. The aim of the present study was to investigate the effect of the ITPA 94C>A gene sequence variant in kidney transplant recipients. MATERIALS AND METHODS The genotyping of the ITPA rs1127354 variant was performed by the polymerase chain reaction restriction fragment length polymorphism method in 140 kidney transplant recipients and in 100 control participants. Data were analyzed with SPSS statistical software. RESULTS The results revealed a significant difference between control and nonrejection groups regarding the rs1127354 genotype and allele frequency. No significant difference was found between the rejection and nonrejection groups regarding the rs1127354 genotype and allele frequency. Also, a significant association was observed between the ageofthe control group and age of the rejection group. No significant differences between sex and underlying disease in patients with or without rejection were observed. CONCLUSIONS We observed no significant differences between rejection and nonrejection transplant. Further studies are recommended, in a larger population and with different ethnicities.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- >From the Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
6
|
Heidari M, Khalili M, Malek Hosseini SA, Geramizadeh B, Shamsaefar AR, Balouchi F, Karimi MH. Investigation of the Association Between the ITPA Gene 94C>A Gene Sequence Variant and Liver Transplant Rejection in Iranian Liver Transplant Recipients. EXP CLIN TRANSPLANT 2022; 20:1094-1098. [PMID: 36718008 DOI: 10.6002/ect.2022.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Inosine triphosphate pyrophosphatase is an enzyme encoded by the ITPA gene and functions to prevent the incorporation of thiopurine nucleotides into DNA and RNA. Thiopurine drug metabolites such as azathioprine and 6-mercaptopurine have been included in the lists of inosine triphosphate pyrophosphatase substrates. Inosine triphosphatase gene alterations are other pharmacogenetic sequence variants possibly involved in thiopurine metabolism. This study aimed to evaluate the possible association between ITPA 94C>A gene sequence variant (C-to-A substitution at nucleotide 94) in liver transplant recipients. MATERIALS AND METHODS The genotyping of ITPA 94C>A was evaluated by the polymerase chain reaction- restriction fragment length polymorphism method in 200 liver transplant recipients as well as 100 controls. Data were analyzed with SPSS statistical software. RESULTS This study showed statistically significant associations between the CA genotype of the ITPA 94C>A sequence variant and liver transplant in the rejection and nonrejection groups. Moreover, the results reported in this study showed no significant differences between sex, age, and blood group in patients with liver transplant (with or without transplant rejection). CONCLUSIONS Our results indicated that there were statistically significant associations of the CA genotype of ITPA 94C>A sequence variant with liver transplant in the rejection and nonrejection groups. Further studies are recommended.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- From the Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
7
|
Yang X, Li Q, He Y, Zhu Y, Yang R, Zhu X, Zheng X, Xiong W, Yang Y. Individualized medication based on pharmacogenomics and treatment progress in children with IgAV nephritis. Front Pharmacol 2022; 13:956397. [PMID: 35935867 PMCID: PMC9355498 DOI: 10.3389/fphar.2022.956397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A vasculitis (IgAV) nephritis, also known as Henoch-Schönlein purpura nephritis (HSPN), is a condition in which small blood vessel inflammation and perivascular IgA deposition in the kidney caused by neutrophil activation, which more often leads to chronic kidney disease and accounts for 1%–2% of children with end-stage renal disease (ESRD). The treatment principles recommended by the current management guidelines include general drug treatment, support measures and prevention of sequelae, among which the therapeutic drugs include corticosteroids, immunosuppressive agents and angiotensin system inhibitors. However, the concentration range of immunosuppressive therapy is narrow and the individualized difference is large, and the use of corticosteroids does not seem to improve the persistent nephropathy and prognosis of children with IgAV. Therefore, individualized maintenance treatment of the disease and stable renal prognosis are still difficult problems. Genetic information helps to predict drug response in advance. It has been proved that most gene polymorphisms of cytochrome oxidase P450 and drug transporter can affect drug efficacy and adverse reactions (ADR). Drug therapy based on genetics and pharmacogenomics is beneficial to providing safer and more effective treatment for children. Based on the pathogenesis of IgAV, this paper summarizes the current therapeutic drugs, explores potential therapeutic drugs, and focuses on the therapeutic significance of corticosteroids and immunosuppressants in children with IgAV nephritis at the level of pharmacogenomics. In addition, the individualized application of corticosteroids and immunosuppressants in children with different genotypes was analyzed, in order to provide a more comprehensive reference for the individualized treatment of IgAV nephritis in children.
Collapse
Affiliation(s)
- Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhu
- Department of Pediatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Wei Xiong, ; Yong Yang,
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Wei Xiong, ; Yong Yang,
| |
Collapse
|
8
|
Luo X, Yan S, Jin L, Zhu H, Zhang X, Ge W. Inosine Triphosphate Pyrophosphatase and NUDT15 are Good Predictors of Clinical Outcomes in Thiopurine-Treated Chinese Patients with Inflammatory Bowel Disease. Ther Drug Monit 2022; 44:391-395. [PMID: 35067667 DOI: 10.1097/ftd.0000000000000965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although the relationship between NUDT15 and thiopurine-induced leukopenia has been proven in previous studies, no prominent factors explaining interindividual variations in its active metabolite, 6-thioguanine nucleotide (6-TGN), and clinical efficacy have been identified. In this study, the correlation between genotypes (thiopurine S-methyltransferase, NUDT15, and ITPA polymorphisms), 6-TGN concentrations, and clinical outcomes (efficacy and side effects) in patients with inflammatory bowel disease were investigated. METHODS In total, 160 patients with inflammatory bowel disease were included, and the 3 genotyped genes and 6-TGN levels were measured by high-performance liquid chromatography. Statistical analyses and calculations were performed to determine their relationships. RESULTS ITPA genotypes and 6-TGN concentration were both associated with the clinical effectiveness of azathioprine (P = 0.036 and P = 4.6 × 10-7), with a significant correlation also detected between them (P = 0.042). Patients with ITPA variant alleles exhibited higher 6-TGN levels than those with the wild-type allele. In addition, the relationship between NUDT15 and leukopenia and neutropenia was confirmed (P = 1.79 × 10-7 and 0.002). CONCLUSIONS In summary, it is recommended that both ITPA and NUDT15 genotyping should be performed before azathioprine initiation. Moreover, the 6-TGN concentration should be routinely monitored during the later period of treatment.
Collapse
Affiliation(s)
- Xuemei Luo
- Department of Medication, The Affiliated Drum Tower Hospital of Nanjing University Medical School; and
- Nanjing Medical Center for Clinical Pharmacy, and
| | - Simin Yan
- Department of Medication, The Affiliated Drum Tower Hospital of Nanjing University Medical School; and
- Nanjing Medical Center for Clinical Pharmacy, and
| | - Lu Jin
- Department of Medication, The Affiliated Drum Tower Hospital of Nanjing University Medical School; and
- Nanjing Medical Center for Clinical Pharmacy, and
| | - Huaijun Zhu
- Department of Medication, The Affiliated Drum Tower Hospital of Nanjing University Medical School; and
- Nanjing Medical Center for Clinical Pharmacy, and
| | - Xiaoqi Zhang
- Department of Medication, The Affiliated Drum Tower Hospital of Nanjing University Medical School; and
- Nanjing Medical Center for Clinical Pharmacy, and
| | - Weihong Ge
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Inosine triphosphate pyrophosphatase from Trypanosoma brucei cleanses cytosolic pools from deaminated nucleotides. Sci Rep 2022; 12:6408. [PMID: 35436992 PMCID: PMC9016069 DOI: 10.1038/s41598-022-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInosine triphosphate pyrophosphatases (ITPases) are ubiquitous house-cleaning enzymes that specifically recognize deaminated purine nucleotides and catalyze their hydrolytic cleavage. In this work, we have characterized the Trypanosoma brucei ITPase ortholog (TbITPA). Recombinant TbITPA efficiently hydrolyzes (deoxy)ITP and XTP nucleotides into their respective monophosphate form. Immunolocalization analysis performed in bloodstream forms suggests that the primary role of TbITPA is the exclusion of deaminated purines from the cytosolic nucleoside triphosphate pools. Even though ITPA-knockout bloodstream parasites are viable, they are more sensitive to inhibition of IMP dehydrogenase with mycophenolic acid, likely due to an expansion of IMP, the ITP precursor. On the other hand, TbITPA can also hydrolyze the activated form of the antiviral ribavirin although in this case, the absence of ITPase activity in the cell confers protection against this nucleoside analog. This unexpected phenotype is dependant on purine availability and can be explained by the fact that ribavirin monophosphate, the reaction product generated by TbITPA, is a potent inhibitor of trypanosomal IMP dehydrogenase and GMP reductase. In summary, the present study constitutes the first report on a protozoan inosine triphosphate pyrophosphatase involved in the removal of harmful deaminated nucleotides from the cytosolic pool.
Collapse
|
10
|
Lee Y, Jang EJ, Yoon HY, Yee J, Gwak HS. Effect of ITPA Polymorphism on Adverse Drug Reactions of 6-Mercaptopurine in Pediatric Patients with Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:ph15040416. [PMID: 35455413 PMCID: PMC9027773 DOI: 10.3390/ph15040416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
6-Mercaptopurine (6-MP) is a cornerstone of the maintenance regimen for pediatric acute lymphoblastic leukemia (ALL). Inosine triphosphate pyrophosphatase (ITPA) is considered a candidate pharmacogenetic marker that may affect metabolism and 6-MP-induced toxicities; however, the findings are inconsistent. Therefore, we attempted to evaluate the effect of ITPA 94C>A polymorphism on 6-MP-induced hematological toxicity and hepatotoxicity through a systematic review and meta-analysis. A literature search for qualifying studies was conducted using the PubMed, Web of Science, and Embase databases until October 2021. Overall, 10 eligible studies with 1072 pediatric ALL patients were included in this meta-analysis. The results indicated that ITPA 94C>A was significantly associated with 6-MP-induced neutropenia (OR 2.38, 95% CI: 1.56−3.62; p = 0.005) and hepatotoxicity (OR 1.98, 95% CI: 1.32−2.95; p = 0.0009); however, no significant association was found between the ITPA 94C>A variant and 6-MP-induced leukopenia (OR 1.75, 95% CI: 0.74−4.12; p = 0.20). This meta-analysis demonstrated that ITPA 94C>A polymorphism could affect 6-MP-induced toxicities. Our findings suggested that ITPA genotyping might help predict 6-MP-induced myelosuppression and hepatotoxicity.
Collapse
Affiliation(s)
- Yeonhong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
- Department of Pharmacy, National Cancer Center, Goyang-si 10408, Korea
| | - Eun Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Ha-Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
- Correspondence: ; Tel.: +82-2-3277-4376; Fax: +82-2-3277-3051
| |
Collapse
|
11
|
Association of ITPA gene polymorphisms with adverse effects of AZA/6-MP administration: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2022; 22:39-54. [PMID: 35034963 DOI: 10.1038/s41397-021-00255-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Azathioprine (AZA) and its metabolite, mercaptopurine (6-MP), are widely used immunosuppressant drugs. Polymorphisms in genes implicated in AZA/6-MP metabolism, reportedly, could account in part for their potential toxicity. In the present study we performed a systematic review and a meta-analysis, comprising 30 studies and 3582 individuals, to investigate the putative genetic association of two inosine triphosphatase (ITPA) polymorphisms with adverse effects in patients treated with AZA/6-MP. We found that rs1127354 is associated with neutropenia in general populations and in children (OR: 2.39, 95%CI: 1.97-2.90, and OR: 2.43, 95%CI: 2.12-2.79, respectively), and with all adverse effects tested herein in adult populations (OR: 2.12, 95%CI: 1.22-3.69). We also found that rs7270101 is associated with neutropenia and leucopenia in all-ages populations (OR: 2.93, 95%CI: 2.36-3.63, and OR: 2.82, 95%CI: 1.76-4.50, respectively) and with all adverse effects tested herein in children (OR: 1.74, 95%CI: 1.06-2.87). Stratification according to background disease, in combination with multiple comparisons corrections, verified neutropenia to be associated with both polymorphisms, in acute lymphoblastic leukemia (ALL) patients. These findings suggest that ITPA polymorphisms could be used as predictive biomarkers for adverse effects of thiopurine drugs to eliminate intolerance in ALL patients and clarify dosing in patients with different ITPA variants.
Collapse
|
12
|
Zamzami MA. Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells 2022; 11:384. [PMID: 35159194 PMCID: PMC8833965 DOI: 10.3390/cells11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Inosine triphosphate pyrophosphatase (ITPase) is an enzyme encoded by the ITPA gene and functions to prevent the incorporation of noncanonical purine nucleotides into DNA and RNA. Specifically, the ITPase catalyzed the hydrolysis of (deoxy) nucleoside triphosphates ((d) NTPs) into the corresponding nucleoside monophosphate with the concomitant release of pyrophosphate. Recently, thiopurine drug metabolites such as azathioprine have been included in the lists of ITPase substrates. Interestingly, inosine or xanthosine triphosphate (ITP/XTP) and their deoxy analogs, deoxy inosine or xanthosine triphosphate (dITP/dXTP), are products of important biological reactions such as deamination that take place within the cellular compartments. However, the incorporation of ITP/XTP, dITP/dXTP, or the genetic deficiency or polymorphism of the ITPA gene have been implicated in many human diseases, including infantile epileptic encephalopathy, early onset of tuberculosis, and the responsiveness of patients to cancer therapy. This review provides an up-to-date report on the ITPase enzyme, including information regarding its discovery, analysis, and cellular localization, its implication in human diseases including cancer, and its therapeutic potential, amongst others.
Collapse
Affiliation(s)
- Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Khaeso K, Komvilaisak P, Chainansamit SO, Nakkam N, Suwannaying K, Kuwatjanakul P, Hikino K, Dornsena A, Kanjanawart S, Laoaroon N, Vannaprasaht S, Taketani T, Tassaneeyakul W. NUDT15 is a key genetic factor for prediction of hematotoxicity in pediatric patients who received a standard low dosage regimen of 6-mercaptopurine. Drug Metab Pharmacokinet 2021; 43:100436. [PMID: 35016134 DOI: 10.1016/j.dmpk.2021.100436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022]
Abstract
6-Mercaptopurine (6-MP) is commonly used for treatment of acute lymphoblastic leukemia (ALL). The incidence of hematotoxicity caused by this drug is quite high in Asians even using a standard low dosage regimen. The present study was aimed to elucidate the impact of thiopurine S-methyltransferase (TPMT), a nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15), inosine triphosphatase (ITPA) and ATP Binding Cassette Subfamily C Member 4 (ABCC4) polymorphisms on hematotoxicity in pediatric patients who received a standard low starting dose of 6-MP. One hundred and sixty-nine pediatric patients were enrolled and their genotypes were determined. Patients who carried NUDT15∗3 and NUDT15∗2 genotypes were at a 10-15 fold higher risk of severe neutropenia than those of the wild-type during the early months of the maintenance phase. Risk of neutropenia was not significantly increased in patients with other NUDT15 variants as well as in patients with TPMT, ITPA or ABCC4 variants. These results suggest that NUDT15 polymorphisms particularly, NUDT15∗3 and NUDT15∗2, play major roles in 6-MP-induced severe hematotoxicity even when using a standard low dosage of 6-MP and genotyping of these variants is necessary in order to obtain precise tolerance doses and avoid severe hematotoxicity in pediatric patients.
Collapse
Affiliation(s)
- Kanyarat Khaeso
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | | | | | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Kunanya Suwannaying
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | | | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Areerat Dornsena
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sirimas Kanjanawart
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Napat Laoaroon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | - Suda Vannaprasaht
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, Izumo, Japan
| | | |
Collapse
|
14
|
Miao Q, Yan L, Zhou Y, Li Y, Zou Y, Wang L, Bai Y, Zhang J. Association of genetic variants in TPMT, ITPA, and NUDT15 with azathioprine-induced myelosuppression in southwest china patients with autoimmune hepatitis. Sci Rep 2021; 11:7984. [PMID: 33846471 PMCID: PMC8042108 DOI: 10.1038/s41598-021-87095-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the influence of TPMT*3C, ITPA, NUDT15, and 6-thioguanine nucleotides (6-TGN) on azathioprine (AZA)-induced myelosuppression in Southwest China patients with autoimmune hepatitis (AIH). A total of 113 Chinese patients with AIH receiving AZA maintenance treatment were evaluated. The relevant clinical data of the patients were collected from the hospital information system. Genotyping of TPMT*3C(rs1142345), ITPA (rs1127354) and NUDT15(rs116855232) was conducted using a TaqMan double fluorescent probe. The concentration of 6-TGN was determined using UPLC-MS/MS. Among AIH patients treated with AZA, 40 (35.4%) exhibited different degrees of myelosuppression. The NUDT15 variant was associated with leukopenia (P = 8.26 × 10–7; OR = 7.5; 95% CI 3.08–18.3) and neutropenia (P = 3.54 × 10–6; OR = 8.05; 95% CI 2.96–21.9); however, no significant association with myelosuppression was observed for TPMT*3C and ITPA variants (P > 0.05). There was no significant difference in 6-TGN concentration between AIH patients with or without myelosuppression (P = 0.556), nor was there a significant difference between patients with variant alleles of TPMT*3C, ITPA, or NUDT15 and wild-type patients (P > 0.05). Interestingly, it was found that patients with a lower BMI had higher adjusted 6-TGN levels and a higher incidence of myelosuppression (P = 0.026 and 0.003). This study confirmed that NUDT15 variants are a potential independent risk predictor for AZA-induced leukopenia and neutropenia. BMI may be a crucial non-genetic factor that affects the concentration of AZA metabolites and myelosuppression. In addition, the 6-TGN concentration in red blood cells does not reflect the toxicity of AZA treatment, and new biomarkers for AZA therapeutic drug monitoring need further research.
Collapse
Affiliation(s)
- Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Lin Yan
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yanhong Zhou
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yi Li
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yuangao Zou
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China.
| | - Junlong Zhang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
15
|
Lee JM, Shim YJ, Kim DH, Jung N, Ha JS. The Effect of NUDT15, TPMT, APEX1, and ITPA Genetic Variations on Mercaptopurine Treatment of Pediatric Acute Lymphoblastic Leukemia. CHILDREN-BASEL 2021; 8:children8030224. [PMID: 33804051 PMCID: PMC7998516 DOI: 10.3390/children8030224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Mercaptopurine (MP) is a commonly used maintenance regimen for childhood acute lymphoblastic leukemia (ALL). However, 6-MP has a narrow therapeutic index, which causes dose-limiting toxicities in hematopoietic tissues. Recent studies reported several candidate pharmacogenetic markers such as TPMT, NUDT15, ITPA, and APEX1, which predict the possibility of 6-MP related toxicities. The aim of this study is to evaluate the effect of major variants of these genes on 6-MP intolerances and toxicities in pediatric acute lymphoblastic leukemia (ALL) patients. A total of 83 pediatric ALL patients were included (56 males and 27 females). The NUDT15 c.415C>T (rs116855232), NUDT15 c.55_56insGAGTCG (rs746071566), ITPA c.94C>A (rs1127354), ITPA c.IVS2+21A>C (rs7270101), APEX c.190A>G (rs2307486), and TPMT variants were analyzed by sanger sequencing. Correlations between indexes of 6-MP-related toxicities or 6-MP intolerance (absolute neutrophil count [ANC] at several time point, days of ANC < 1 × 103/mm3, days of ANC < 0.5 × 103/mm3, frequency of febrile neutropenia, maximum AST and ALT, 6-MP dose and 6-MP dose intensity during maintenance therapy) and genetic variations were analyzed. The NUDT15 c.415C>T allele carrier showed significantly low 6-MP doses at the final maintenance therapy period than the wild type carrier (p = 0.007). The 6-MP dose intensities at the sixth and final maintenance period were also significantly low in NUDT15 c.415C>T carriers (p = 0.003 and 0.008, respectively). However, indexes for neutropenia, days of febrile neutropenia, maximum AST, and ALT levels were not associated with the presence of c.415C>T as well as other analyzed variants. When analyzing the effect of the coexistence of NUDT15 c.415C>T and ITPA c.94C>A, no significant differences were found between the NUDT15 c.415C>T carrier and carrier with both variations. The NUDT15 c.415C>T was the most useful marker to predict 6-MP intolerance among analyzed variants in our study population. Although we could not find association of those variants with 6-MP induced toxicities and the synergistic effects of those variants, a well-planed larger scale study would be helpful in clarifying new candidates and their clinical effects.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.S.); (N.J.)
| | - Do-Hoon Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.S.); (N.J.)
| | - Jung-Sook Ha
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-258-7938
| |
Collapse
|
16
|
Labarile N, Ghosh S, Ng SC, Walters J, Iacucci M. Tests that now deserve to be more widely adopted in IBD clinical practice. Therap Adv Gastroenterol 2020; 13:1756284820944088. [PMID: 32782481 PMCID: PMC7385848 DOI: 10.1177/1756284820944088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases are chronic relapsing immune-mediated diseases of the intestinal tract with multifaceted manifestations and treatment related morbidity. Faecal and blood tests, radiological, endoscopic and histologic investigations are now widely used for managing both ulcerative colitis and Crohn's disease. Over the years, a number of new investigations have been proposed but not widely adopted yet. Patients with Crohn's disease may have multiple causes of diarrhoea, not always attributable to disease exacerbation, but sometimes linked to bile acid malabsorption; we have a reliable serum test, C4, that allows us to recognize and treat this cause of diarrhoea efficaciously and not empirically, but it is not available or used widely. There is genetic inter-individual variability in drug responses, in terms of both efficacy and toxicity, leading to high rates of therapeutic failure. Patients treated with thiopurine or, more rarely, 5-aminosalicylic acid may suffer from unpredictable and serious adverse events, some of these with pathogenesis related to genetic variants: myelosuppression, acute pancreatitis and nephrotoxicity. The identification of pre-treatment genetic tests can optimize therapeutic choice and avoid adverse events. With regard to biological drugs, patients can experience primary non-response or loss of response due to induction of immune responses to the drugs affecting drug efficacy and determining hypersensitivity reactions. We have specifically reviewed a number of investigations, whose use is currently limited, and highlighted four tests that deserve to be more widely incorporated in clinical practice as these could improve medical decision-making and patient outcomes.
Collapse
Affiliation(s)
| | - Subrata Ghosh
- Institute Translational of Medicine, Institute of Immunology and Immunotherapy and NIHR Birmingham Biomedical Research Centre, University Hospitals NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Julian Walters
- Division of Digestive Diseases, Imperial College London, Imperial College Healthcare, London, UK
| | - Marietta Iacucci
- Institute Translational of Medicine, Institute of Immunology and Immunotherapy and NIHR Birmingham Biomedical Research Centre, University Hospitals NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Wahlund M, Nilsson A, Kahlin AZ, Broliden K, Myrberg IH, Appell ML, Berggren A. The Role of TPMT, ITPA, and NUDT15 Variants during Mercaptopurine Treatment of Swedish Pediatric Patients with Acute Lymphoblastic Leukemia. J Pediatr 2020; 216:150-157.e1. [PMID: 31635813 DOI: 10.1016/j.jpeds.2019.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the roles of thiopurine methyltransferase (TPMT), inosine triphosphatase (ITPA), and Nudix hydrolase 15 (NUDT15) in 6-mercaptopurine (6-MP) sensitivity during treatment of pediatric patients with acute lymphoblastic leukemia (ALL). STUDY DESIGN The study included 102 pediatric patients with ALL subject to the Nordic society Of Paediatric Haematology and Oncology (NOPHO) ALL-2000 and ALL-2008 protocols. Episodes of neutropenia and febrile neutropenia, TPMT sequence variants, as well as 6-MP end doses, were collected retrospectively from medical records. TPMT, ITPA, and NUDT15 sequence variants were analyzed using pyrosequencing. RESULTS TPMT variants were associated with a reduced risk of neutropenia and febrile neutropenia during the maintenance II period (P = .019 and P < .0001, respectively). In addition, a NUDT15 variant was associated with a lower end dose of 6-MP (P = .0097), but not with neutropenia and febrile neutropenia. ITPA variants were not associated with an increased risk of neutropenia, febrile neutropenia, nor lower end dose of 6-MP. However, when analyzing the entire treatment period, ITPA variants were associated with a decreased risk of febrile neutropenia. CONCLUSIONS White blood cell count-based dose adjustments are regularly performed for known TPMT- deficient patients and results in a reduced risk of neutropenia and febrile neutropenia. Also in NUDT15-deficient patients dose adjustments are performed as indicated by low end dose of 6-MP. ITPA-deficient patients had a decreased risk of febrile neutropenia when analyzing the entire treatment period. Our data suggest that NUDT15 plays an important role in 6-MP treatment and the results should be confirmed in larger cohorts. Future studies should also follow up whether white blood cell count-based dose adjustments affect the risk of relapse.
Collapse
Affiliation(s)
- Martina Wahlund
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nilsson
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Anna Zimdahl Kahlin
- Division of Drug Research, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Kristina Broliden
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Malin Lindqvist Appell
- Division of Drug Research, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Anna Berggren
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
18
|
Urabe A, Sakamori R, Tahata Y, Yamada R, Imai Y, Hagiwara H, Tamura S, Fukui H, Yamada Y, Kaneko A, Hijioka T, Kodama T, Hikita H, Tatsumi T, Takehara T. Predictive factors of anemia during sofosbuvir and ribavirin therapy for genotype 2 chronic hepatitis C patients. Hepatol Res 2019; 49:853-859. [PMID: 31009550 DOI: 10.1111/hepr.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
AIM Sofosbuvir (SOF) and ribavirin (RBV) combination therapy has improved the sustained virologic response (SVR) rate and shortened the treatment duration for patients with chronic hepatitis C virus (HCV) genotype 2 infection. Ribavirin-induced hemolytic anemia is one of the most troublesome side-effects of SOF/RBV therapy; however, factors associated with this condition have not been fully elucidated. We aimed to identify a safer way to complete treatment with SOF/RBV therapy by examining factors related to RBV-induced hemolytic anemia and identifying patients who did not develop anemia. METHODS Two hundred and one patients with genotype 2 chronic hepatitis C treated with SOF/RBV therapy were studied. Significant factors associated with the decline in hemoglobin (Hb) levels from the baseline were analyzed. RESULTS The SVR rate was 96.5% (194 out of 201 patients) based on intent-to-treat analysis. In multivariate analysis, inosine triphosphatase (ITPA) gene variation (P < 0.0001) and estimated glomerular filtration rate (eGFR) (0.001) were significantly associated with a decrease in Hb levels less than 2 g/dL. All patients were divided into four groups by ITPA and eGFR at baseline, and we identified patients with ITPA CA/AA and eGFR >75 as a group that did not develop anemia. CONCLUSIONS The results presented here suggest that patients with ITPA CA/AA and eGFR >75 had no reduction in Hb levels during the treatment with SOF/RBV in HCV genotype 2-infected patients. Adding RBV to direct-acting antiviral therapy might not be problematic in certain patients, at least in terms of the occurrence of anemia.
Collapse
Affiliation(s)
- Ayako Urabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Tahata
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoko Yamada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | - Taizo Hijioka
- National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
19
|
Franca R, Zudeh G, Pagarin S, Rabusin M, Lucafò M, Stocco G, Decorti G. Pharmacogenetics of thiopurines. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:256-270. [PMID: 35582727 PMCID: PMC8992634 DOI: 10.20517/cdr.2019.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 11/12/2022]
Abstract
Polychemotherapeutic protocols for the treatment of pediatric acute lymphoblastic leukemia (ALL) always include thiopurines. Specific approaches vary in terms of drugs, dosages and combinations. Such therapeutic schemes, including risk-adapted intensity, have been extremely successful for children with ALL who have reached an outstanding 5-year survival of greater than 90% in developed countries. Innovative drugs such as the proteasome inhibitor bortezomib and the bi-specific T cell engager blinatumomab are available to further improve therapeutic outcomes. Nevertheless, daily oral thiopurines remain the backbone maintenance or continuation therapy. Pharmacogenetics allows the personalization of thiopurine therapy in pediatric ALL and clinical guidelines to tailor therapy on the basis of genetic variants in TPMT and NUDT15 genes are already available. Other genes of interest, such as ITPA and PACSIN2, have been implicated in interindividual variability in thiopurines efficacy and adverse effects and need additional research to be implemented in clinical protocols. In this review we will discuss current literature and clinical guidelines available to implement pharmacogenetics for tailoring therapy with thiopurines in pediatric ALL.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Giulia Zudeh
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste 34127, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Sofia Pagarin
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste 34127, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste 34127, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste 34127, Italy
- Experimental and Clinical Pharmacology Unit, Centro di riferimento oncologico, I.R.C.C.S., Aviano 33081, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste 34127, Italy
| |
Collapse
|
20
|
Lim SZ, Chua EW. Revisiting the Role of Thiopurines in Inflammatory Bowel Disease Through Pharmacogenomics and Use of Novel Methods for Therapeutic Drug Monitoring. Front Pharmacol 2018; 9:1107. [PMID: 30349479 PMCID: PMC6186994 DOI: 10.3389/fphar.2018.01107] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Azathioprine and 6-mercaptopurine, often referred to as thiopurine compounds, are commonly used in the management of inflammatory bowel disease. However, patients receiving these drugs are prone to developing adverse drug reactions or therapeutic resistance. Achieving predefined levels of two major thiopurine metabolites, 6-thioguanine nucleotides and 6-methylmercaptopurine, is a long-standing clinical practice in ensuring therapeutic efficacy; however, their correlation with treatment response is sometimes unclear. Various genetic markers have also been used to aid the identification of patients who are thiopurine-sensitive or refractory. The recent discovery of novel Asian-specific DNA variants, namely those in the NUDT15 gene, and their link to thiopurine toxicity, have led clinicians and scientists to revisit the utility of Caucasian biomarkers for Asian individuals with inflammatory bowel disease. In this review, we explore the limitations associated with the current methods used for therapeutic monitoring of thiopurine metabolites and how the recent discovery of ethnicity-specific genetic markers can complement thiopurine metabolites measurement in formulating a strategy for more accurate prediction of thiopurine response. We also discuss the challenges in thiopurine therapy, alongside the current strategies used in patients with reduced thiopurine response. The review is concluded with suggestions for future work aiming at using a more comprehensive approach to optimize the efficacy of thiopurine compounds in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
ITPA Activity in Adults and Children Treated With or Without Azathioprine: Relationship Between TPMT Activity, Thiopurine Metabolites, and Co-medications. Ther Drug Monit 2018. [PMID: 28650902 DOI: 10.1097/ftd.0000000000000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The implication of inosine triphosphate pyrophosphatase (ITPA) on thiopurine drug response variability has been investigated but little data are available on its role on thiopurine metabolites. The ability of ITPA to modify the thiopurine metabolite levels is currently used to optimize azathioprine (AZA) therapy in relation to thiopurine S-methyltransferase (TPMT) activity, the aim of this study is to investigate ITPA phenotype in a large population and to evaluate the relation between ITPA and TPMT activities and thiopurine metabolites. METHODS ITPA activity was determined in 183 adults and 138 children with or without AZA therapy. 6-thioguanine nucleotides (6-TGN), 6-methylmercaptopurine nucleotides (6-MeMPN) levels, and ITPA as well as TPMT activities were measured in red blood cells. Using the Gaussian mixture model, distribution of ITPA activity was evaluated. Intraindividual variability and influence of age, sex, AZA treatment and associated co-medications on ITPA activity were also assessed. RESULTS This retrospective study shows a quadrimodal distribution in ITPA activity. No influence of age, sex, AZA therapy, and co-medications was found. In adults, ITPA activity was not significantly associated with 6-TGN or 6-MeMPN concentrations, whereas a weak negative correlation was observed with 6-MeMPN levels in pediatric populations (rs = -0.261; P = 0.024). A weak positive correlation was observed between ITPA and TPMT activities in children (rs = 0.289; P = 0.001). CONCLUSIONS ITPA activity was poorly influenced by nongenetic parameters and has no influence on 6-TGN and 6-MeMPN concentrations in adults and only a weak correlation with 6-MeMPN and TPMT activity in children. These results demonstrate that ITPA is not a rate-limiting enzyme in the formation of 6-TGN but suggest that a decrease in ITPA activity in children may be a risk factor for accumulation of 6-MeMPN in cells.
Collapse
|
22
|
Gerbek T, Ebbesen M, Nersting J, Frandsen TL, Appell ML, Schmiegelow K. Role of TPMT and ITPA variants in mercaptopurine disposition. Cancer Chemother Pharmacol 2018; 81:579-586. [PMID: 29387964 DOI: 10.1007/s00280-018-3525-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To explore the levels of thioguanine incorporated into DNA (DNA-TG), and erythrocyte levels of 6-thioguanine nucleotides (Ery-TGN) and methylated metabolites (Ery-MeMP) during 6-mercaptopurine (6MP)/Methotrexate (MTX) therapy of childhood acute lymphoblastic leukemia (ALL) and the relation to inosine triphosphatase (ITPA) and thiopurine methyltransferase (TPMT) gene variants. METHODS Blood samples were drawn during 6MP/MTX maintenance therapy from 132 children treated for ALL at Rigshospitalet, Copenhagen. The samples were analysed for thiopurine metabolites and compared to TPMT (rs1800460 and rs1142345) and ITPA (rs1127354) genotypes. RESULTS Median DNA-TG (mDNA-TG) levels were higher in TPMT and ITPA low-activity patients as compared to wildtype patients (TPMTLA 549 vs. 364 fmol/µg DNA, p = 0.007, ITPALA 465 vs. 387 fmol/µg DNA, p = 0.04). mDNA-TG levels were positively correlated to median Ery-TGN (mEry-TGN)(rs = 0.37, p = 0.001), but plateaued at higher mEry-TGN levels. DNA-TG indices (mDNA-TG/mEry-TGN) were 42% higher in TPMTWT patients as compared to TPMTLA patients but no difference in DNA-TG indices was observed between ITPAWT and ITPALA patients (median 1.7 vs. 1.6 fmol/µg DNA/ nmol/mmol Hb, p = 0.81). DNA-TG indices increased with median Ery-MeMP (mEry-MeMP) levels (rs = 0.25, p = 0.001). CONCLUSIONS TPMT and ITPA genotypes significantly influence the metabolism of 6MP. DNA-TG may prove to be a more relevant pharmacokinetic parameter for monitoring 6MP treatment intensity than cytosolic metabolites. Prospective trials are needed to evaluate the usefulness of DNA-TGN for individual dose adjustments in childhood ALL maintenance therapy.
Collapse
Affiliation(s)
- Tina Gerbek
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.
| | - Maria Ebbesen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Thomas L Frandsen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Institute of Clinical Medicine, The Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Citterio-Quentin A, Moulsma M, Gustin MP, Lachaux A, Boulieu R. ITPA Activity in Children Treated by Azathioprine: Relationship to the Occurrence of Adverse Drug Reactions and Inflammatory Response. Basic Clin Pharmacol Toxicol 2018; 122:588-595. [PMID: 29327413 DOI: 10.1111/bcpt.12958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
Azathioprine (AZA), a thiopurine drug, is widely used in the treatment of children with immunological diseases such as inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH); however, interindividual variability in the occurrence of adverse drug reactions (ADRs) and drug response is observed. This study investigated (i) the relationships between inosine triphosphate pyrophosphatase (ITPA) activity, an enzyme involved in thiopurine metabolism, and the occurrence of ADRs in children with immunological disease on AZA therapy, and (ii) the relationship between ITPA activity and the inflammatory activity observed in children with IBD. ITPA and TPMT activities were determined in 106 children with immunological disease on AZA therapy. Markers of hepatotoxicity, myelotoxicity, pancreatitis and inflammation as well as clinical information were retrospectively collected during regular medical visits. No significant association was found between ITPA activity and hepatotoxicity or clinical ADRs such as cutaneous reactions, arthralgia, flulike symptoms and gastrointestinal disorders. Concerning myelotoxicity, a significant relation was observed between ITPA activity and RBC mean corpuscular volume (MCV; p=0.003). This observation may be related to the significant relationship found between high ITPA activity and the increase in γ-globulin level reflecting inflammation (p=0.005). In our study, ITPA activity was not associated with occurrence of ADRs, but a relationship between high ITPA activity and γ-globulin, a marker of inflammation, was found in children with IBD. Therefore, measurement of ITPA activity may help to identify children with IBD predisposed to residual inflammation on AZA therapy. Further prospective studies are needed to confirm this result.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Mustapha Moulsma
- Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Marie-Paule Gustin
- Emerging pathogen Laboratory - Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Alain Lachaux
- Pediatric Gastroenterology Unit, Civil Hospices of Lyon, Hôpital Femme-Mère-Enfant (HFME), Lyon, France
| | - Roselyne Boulieu
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| |
Collapse
|
24
|
Peltenburg NC, Bierau J, Bakker JA, Schippers JA, Lowe SH, Paulussen ADC, van den Bosch BJC, Leers MPG, Hansen BE, Verbon A. Erythrocyte Inosine triphosphatase activity: A potential biomarker for adverse events during combination antiretroviral therapy for HIV. PLoS One 2018; 13:e0191069. [PMID: 29329318 PMCID: PMC5766130 DOI: 10.1371/journal.pone.0191069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/26/2017] [Indexed: 12/30/2022] Open
Abstract
The purine analogues tenofovir and abacavir are precursors of potential substrates for the enzyme Inosine 5'-triphosphate pyrophosphohydrolase (ITPase). Here, we investigated the association of ITPase activity and ITPA genotype with the occurrence of adverse events (AEs) during combination antiretroviral therapy (cART) for human immunodeficiency virus (HIV) infection. In 393 adult HIV-seropositive patients, AEs were defined as events that led to stop of cART regimen. ITPase activity ≥4 mmol IMP/mmol Hb/hour was considered as normal. ITPA genotype was determined by testing two ITPA polymorphisms: c.94C>A (p.Pro32Thr, rs1127354) and c.124+21A>C (rs7270101). Logistic regression analysis determined odds ratios for developing AEs. In tenofovir-containing regimens decreased ITPase activity was associated with less AEs (p = 0.01) and longer regimen duration (p = 0.001). In contrast, in abacavir-containing regimens decreased ITPase activity was associated with more AEs (crude p = 0.02) and increased switching of medication due to AEs (p = 0.03). ITPA genotype wt/wt was significantly associated with an increase in the occurrence of AEs in tenofovir-containing regimens. Decreased ITPase activity seems to be protective against occurrence of AEs in tenofovir-containing cART, while it is associated with an increase in AEs in abacavir-containing regimens.
Collapse
Affiliation(s)
- N. Chantal Peltenburg
- Department of Internal medicine, Division Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap A. Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda A. Schippers
- Department of Integrated Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Selwyn H. Lowe
- Department of internal medicine, Division Infectious Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Microbiology, School of CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Aimée D. C. Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Mathie P. G. Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Bettina E. Hansen
- Department of Gastroenterology & Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal medicine, Division Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Ji D, Stepchenkova EI, Cui J, Menezes MR, Pavlov YI, Kool ET. Measuring deaminated nucleotide surveillance enzyme ITPA activity with an ATP-releasing nucleotide chimera. Nucleic Acids Res 2017; 45:11515-11524. [PMID: 29036687 PMCID: PMC5714213 DOI: 10.1093/nar/gkx774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023] Open
Abstract
Nucleotide quality surveillance enzymes play important roles in human health, by detecting damaged molecules in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or adversely affect metabolism. In particular, deamination of adenine moiety in (deoxy)nucleoside triphosphates, resulting in formation of (d)ITP, can be deleterious, leading to DNA damage, mutagenesis and other harmful cellular effects. The 21.5 kDa human enzyme that mitigates this damage by conversion of (d)ITP to monophosphate, ITPA, has been proposed as a possible therapeutic and diagnostic target for multiple diseases. Measuring the activity of this enzyme is useful both in basic research and in clinical applications involving this pathway, but current methods are nonselective and are not applicable to measurement of the enzyme from cells or tissues. Here, we describe the design and synthesis of an ITPA-specific chimeric dinucleotide (DIAL) that replaces the pyrophosphate leaving group of the native substrate with adenosine triphosphate, enabling sensitive detection via luciferase luminescence signaling. The probe is shown to function sensitively and selectively to quantify enzyme activity in vitro, and can be used to measure the activity of ITPA in bacterial, yeast and human cell lysates.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Elena I Stepchenkova
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics and Biotechnology, Saint-Petersburg State University, St Petersburg, 199034, Russia.,Saint-Petersburg Branch of Vavilov Institute of General Genetics, RAS, St Petersburg, 199034, Russia
| | - Jian Cui
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Miriam R Menezes
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology; Microbiology and Pathology; Genetics Cell Biology and Anatomy; University of Nebraska Medical Center, Omaha, NE 61818, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Chen XX, Shen SH. [Research advances in pharmacogenomics of mercaptopurine]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1027-1033. [PMID: 28899477 PMCID: PMC7403070 DOI: 10.7499/j.issn.1008-8830.2017.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Mercaptopurine is a common chemotherapeutic drug and immunosuppressive agent and plays an important role in the treatment of acute lymphoblastic leukemia and inflammatory bowel disease. It may cause severe adverse effects such as myelosuppression, which may result in the interruption of treatment or complications including infection or even threaten patients' lives. However, the adverse effects of mercaptopurine show significant racial and individual differences, which reveal the important role of genetic diversity. Recent research advances in pharmacogenomics have gradually revealed the genetic nature of such differences. This article reviews the recent research advances in the pharmacogenomics and individualized application of mercaptopurine.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Medical School of Shanghai Jiaotong University, Shanghai 200127, China.
| | | |
Collapse
|
27
|
Gonzalez-Aldaco K, Rebello Pinho JR, Panduro A, Martinez-Lopez E, Gleyzer K, Fierro N, Roman S, Kneteman NM, Marotta PJ, Al-Judaibi B. High Prevalence of ITPA Alleles Associated with Ribavirin-Induced Hemolytic Anemia Among Mexican Population. Ann Hepatol 2017; 16:236-436. [PMID: 28233743 DOI: 10.5604/16652681.1231582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The prevalence of two functional polymorphisms (rs1127354 and rs7270101) of the inosine triphosphatase (ITPA) gene associated with ribavirin-induced hemolytic anemia (RIHA) during antiviral therapy for hepatitis C virus (HCV) infection varies by ethnicity. In Mexico, the distribution of these polymorphisms among Native Amerindians (NA) and admixed population (Mestizos) is unknown. This study aimed to determine the prevalence of the ITPA polymorphisms among healthy NA and Mestizos, as well as in HCV patients from West Mexico. MATERIAL AND METHODS In a cross-sectional study, 600 unrelated subjects (322 Mestizos, 100 NA, and 178 treatment-naïve, HCV-infected Mestizos patients) were enrolled. A medical history was registered. ITPA genotype was determined by Real-Time PCR. Fst-values and genetic relatedness between study and reference populations were assessed. RESULTS The frequency of the risk genotypes rs1127354CC and rs7270101AA was higher among NA (98-100%) than in Mestizos (87-92.9%), (p &lt; 0.05). The NA presented the highest prevalence of the rs1127354CC genotype reported worldwide. The Fst-values revealed a genetic relatedness among Mexican NA, South Americans and African populations (p &gt; 0.05). The frequency of the predicted risk for RIHA was higher among NA (98%) than in Mestizos (80.5%) and HCV-infected patients (81.5%) (p &lt; 0 .01). The CC/AA alleles were associated with lower values of total bilirubin, aspartate/alanine aminotransferases, and aspartate-to-platelet-ratio-index score among HCV-patients. CONCLUSION A high prevalence of the ITPA polymorphisms associated with RIHA was found in Mexican NA. These polymorphisms could be a useful tool for evaluating potential adverse effects and the risk or benefit of antiviral therapy in Mexicans and other admixed populations.
Collapse
Affiliation(s)
- Karina Gonzalez-Aldaco
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | - Arturo Panduro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Erika Martinez-Lopez
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Ketti Gleyzer
- Departamento de Patologia Clínica e Anatomia Patológica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nora Fierro
- Departamento de Patologia Clínica e Anatomia Patológica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Sonia Roman
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Norman M Kneteman
- Division of Surgery (Transplantation), University of Alberta, Edmonton, Canada
| | - Paul J Marotta
- Division of Surgery (Transplantation), University of Alberta, Edmonton, Canada
| | - Bandar Al-Judaibi
- Division of Surgery (Transplantation), University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Pharmacogénétique des immunosuppresseurs : état des connaissances et des pratiques – recommandations du Réseau national de pharmacogénétique (RNPGx). Therapie 2017; 72:269-284. [DOI: 10.1016/j.therap.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
29
|
Maxwell RR, Cole PD. Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2017; 12:176-186. [DOI: 10.1007/s11899-017-0376-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Woillard JB, Chouchana L, Picard N, Loriot MA. Pharmacogenetics of immunosuppressants: State of the art and clinical implementation - recommendations from the French National Network of Pharmacogenetics (RNPGx). Therapie 2017; 72:285-299. [PMID: 28318610 DOI: 10.1016/j.therap.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Therapeutic drug monitoring is already widely used for immunosuppressive drugs due to their narrow therapeutic index. This article summarizes evidence reported in the literature regarding the pharmacogenetics of (i) immunosuppressive drugs used in transplantation and (ii) azathioprine used in chronic inflammatory bowel disease. The conditions of use of currently available major pharmacogenetic tests are detailed and recommendations are provided based on a scale established by the RNPGx scoring tests as "essential", "advisable" and "potentially useful". Other applications for which the level of evidence is still debated are also discussed.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé, CHU de Limoges, 87042 Limoges, France; Université de Limoges UMR_S850, 87000 Limoges, France.
| | - Laurent Chouchana
- Service de pharmacologie, hôpital Cochin, Assistance publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France
| | - Nicolas Picard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé, CHU de Limoges, 87042 Limoges, France; Université de Limoges UMR_S850, 87000 Limoges, France
| | - Marie-Anne Loriot
- Inserm UMR_S1147, centre universitaire des Saints-Pères, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Service de biochimie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | |
Collapse
|
31
|
Peltenburg NC, Leers MPG, Bakker JA, Lowe SH, Vroemen WHM, Paulussen ADC, van den Bosch BJC, Bierau J, Verbon A. Inosine Triphosphate Pyrophosphohydrolase Expression: Decreased in Leukocytes of HIV-Infected Patients Using Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2016; 73:390-395. [PMID: 27792682 DOI: 10.1097/qai.0000000000001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE In HIV-infected patients, the enzyme Inosine triphosphate pyrophosphohydrolase (ITPase), involved in purine nucleotide homeostasis, was found to be decreased in erythrocytes. Since purine analogues are pivotal in the HIV treatment, a better understanding of ITPase expression in CD4 lymphocytes may lead to better understanding of nucleotide metabolism and (adverse) effects. DESIGN Cross-sectional, cohort, observational study. METHODS HIV-infected and control patients above 18 years were included. All DNA samples were genotyped for the 2 functional ITPA SNPs; c.94C>A (rs1127354) and g.IVS+21A>C (rs7270101). ITPase expression was determined by flow cytometry in all leukocyte subsets. RESULTS Fifty-nine HIV-infected patients and 50 controls were included. Leukocyte subtype distribution showed no difference in monocytes and granulocytes, but lymphocytes were higher in HIV-infected patients (P < 0.001). ITPase expression was highest in activated monocytes and lowest in lymphocytes. In HIV-infected patients, the percentage of ITPase positive cells was less in all leukocyte and lymphocyte subsets compared with controls (P < 0.01). In HIV-infected patients, 97.4% of CD4 lymphocytes were ITPase positive versus 99.9% in controls (P = 0.002) and 85.9% versus 99.6% of CD8 lymphocytes (P < 0.0001), respectively. Stratification according to genotype revealed no significant differences in ITPase expression in leukocytes in HIV-infected and control patients. CONCLUSIONS HIV-infection seems to be interfering with the nucleotide metabolism in leukocytes, including CD4 lymphocytes, by decreasing ITPase expression, independently of ITPA genotype. Given that active metabolites of purine-analogue reverse transcriptase inhibitors are potential substrates for ITPase, these results warrant further research towards effectiveness and adverse events of purine analogues and ITPase activity.
Collapse
Affiliation(s)
- N Chantal Peltenburg
- *Department of Internal Medicine, Division of Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands;†Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen, the Netherlands;‡Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands;Departments of §Medical Microbiology;‖Internal Medicine, Division of Infectious Diseases, Research School CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands;¶Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands; and#Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016; 23:73. [PMID: 27770805 PMCID: PMC5075207 DOI: 10.1186/s12929-016-0291-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Human ITPase (encoded by the ITPA gene) is a protective enzyme which acts to exclude noncanonical (deoxy)nucleoside triphosphates ((d)NTPs) such as (deoxy)inosine 5′-triphosphate ((d)ITP), from (d)NTP pools. Until the last few years, the importance of ITPase in human health and disease has been enigmatic. In 2009, an article was published demonstrating that ITPase deficiency in mice is lethal. All homozygous null offspring died before weaning as a result of cardiomyopathy due to a defect in the maintenance of quality ATP pools. More recently, a whole exome sequencing project revealed that very rare, severe human ITPA mutation results in early infantile encephalopathy and death. It has been estimated that nearly one third of the human population has an ITPA status which is associated with decreased ITPase activity. ITPA status has been linked to altered outcomes for patients undergoing thiopurine or ribavirin therapy. Thiopurine therapy can be toxic for patients with ITPA polymorphism, however, ITPA polymorphism is associated with improved outcomes for patients undergoing ribavirin treatment. ITPA polymorphism has also been linked to early-onset tuberculosis susceptibility. These data suggest a spectrum of ITPA-related disease exists in human populations. Potentially, ITPA status may affect a large number of patient outcomes, suggesting that modulation of ITPase activity is an important emerging avenue for reducing the number of negative outcomes for ITPA-related disease. Recent biochemical studies have aimed to provide rationale for clinical observations, better understand substrate selectivity and provide a platform for modulation of ITPase activity.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, 226 Science Building, Cheney, WA, 99004, USA.
| |
Collapse
|
33
|
Skrzypczak-Zielinska M, Borun P, Bartkowiak-Kaczmarek A, Zakerska-Banaszak O, Walczak M, Dobrowolska A, Kurzawski M, Waszak M, Lipinski D, Plawski A, Slomski R. A Simple Method for TPMT and ITPA Genotyping Using Multiplex HRMA for Patients Treated with Thiopurine Drugs. Mol Diagn Ther 2016; 20:493-9. [PMID: 27307154 PMCID: PMC5021755 DOI: 10.1007/s40291-016-0217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiopurine methyltransferase (TPMT) and inosine triphosphatase (ITPA) are crucial enzymes involved in the metabolism of thiopurine drugs: azathioprine and 6-mercaptopurine, used in the treatment of leukemia or inflammatory bowel diseases (IBD). The activity in these enzymes correlates with the genetic polymorphism of the TPMT and ITPA genes, respectively, which determines an individual reaction and dosing of thiopurines. Three main TPMT alleles: TPMT*2 (c.238G>C), TPMT*3A (c.460G>A, c.719A>G) and TPMT*3C (c.719A>G) account for 80-95 % of inherited TPMT deficiency in different populations in the world. In the ITPA gene, a c.94C>A mutation is significantly associated with an adverse thiopurine reaction. The aim of this study was to develop a quick and highly sensitive method for determining major TPMT and ITPA alleles. Here we present the molecular test for genotyping c.238G>C, c.460G>A, c.719A>G and c.94C>A changes based on multiplex high resolution melting analysis (HRMA). We analyzed DNA samples from 100 clinically diagnosed IBD patients treated with thiopurine drugs, and a known genotype in the positions 238, 460 and 719 of the TPMT gene as well as in position 94 of the ITPA gene. Our results obtained with multiplex HRMA indicated 100 % accuracy in comparison with data from restriction fragments length polymorphism (RFLP) and standard DNA sequencing. We conclude, that multiplex HRMA can be used as a quick, sensitive and efficient alternative diagnostic method compared to conventional techniques for the determination of TPMT*2, TPMT*3A and TPMT*3C alleles and c.94C>A change in the ITPA gene.
Collapse
Affiliation(s)
| | - Pawel Borun
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Michal Walczak
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Poznan, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Malgorzata Waszak
- Department of Functional Anatomy, University School of Physical Education, Poznan, Poland
| | - Daniel Lipinski
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | - Andrzej Plawski
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| |
Collapse
|
34
|
Moon W, Loftus EV. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:863-883. [PMID: 26876431 DOI: 10.1111/apt.13559] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Azathioprine and mercaptopurine have a pivotal role in the treatment of inflammatory bowel disease (IBD). However, because of their complex metabolism and potential toxicities, optimal use of biomarkers to predict adverse effects and therapeutic response is paramount. AIM To provide a comprehensive review focused on pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in IBD. METHODS A literature search up to July 2015 was performed in PubMed using a combination of relevant MeSH terms. RESULTS Pre-treatment thiopurine S-methyltransferase typing plus measurement of 6-tioguanine nucleotides and 6-methylmercaptopurine ribonucleotides levels during treatment have emerged with key roles in facilitating safe and effective thiopurine therapy. Optimal use of these tools has been shown to reduce the risk of adverse effects by 3-7%, and to improve efficacy by 15-30%. For the introduction of aldehyde oxidase (AOX) into clinical practice, the association between AOX activity and AZA dose requirements should be positively confirmed. Inosine triphosphatase assessment associated with adverse effects also shows promise. Nucleoside diphosphate-linked moiety X-type motif 15 variants have been shown to predict myelotoxicity on thiopurines in East Asian patients. However, the impact of assessments of xanthine oxidase, glutathione S-transferase, hypoxanthine guanine phosphoribosyltransferase and inosine monophosphate dehydrogenase appears too low to favour incorporation into clinical practice. CONCLUSIONS Measurement of thiopurine-related enzymes and metabolites reduces the risk of adverse effects and improves efficacy, and should be considered part of standard management. However, this approach will not predict or avoid all adverse effects, and careful clinical and laboratory monitoring of patients receiving thiopurines remains essential.
Collapse
Affiliation(s)
- W Moon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - E V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Steponaitiene R, Kupcinskas J, Survilaite S, Varkalaite G, Jonaitis L, Kiudelis G, Denapiene G, Valantinas J, Skieceviciene J, Kupcinskas L. TPMT and ITPA genetic variants in Lithuanian inflammatory bowel disease patients: Prevalence and azathioprine-related side effects. Adv Med Sci 2016; 61:135-140. [PMID: 26674571 DOI: 10.1016/j.advms.2015.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/09/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Inter-individual thiopurine metabolism variability can influence treatment outcomes in inflammatory bowel disease (IBD) patients. Genetic polymorphisms in thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) were linked with toxicity of azathioprine (AZA). The aim of the study was to investigate frequencies of TPMT and ITPA polymorphisms in Lithuanian IBD patients and analyze their association with AZA-related adverse events. MATERIALS/METHODS Polymorphisms in TPMT (TPMT*2,*3B,*3C,*3A) and ITPA (rs1127354, rs7270101) genes were determined using PCR-RFLP and TaqMan(®) genotyping assays. 551 consecutive Lithuanian IBD patients were genotyped. The use of AZA and its side effects were assessed retrospectively according to hospital medical records. RESULTS Frequencies of TPMT*3A, TPMT*3B and TPMT*3C alleles were 3.1%, 0.5% and 0.1%, respectively. TPMT*2 genetic variant was not detected in the study group. The distribution of minor alleles for ITPA rs1127354 and rs7270101 polymorphisms was 9.9% and 10.5%, respectively. AZA was prescribed in 82 patients and it provoked myelotoxicity in 11%, hepatotoxicity in 6.1%, dyspepsia in 6.1%, and pancreatitis in 3.6% of cases. Among patients who had AZA-related myelotoxicity, 11.1% were TPMT compound heterozygous, 44.4% had heterozygous genotype (P<0.01). Frequencies of ITPA minor alleles were similar among the patients with and without AZA-related side effects. CONCLUSION Frequencies of TPMT and ITPA variant alleles in Lithuanian IBD group were similar to those observed in the Northern-Eastern Europe Caucasian populations. Polymorphisms in TPMT might be associated with myelotoxicity and leukopenia in AZA treated patients, while ITPA variant alleles appear not to be linked with treatment-related side effects.
Collapse
Affiliation(s)
- Ruta Steponaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Santa Survilaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laimas Jonaitis
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gediminas Kiudelis
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Goda Denapiene
- Clinic of Gastroenterology, Nephrourology and Surgery, Medical Faculty of Vilnius University, Vilnius University, Vilnius, Lithuania
| | - Jonas Valantinas
- Clinic of Gastroenterology, Nephrourology and Surgery, Medical Faculty of Vilnius University, Vilnius University, Vilnius, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
36
|
Marsh S, King CR, Van Booven DJ, Revollo JY, Gilman RH, McLeod HL. Pharmacogenomic assessment of Mexican and Peruvian populations. Pharmacogenomics 2016; 16:441-8. [PMID: 25916516 DOI: 10.2217/pgs.15.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clinically relevant polymorphisms often demonstrate population-specific allele frequencies. Central and South America remain largely uncategorized in the context of pharmacogenomics. MATERIALS & METHODS We assessed 15 polymorphisms from 12 genes (ABCB1 3435C>T, ABCG2 Q141K, CYP1B1*3, CYP2C19*2, CYP3A4*1B, CYP3A5*3C, ERCC1 N118N, ERCC2 K751Q, GSTP1 I105V, TPMT 238G>C, TPMT 460G>A, TPMT 719A>G, TYMS TSER, UGT1A1*28 and UGT1A1 -3156G>A) in 81 Peruvian and 95 Mexican individuals. RESULTS Six polymorphism frequencies differed significantly between the two populations: ABCB1 3435C>T, CYP1B1*3, GSTP1 I105V, TPMT 460G>A, UGT1A1*28 and UGT1A1 -3156G>A. The pattern of observed allele frequencies for all polymorphisms could not be accurately estimated from any single previously studied population. CONCLUSION This highlights the need to expand the scope of geographic data for use in pharmacogenomics studies.
Collapse
Affiliation(s)
- Sharon Marsh
- Faculty of Pharmacy & Pharmaceutical Sciences, 3142F Katz Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Nemr N, Kishk R, Mandour M. Role of ITPA gene polymorphism in ribavirin-induced anemia and thrombocytopenia in Egyptian patients with chronic hepatitis C. Indian J Gastroenterol 2016; 35:7-13. [PMID: 26880169 DOI: 10.1007/s12664-016-0618-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/10/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ribavirin (RBV)-induced anemia is one of the major causes of dose reduction and discontinuation of therapy for chronic hepatitis C (CHC) patients. We investigated the role of inosine triphosphate pyrophosphatase (ITPA) single nucleotide polymorphism (SNP) (rs1127354) in predicting RBV-induced anemia and thrombocytopenia among Egyptian patients with CHC genotype 4 infection. METHODS One hundred and twenty Egyptian patients with CHC genotype 4 who had received standard of care combination therapy were enrolled in this study. Single nucleotide polymorphism at ITPA (rs1127354) was genotyped by real-time detection polymerase chain reaction. RESULTS Hb levels between CC and non-CC groups were significantly different at weeks 4, 8, and 12. Hemoglobin decline was significantly higher among CC patient than non-CC patients at week 4 and week 8 of treatment. The RBV dose reduction was higher in CC than non-CC group. Platelet decline was significantly lower in CC patients than non-CC patients at baseline, 4, 12 weeks only. CONCLUSION Rs1127354 ITPA polymorphism was associated with RBV-induced anemia and thrombocytopenia in Egyptian patients with hepatitis C virus genotype 4 infection.
Collapse
Affiliation(s)
- Nader Nemr
- Department of Endemic and Infectious Diseases, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rania Kishk
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed Mandour
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
38
|
Pineda-Tenor D, García-Álvarez M, Jiménez-Sousa MA, Vázquez-Morón S, Resino S. Relationship between ITPA polymorphisms and hemolytic anemia in HCV-infected patients after ribavirin-based therapy: a meta-analysis. J Transl Med 2015; 13:320. [PMID: 26438033 PMCID: PMC4595047 DOI: 10.1186/s12967-015-0682-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND There is growing evidence that variations in the gene encoding inosine triphosphate pyrophosphohydrolase (ITPase), known as inosine triphosphatase (ITPA), are related to hemolytic anemia, which is frequently observed among hepatitis C virus (HCV)-infected patients receiving ribavirin (RBV)-based therapy. We performed a meta-analysis of all eligible studies assessing ITPA gene polymorphisms related to RBV-induced hemolytic anemia in HCV-infected patients published in PubMed, Embase and the Cochrane library prior to the end of 2014. METHODS Three outcomes were evaluated: (1) hemoglobin decline, (2) severe anemia, and (3) RBV dose reduction or treatment discontinuation. Pooled odds ratio (OR) and 95 % confidence interval (95 % CI) were estimated by either fixed or random effects models. RESULTS Twenty-nine studies were selected from the literature search: 20 references involving 6533 individuals for hemoglobin decline, 13 references on 3764 patients for severe anemia, and 16 references on 3918 patients for RBV dose reduction or discontinuation. Significant associations with hemoglobin decline were found for rs1127354 CC [OR = 12.84 (95 % CI 7.44; 22.17)], rs7270101 AA [OR = 3.41 (95 % CI 2.08; 5.59)] and rs6051702 AA [OR = 4.43 (95 % CI 2.80; 7.00)] genotypes. Moreover, significant associations with hemoglobin decline were also found for absent [OR = 6.01 (95 % CI 4.84; 7.46)] and mild [OR = 4.68 (95 % CI 2.83; 7.74)] ITPase deficiency haplotypes. The ITPA rs1127354 CC genotype and absent ITPase deficiency haplotype were also associated with severe anemia {[OR = 7.77 (95 % CI 5.03; 12.00)] and [OR = 4.79 (95 % CI 1.69; 13.56)], respectively}. Additionally, the rs1127354 CC genotype showed significant association with RBV dose reduction or stopping treatment (OR = 2.24; 95 % CI 1.79; 2.81). CONCLUSIONS ITPA polymorphisms increase the likelihood of developing hemolytic anemia for HCV-infected patients on RBV-based therapy, particularly rs1127354 CC and rs7270101 AA genotypes, suggesting the utility of screening for ITPA polymorphisms to avoid hematological toxicity and increase adherence to RBV-based therapy.
Collapse
Affiliation(s)
- Daniel Pineda-Tenor
- Servicio de Laboratorio Clínico, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain.
| | - Mónica García-Álvarez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda-Pozuelo, km 2.2, Majadahonda, 28220, Madrid, Spain.
| | - María A Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda-Pozuelo, km 2.2, Majadahonda, 28220, Madrid, Spain.
| | - Sonia Vázquez-Morón
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda-Pozuelo, km 2.2, Majadahonda, 28220, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda-Pozuelo, km 2.2, Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
39
|
Frequency of ITPA gene polymorphisms in Iranian patients with acute lymphoblastic leukemia and prediction of its myelosuppressive effects. Leuk Res 2015; 39:1048-54. [DOI: 10.1016/j.leukres.2015.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023]
|
40
|
Shu WY, Li JL, Wang XD, Huang M. Pharmacogenomics and personalized medicine: a review focused on their application in the Chinese population. Acta Pharmacol Sin 2015; 36:535-43. [PMID: 25891088 DOI: 10.1038/aps.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
The field of pharmacogenomics was initiated in the 1950s and began to thrive after the completion of the human genome project 10 years ago. Thus far, more than 100 drug labels and clinical guidelines referring to pharmacogenomic biomarkers have been published, and several key pharmacogenomic markers for either drug safety or efficacy have been identified and subsequently adopted in clinical practice as pre-treatment genetic tests. However, a tremendous variation of genetic backgrounds exists between different ethnic groups. The application of pharmacogenomics in the Chinese population is still a long way off, since the published guidelines issued by the organizations such as US Food and Drug Administration require further confirmation in the Chinese population. This review highlights important pharmacogenomic discoveries in the Chinese population and compares the Chinese population with other nations regarding the pharmacogenomics of five most commonly used drugs, ie, tacrolimus, cyclosporine A, warfarin, cyclophosphamide and azathioprine.
Collapse
|
41
|
Abstract
The antileukemic mechanisms of 6-mercaptopurine (6MP) and methotrexate (MTX) maintenance therapy are poorly understood, but the benefits of several years of myelosuppressive maintenance therapy for acute lymphoblastic leukemia are well proven. Currently, there is no international consensus on drug dosing. Because of significant interindividual and intraindividual variations in drug disposition and pharmacodynamics, vigorous dose adjustments are needed to obtain a target degree of myelosuppression. As the normal white blood cell counts vary by patients' ages and ethnicity, and also within age groups, identical white blood cell levels for 2 patients may not reflect the same treatment intensity. Measurements of intracellular levels of cytotoxic metabolites of 6MP and MTX can identify nonadherent patients, but therapeutic target levels remains to be established. A rise in serum aminotransferase levels during maintenance therapy is common and often related to high levels of methylated 6MP metabolites. However, except for episodes of hypoglycemia, serious liver dysfunction is rare, the risk of permanent liver damage is low, and aminotransferase levels usually normalize within a few weeks after discontinuation of therapy. 6MP and MTX dose increments should lead to either leukopenia or a rise in aminotransferases, and if neither is experienced, poor treatment adherence should be considered. The many genetic polymorphisms that determine 6MP and MTX disposition, efficacy, and toxicity have precluded implementation of pharmacogenomics into treatment, the sole exception being dramatic 6MP dose reductions in patients who are homozygous deficient for thiopurine methyltransferase, the enzyme that methylates 6MP and several of its metabolites. In conclusion, maintenance therapy is as important as the more intensive and toxic earlier treatment phases, and often more challenging. Ongoing research address the applicability of drug metabolite measurements for dose adjustments, extensive host genome profiling to understand diversity in treatment efficacy and toxicity, and alternative thiopurine dosing regimens to improve therapy for the individual patient.
Collapse
|
42
|
Trinks J, Hulaniuk ML, Caputo M, Pratx LB, Ré V, Fortuny L, Pontoriero A, Frías A, Torres O, Nuñez F, Gadano A, Corach D, Flichman D. Distribution of genetic polymorphisms associated with hepatitis C virus (HCV) antiviral response in a multiethnic and admixed population. THE PHARMACOGENOMICS JOURNAL 2014; 14:549-54. [PMID: 24841973 DOI: 10.1038/tpj.2014.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 12/19/2022]
Abstract
The prevalence of genetic polymorphisms identified as predictors of therapeutic-induced hepatitis C virus (HCV) clearance differs among ethnic groups. However, there is a paucity of information about their prevalence in South American populations, whose genetic background is highly admixed. Hence, single-nucleotide polymorphisms rs12979860, rs1127354 and rs7270101 were characterized in 1350 healthy individuals, and ethnicity was assessed in 259 randomly selected samples. The frequency of rs12979860CC, associated to HCV treatment response, and rs1127354nonCC, related to protection against hemolytic anemia, were significantly higher among individuals with maternal and paternal Non-native American haplogroups (64.5% and 24.2%), intermediate among admixed samples (44.1% and 20.4%) and the lowest for individuals with Native American ancestry (30.4% and 6.5%). This is the first systematic study focused on analyzing HCV predictors of antiviral response and ethnicity in South American populations. The characterization of these variants is critical to evaluate the risk-benefit of antiviral treatment according to the patient ancestry in admixed populations.
Collapse
Affiliation(s)
- J Trinks
- 1] Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - M L Hulaniuk
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - M Caputo
- 1] Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - L Burgos Pratx
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - V Ré
- 1] Instituto de Virología Dr José María Vanella, Facultad de Ciencias Médicas de la Universidad Nacional de Córdoba, Córdoba, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - L Fortuny
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Pontoriero
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Frías
- Servicio de Medicina Transfusional, Hospital Materno Infantil 'Ramón Sardá', Buenos Aires, Argentina
| | - O Torres
- Servicio de Medicina Transfusional, Hospital Materno Infantil 'Ramón Sardá', Buenos Aires, Argentina
| | - F Nuñez
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Gadano
- Servicio de Hepatología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - D Corach
- 1] Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - D Flichman
- 1] Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Farfan MJ, Salas C, Canales C, Silva F, Villarroel M, Kopp K, Torres JP, Santolaya ME, Morales J. Prevalence of TPMT and ITPA gene polymorphisms and effect on mercaptopurine dosage in Chilean children with acute lymphoblastic leukemia. BMC Cancer 2014; 14:299. [PMID: 24774509 PMCID: PMC4012712 DOI: 10.1186/1471-2407-14-299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/23/2014] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Mercaptopurine (6-MP) plays a pivotal role in treatment of childhood acute lymphoblastic leukemia (ALL); however, interindividual variability in toxicity of this drug due to genetic polymorphism in 6-MP metabolizing enzymes has been described. We determined the prevalence of the major genetic polymorphisms in 6-MP metabolizing enzymes in Chilean children with ALL. METHODS 103 Chilean pediatric patients with a confirmed diagnosis of ALL were enrolled. DNA was isolated from whole blood and genetic polymorphism in thiopurine S-methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) coding genes were detected by polymorphism chain reaction-restriction fragment length (PCR-RFLP) assay. RESULTS The total frequency of variant TPMT alleles was 8%. TPMT*2, TPMT*3A and TPMT*3B alleles were found in 0%, 7%, and 1% of patients, respectively. For ITPA, the frequency of P32T allele was 3%. We did not observe any homozygous variant for TPMT and ITPA alleles. We also analyzed a subgroup of 40 patients who completed the maintenance phase of ALL treatment, and we found that patients carrying a TPMT gene variant allele required a significantly lower median cumulative dosage and median daily dosage of 6-MP than patients carrying wild type alleles. CONCLUSION TMPT genotyping appears an important tool to further optimize 6-MP treatment design in Chilean patients with ALL.
Collapse
Affiliation(s)
- Mauricio J Farfan
- Departamento de Pediatría, Centro de Estudios Moleculares, Facultad de Medicina, Universidad de Chile, Antonio Varas 360, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stocco G, Pelin M, Franca R, De Iudicibus S, Cuzzoni E, Favretto D, Martelossi S, Ventura A, Decorti G. Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase? World J Gastroenterol 2014; 20:3534-3541. [PMID: 24707136 PMCID: PMC3974520 DOI: 10.3748/wjg.v20.i13.3534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/30/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023] Open
Abstract
Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed.
Collapse
|
45
|
Simone PD, Pavlov YI, Borgstahl GEO. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res 2013; 753:131-146. [PMID: 23969025 DOI: 10.1016/j.mrrev.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.
Collapse
Affiliation(s)
- Peter D Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, USA; Department of Genetics, St-Petersburg University, St-Petersburg, 199034, Russia
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA.
| |
Collapse
|
46
|
Simone PD, Struble LR, Kellezi A, Brown CA, Grabow CE, Khutsishvili I, Marky LA, Pavlov YI, Borgstahl GE. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J Struct Biol 2013; 182:197-208. [PMID: 23528839 PMCID: PMC4212276 DOI: 10.1016/j.jsb.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.
Collapse
Affiliation(s)
- Peter D. Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Lucas R. Struble
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Admir Kellezi
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Carrie A. Brown
- Department of Chemistry, Wayne State College, Wayne, NE 68787, USA
| | - Corinn E. Grabow
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luis A. Marky
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Youri I. Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, St-Petersburg University, St-Petersburg 199034, Russia
| | - Gloria E.O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
47
|
Zamzami MA, Duley JA, Price GR, Venter DJ, Yarham JW, Taylor RW, Catley LP, Florin THJ, Marinaki AM, Bowling F. Inosine triphosphate pyrophosphohydrolase (ITPA) polymorphic sequence variants in adult hematological malignancy patients and possible association with mitochondrial DNA defects. J Hematol Oncol 2013; 6:24. [PMID: 23547827 PMCID: PMC3765497 DOI: 10.1186/1756-8722-6-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/13/2013] [Indexed: 01/27/2023] Open
Abstract
Background Inosine triphosphate pyrophosphohydrolase (ITPase) is a ‘house-cleaning’ enzyme that degrades non-canonical (‘rogue’) nucleotides. Complete deficiency is fatal in knockout mice, but a mutant polymorphism resulting in low enzyme activity with an accumulation of ITP and other non-canonical nucleotides, appears benign in humans. We hypothesised that reduced ITPase activity may cause acquired mitochondrial DNA (mtDNA) defects. Furthermore, we investigated whether accumulating mtDNA defects may then be a risk factor for cell transformation, in adult haematological malignancy (AHM). Methods DNA was extracted from peripheral blood and bone marrow samples. Microarray-based sequencing of mtDNA was performed on 13 AHM patients confirmed as carrying the ITPA 94C>A mutation causing low ITPase activity, and 4 AHM patients with wildtype ITPA. The frequencies of ITPA 94C>A and IVS2+21A>C polymorphisms were studied from 85 available AHM patients. Results ITPA 94C>A was associated with a significant increase in total heteroplasmic/homoplasmic mtDNA mutations (p<0.009) compared with wildtype ITPA, following exclusion of haplogroup variants. This suggested that low ITPase activity may induce mitochondrial abnormalities. Compared to the normal population, frequencies for the 94C>A and IVS2+21A>C mutant alleles among the AHM patients were higher for myelodyplastic syndrome (MDS) - but below significance; were approximately equivalent for chronic lymphoblastic leukemia; and were lower for acute myeloid leukemia. Conclusions This study invokes a new paradigm for the evolution of MDS, where nucleotide imbalances produced by defects in ‘house-cleaning’ genes may induce mitochondrial dysfunction, compromising cell integrity. It supports recent studies which point towards an important role for ITPase in cellular surveillance of rogue nucleotides.
Collapse
|
48
|
Ahmed WH, Furusyo N, Zaky S, Sharaf Eldin A, Aboalam H, Ogawa E, Murata M, Hayashi J. Pre-treatment role of inosine triphosphate pyrophosphatase polymorphism for predicting anemia in Egyptian hepatitis C virus patients. World J Gastroenterol 2013; 19:1387-1395. [PMID: 23538996 PMCID: PMC3602498 DOI: 10.3748/wjg.v19.i9.1387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/18/2012] [Accepted: 11/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate and clarify, for the first time, the role of inosine triphosphate pyrophosphatase (ITPA) polymorphism in Egyptian chronic hepatitis C virus (HCV) patients.
METHODS: The human genomic DNA of all patients was extracted from peripheral blood cells in order to determine the single nucleotide polymorphism (SNP) of ITPA (rs1127354). SNP genotyping was performed by real time polymerase chain reaction (PCR, ABI TaqMan allelic discrimination kit) for 102 treatment-naive Egyptian patients with chronic HCV. All patients had no evidence of cardiovascular or renal diseases. They received a combination treatment of pegylated interferon α (PEG-IFNα) as a weekly subcutaneous dose plus an oral weight-adjusted dose of ribavirin (RBV). The majority received PEG-IFNα2a (70.6%) while 29.4% received PEG-IFNα2b. The planned duration of treatment was 24-48 wk according to the viral kinetics throughout the course of treatment. Pre-treatment liver biopsy was done for each patient for evaluation of fibrosis stage and liver disease activity. The basal viral load level was detected quantitatively by real time PCR while viral load throughout the treatment course was performed qualitatively by COBAS TaqMan assay.
RESULTS: Ninety-three patients (91.2%) had ITPA SNP CC genotype and 9 (8.8%) had non-CC genotype (CA and AA). The percentage of hemoglobin (Hb) decline was higher for CC patients than for non-CC patients, particularly at weeks 4 and 8 (P = 0.047 and 0.034, respectively). During the first 12 wk of treatment, CC patients had significantly more Hb decline > 3 g/dL than non-CC patients: 64.5% vs 22.2% at weeks 8 and 12, respectively, (P = 0.024 and 0.038). Reduction of the amount of the planned RBV dose was significantly higher for CC patients than non-CC patients during the first 12 wk (18% ± 12.1% vs 8.5% ± 10.2%, P = 0.021). The percentage of CC patients with RBV dose reduction was significantly greater than that of non-CC patients (77.4% vs 44.4%, P = 0.044). Multivariate analysis identified only the percentage of RBV dose as a predictor for Hb decline. Platelet decline was significantly higher in non-CC patients than CC patients at weeks 12, 24 and 48 (P = 0.018, 0.009 and 0.026, respectively).
CONCLUSION: Rs1127354 ITPA polymorphism plays a decisive role in protecting against treatment-induced anemia and the need for RBV dose reduction in Egyptian HCV patients.
Collapse
|
49
|
Nagamine A, Takenaka M, Aomori T, Okada Y, Hiromura K, Nojima Y, Araki T, Nakamura T, Yamamoto K. Effect of genetic polymorphisms on effectiveness of low-dose azathioprine in Japanese patients with systemic lupus erythematosus. Am J Health Syst Pharm 2012; 69:2072-8. [DOI: 10.2146/ajhp120179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ayumu Nagamine
- Department of Pharmacy Gunma University Hospital, Showa-machi, Maebashi, Japan
| | - Miki Takenaka
- Department of Pharmacy Gunma University Hospital, Showa-machi, Maebashi, Japan
| | - Tohru Aomori
- Department of Clinical Pharmacology, Graduate School of Medicine, Gunma University, Showa-machi
| | - Yuko Okada
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaoorui-machi, Takasaki, Japan
| | | | | | | | | | - Koujirou Yamamoto
- Department of Clinical Pharmacology, Graduate School of Medicine, Gunma University
| |
Collapse
|
50
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|