1
|
Willems E, Schepers M, Piccart E, Wolfs E, Hellings N, Ait-Tihyaty M, Vanmierlo T. The sphingosine-1-phosphate receptor 1 modulator ponesimod repairs cuprizone-induced demyelination and induces oligodendrocyte differentiation. FASEB J 2024; 38:e23413. [PMID: 38243760 DOI: 10.1096/fj.202301557rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.
Collapse
Affiliation(s)
- Emily Willems
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
2
|
Badshah M, Ibrahim J, Su N, Whiley P, Whittaker M, Exintaris B. The Effects of Age on Prostatic Responses to Oxytocin and the Effects of Antagonists. Biomedicines 2023; 11:2956. [PMID: 38001957 PMCID: PMC10669827 DOI: 10.3390/biomedicines11112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related enlargement of the prostate with urethral obstruction that predominantly affects the middle-aged and older male population, resulting in disruptive lower urinary tract symptoms (LUTS), thus creating a profound impact on an individual's quality of life. The development of LUTS may be linked to overexpression of oxytocin receptors (OXTR), resulting in increased baseline myogenic tone within the prostate. Thus, it is hypothesised that targeting OXTR using oxytocin receptor antagonists (atosiban, cligosiban, and β-Mercapto-β,β-cyclopentamethylenepropionyl1, O-Me-Tyr2, Orn8]-Oxytocin (ßMßßC)), may attenuate myogenic tone within the prostate. Organ bath and immunohistochemistry techniques were conducted on prostate tissue from young and older rats. Our contractility studies demonstrated that atosiban significantly decreased the frequency of spontaneous contractions within the prostate of young rats (**** p < 0.0001), and cligosiban (* p < 0.05), and ßMßßC (**** p < 0.0001) in older rats. Additionally, immunohistochemistry findings revealed that nuclear-specific OXTR was predominantly expressed within the epithelium of the prostate of both young (*** p < 0.001) and older rats (**** p < 0.0001). In conclusion, our findings indicate that oxytocin is a key modulator of prostate contractility, and targeting OXTR is a promising avenue in the development of novel BPH drugs.
Collapse
Affiliation(s)
- Masroor Badshah
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Jibriil Ibrahim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Nguok Su
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Penny Whiley
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Michael Whittaker
- Drug, Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| |
Collapse
|
3
|
The Effect of Resveratrol on Sphingosine-1 and Oxidative/ Nitrosative Stress in an Experimental Heart Ischemia Reperfusion Model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Objectives: Resveratrol (RSV) is a natural polyphenolic compound showing significant antioxidant effects. In this study, we aimed to investigate the effects of resveratrol on the sphingosine-1-phosphate (S1P) and oxidative stress biomarkers in hearth ischemia-reperfusion (I/R).
Materials and Methods: The biochemical and histopathological effects of RSV on cardiac ischemia-reperfusion injury were investigated through ELISA- and light microscope.
Results: We observed statistically significant differences between the treatment group and the control group in terms of malondialdehyde (MDA) level, catalase (CAT) and superoxide dismutase (SOD) activities (p<0.05). Histopathologically, we also observed decreased Polymorphonuclear Leucocyte (PMNL) infiltration, myocardial edema, miyositolysis in the treatment group compared to the I/R and sham groups.
Conclusion: Resveratrol may play an important role in cardiac I/R injury through its anti-inflammatory and antioxidant effects which were biochemically and histopathologically confirmed in the present study.
Collapse
|
4
|
Kobayashi K, Sasase T, Ishii Y, Katsuda Y, Miyajima K, Yamada T, Ohta T. The sphingosine-1-phosphate receptor modulator, FTY720, prevents the incidence of diabetes in Spontaneously Diabetic Torii rats. Clin Exp Pharmacol Physiol 2021; 48:869-876. [PMID: 32920892 DOI: 10.1111/1440-1681.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 01/09/2023]
Abstract
The sphingosine-1-phosphate (S1P) receptor modulator regulates lymphocyte trafficking, resulting in its depletion from circulation, which ultimately causes immunosuppression. In this study, we investigated the preventive effect of fingolimod (FTY720) in the non-obese type 2 diabetic model, Spontaneously Diabetic Torii (SDT) rats. The S1P receptor modulator, FTY720 (0.3 mg/kg p.o.), was administered for 12 weeks to SDT rats from 5 to 17 weeks of age. Based on our findings, FTY720 could suppress the incidence of diabetes in SDT rats. Further, glucose intolerance was improved in FTY720-treated SDT rats at 14 weeks of age. Based on the haematological and histological analyses performed at 17 to 18 weeks of age, a decrease in lymphocytes and monocytes in the peripheral blood and a decrease in lymphocyte and atrophy in spleen occurred in the FTY720-treated SDT rats. Furthermore, the pancreatic changes, such as inflammation, atrophy, and fibrosis in islets observed in SDT rats were improved by FTY720 treatment. These findings suggest that the immunomodulatory effects of FTY720 reduced the pancreatic lesion in SDT rats, thereby demonstrating its preventive effect against diabetes. The development of diabetes in SDT rats is related to disorders of the immune system. However, the S1P receptor modulator may be useful for treating type 2 diabetes.
Collapse
Affiliation(s)
- Kazuma Kobayashi
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
- Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Yukihito Ishii
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Yoshiaki Katsuda
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahisa Yamada
- Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
6
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Abstract
Metastatic bone pain is the single most common form of cancer pain and persists as a result of peripheral and central inflammatory, as well as neuropathic mechanisms. Here, we provide the first characterization of sphingolipid metabolism alterations in the spinal cord occurring during cancer-induced bone pain (CIBP). Following femoral arthrotomy and syngenic tumor implantation in mice, ceramides decreased with corresponding increases in sphingosine and the bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P). Intriguingly, de novo sphingolipid biosynthesis was increased as shown by the elevations of dihydro-ceramides and dihydro-S1P. We next identified the S1P receptor subtype 1 (S1PR1) as a novel target for therapeutic intervention. Intrathecal or systemic administration of the competitive and functional S1PR1 antagonists, TASP0277308 and FTY720/Fingolimod, respectively, attenuated cancer-induced spontaneous flinching and guarding. Inhibiting CIBP by systemic delivery of FTY720 did not result in antinociceptive tolerance over 7 days. FTY720 administration enhanced IL-10 in the lumbar ipsilateral spinal cord of CIBP animals and intrathecal injection of an IL-10 neutralizing antibody mitigated the ability of systemic FTY720 to reverse CIBP. FTY720 treatment was not associated with alterations in bone metabolism in vivo. Studies here identify a novel mechanism to inhibit bone cancer pain by blocking the actions of the bioactive metabolites S1P and dihydro-S1P in lumbar spinal cord induced by bone cancer and support potential fast-track clinical application of the FDA-approved drug, FTY720, as a therapeutic avenue for CIBP.
Collapse
|
8
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
9
|
Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. Br J Pharmacol 2017; 175:4026-4035. [PMID: 28872669 DOI: 10.1111/bph.14023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Germinario E, Bondì M, Cencetti F, Donati C, Nocella M, Colombini B, Betto R, Bruni P, Bagni MA, Danieli-Betto D. S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. J Appl Physiol (1985) 2016; 120:1288-300. [DOI: 10.1152/japplphysiol.00345.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
To examine the role of sphingosine 1-phosphate (S1P) receptor 3 (S1P3) in modulating muscle properties, we utilized transgenic mice depleted of the receptor. Morphological analyses of extensor digitorum longus (EDL) muscle did not show evident differences between wild-type and S1P3-null mice. The body weight of 3-mo-old S1P3-null mice and the mean cross-sectional area of transgenic EDL muscle fibers were similar to those of wild-type. S1P3 deficiency enhanced the expression level of S1P1 and S1P2 receptors mRNA in S1P3-null EDL muscle. The contractile properties of S1P3-null EDL diverge from those of wild-type, largely more fatigable and less able to recover. The absence of S1P3 appears responsible for a lower availability of calcium during fatigue. S1P supplementation, expected to stimulate residual S1P receptors and signaling, reduced fatigue development of S1P3-null muscle. Moreover, in the absence of S1P3, denervated EDL atrophies less than wild-type. The analysis of atrophy-related proteins in S1P3-null EDL evidences high levels of the endogenous regulator of mitochondria biogenesis peroxisome proliferative-activated receptor-γ coactivator 1α (PGC-1α); preserving mitochondria could protect the muscle from disuse atrophy. In conclusion, the absence of S1P3 makes the muscle more sensitive to fatigue and slows down atrophy development after denervation, indicating that S1P3 is involved in the modulation of key physiological properties of the fast-twitch EDL muscle.
Collapse
Affiliation(s)
- Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- IIM, Interuniversity Institute of Myology, Italy
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Cencetti
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Chiara Donati
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Marta Nocella
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Barbara Colombini
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Romeo Betto
- IIM, Interuniversity Institute of Myology, Italy
- CNR-Institute for Neuroscience, CNR, Padova, Italy
| | - Paola Bruni
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Maria Angela Bagni
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- IIM, Interuniversity Institute of Myology, Italy
| |
Collapse
|
11
|
Khanam H, Shamsuzzaman. Bioactive Benzofuran derivatives: A review. Eur J Med Chem 2015; 97:483-504. [DOI: 10.1016/j.ejmech.2014.11.039] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
|
12
|
Janes K, Little JW, Li C, Bryant L, Chen C, Chen Z, Kamocki K, Doyle T, Snider A, Esposito E, Cuzzocrea S, Bieberich E, Obeid L, Petrache I, Nicol G, Neumann WL, Salvemini D. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem 2015; 289:21082-97. [PMID: 24876379 DOI: 10.1074/jbc.m114.569574] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.
Collapse
|
13
|
Di Benedetto A, Sun L, Zambonin CG, Tamma R, Nico B, Calvano CD, Colaianni G, Ji Y, Mori G, Grano M, Lu P, Colucci S, Yuen T, New MI, Zallone A, Zaidi M. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proc Natl Acad Sci U S A 2014; 111:16502-7. [PMID: 25378700 PMCID: PMC4246276 DOI: 10.1073/pnas.1419349111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report that oxytocin (Oxt) receptors (Oxtrs), on stimulation by the ligand Oxt, translocate into the nucleus of osteoblasts, implicating this process in the action of Oxt on osteoblast maturation. Sequential immunocytochemistry of intact cells or isolated nucleoplasts stripped of the outer nuclear membrane showed progressive nuclear localization of the Oxtr; this nuclear translocation was confirmed by monitoring the movement of Oxtr-EGFP as well as by immunogold labeling. Nuclear Oxtr localization was conclusively shown by Western immunoblotting and MS of nuclear lysate proteins. We found that the passage of Oxtrs into the nucleus was facilitated by successive interactions with β-arrestins (Arrbs), the small GTPase Rab5, importin-β (Kpnb1), and transportin-1 (Tnpo1). siRNA-mediated knockdown of Arrb1, Arrb2, or Tnpo1 abrogated Oxt-induced expression of the osteoblast differentiation genes osterix (Sp7), Atf4, bone sialoprotein (Ibsp), and osteocalcin (Bglap) without affecting Erk phosphorylation. Likewise and again, without affecting pErk, inhibiting Arrb recruitment by mutating Ser rich clusters of the nuclear localization signal to Ala abolished nuclear import and Oxtr-induced gene expression. These studies define a previously unidentified mechanism for Oxtr action on bone and open possibilities for direct transcriptional modulation by nuclear G protein-coupled receptors.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy; Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Li Sun
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Carlo G Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Roberto Tamma
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Beatrice Nico
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Graziana Colaianni
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Yaoting Ji
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Maria Grano
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Ping Lu
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Silvia Colucci
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Tony Yuen
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Alberta Zallone
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Mone Zaidi
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
14
|
Down-regulation of sphingosine kinase 2 (SphK2) increases the effects of all-trans-retinoic acid (ATRA) on colon cancer cells. Biomed Pharmacother 2014; 68:1089-97. [PMID: 25455157 DOI: 10.1016/j.biopha.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023] Open
Abstract
Sphingosine kinase 2 (SphK2) is a type of sphingosine kinase, which express highly in most of cancers. SphK2 produce sphingosine-1-phosphate (S1P) and then accumulate in cancer cells. Our previous study showed that S1P antagonized the effects of all-trans-retinoic acid (ATRA) via the receptor-dependent and independent pathway. In this study, we aimed to investigate the roles of SphK2 in affecting ATRA's activity in human colon cancer cells. Cell proliferation was estimated by the clonogenic assay. The distribution of cell cycle was analyzed by flow cytometry assay. The apoptotic cells were determined by Annexin V-FITC/PI staining method. Western blotting assay was performed to analyze the levels of the proteins related to apoptosis and cell cycle. The mRNA levels of SphK2 and RARβ were evaluated by real-time PCR assay. RNA interference assay was performed to evaluate SphK2 activity. S1P antagonized the effect of ATRA on HT-29 cell proliferation, the ATRA-induced RARβ expression, the arrest of cell cycle in G1-phase, and induction of apoptosis. Down-regulation of SphK2 resulted in the reverse actions on the S1P-induced antagonistic effects on ATRA. Western blotting analysis indicated that down-regulation of SphK2 might activate apoptotic proteins, regulation of p53/p21(Waf1/Cip1) and EGFR and PI3K/AKT signaling pathways. In conclusion, down-regulation of SphK2 increased the effects of ATRA on colon cancer cells.
Collapse
|
15
|
Gatfield J, Monnier L, Studer R, Bolli MH, Steiner B, Nayler O. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling. Cell Signal 2014; 26:1576-88. [DOI: 10.1016/j.cellsig.2014.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/26/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
16
|
Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 2014; 35:308-16. [PMID: 24878326 DOI: 10.1016/j.tips.2014.04.007] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 12/24/2022]
Abstract
Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development.
Collapse
|
17
|
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol 2014; 12:e1001763. [PMID: 24453941 PMCID: PMC3891622 DOI: 10.1371/journal.pbio.1001763] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/02/2013] [Indexed: 01/11/2023] Open
Abstract
This study identifies a GPCR, S1PR2, as a receptor for the Nogo-A-Δ20 domain of the membrane protein Nogo-A, which inhibits neuronal growth and synaptic plasticity. Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. Recent studies have demonstrated an important role of Nogo-A signaling in the repression of structural and synaptic plasticity in mature neuronal networks of the central nervous system. These insights extended our understanding of Nogo-A's inhibitory function far beyond its well-studied role as axonal-growth inhibitor. Repression is mediated via two different Nogo-A extracellular domains: Nogo-66 and Nogo-A-Δ20. Here, we identify the G-protein coupled receptor S1PR2 as a high-affinity receptor for Nogo-A-Δ20 and demonstrate that S1PR2 binds this domain with sites different from the recently proposed S1P binding pocket. Interfering with S1PR2 activity, either pharmacologically or genetically, prevented Nogo-A-Δ20-mediated inhibitory effects. Similar results were obtained when we blocked G13, LARG, and RhoA, components of the downstream signaling pathway. These findings revealed a strong increase in hippocampal and cortical synaptic plasticity when acutely interfering with Nogo-A/S1PR2 signaling, similar to previous results obtained by blocking Nogo-A. We thus provide a novel biological concept of multi-ligand GPCR signaling in which this sphingolipid-activated GPCR is also bound and activated by the high molecular weight membrane protein Nogo-A.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Bjoern Tews
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael E. Arzt
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Franz J. Obermair
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Vincent Pernet
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Andrea Delekate
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Ajmal Zemmar
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Peter Spies
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Dana Dodd
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Daniel Gygax
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Brossard P, Scherz M, Halabi A, Maatouk H, Krause A, Dingemanse J. Multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ponesimod, an S1P1 receptor modulator: favorable impact of dose up-titration. J Clin Pharmacol 2014; 54:179-88. [PMID: 24408162 DOI: 10.1002/jcph.244] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/04/2013] [Indexed: 11/08/2022]
Abstract
This multiple-ascending-dose study investigated the safety, tolerability, pharmacokinetics, and pharmacodynamics of ponesimod, an S1P1 receptor modulator and a potential new treatment for autoimmune diseases. In part A, 10 healthy male and female subjects received once daily oral doses of ponesimod (5, 10, or 20 mg) or placebo for 7 days. Sinus bradycardia and, in some subjects, atrioventricular (AV) block occurred primarily on the first day of dosing, as desensitization developed to ponesimod-induced heart rate (HR) reduction and PR-prolongation. This elicited the design of an up-titration schedule in 17 subjects to a dose of 40 mg in part B. The up-titration regimen reduced HR and PQ/PR effects. Reported adverse events were mainly related to the cardiac and respiratory systems. Respiratory effects increased with higher doses. Ponesimod multiple-dose pharmacokinetics were slightly more than dose-proportional and characterized by a time to maximum concentration and an elimination half-life varying from 2.5 to 4.0 hours and 30.9 to 33.5 hours, respectively, and an accumulation of about 2.3-fold. Ponesimod caused a dose-dependent sustained decrease in total lymphocyte count, reversible within 7 days of discontinuation. A pharmacokinetic-pharmacodynamic model enabled comparing day 1 and steady-state conditions. These results warrant further investigation of ponesimod in patients.
Collapse
Affiliation(s)
- P Brossard
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:15-44. [PMID: 25261203 DOI: 10.1007/978-94-017-9487-9_2] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distinctive differentiated states of the CD4+ T helper cells are determined by the set of transcription factors and the genes transcribed by the transcription factors. In vitro induction models, the major determinants of the cytokines present during the T-cell receptor (TCR)-mediated activation process. IL-12 and IFN-γ make Naive CD4+ T cells highly express T-bet and STAT4 and differentiate to TH1 cells, while IL-4 make Naive CD4+ T cells highly express STAT6 and GATA3 and differentiated to TH2 cells. Even through T-bet and GATA3 are master regulators for TH1/TH2 cells differentiation. There are many other transcription factors, such as RUNX family proteins, IRF4, Dec2, Gfi1, Hlx, and JunB that can impair TH1/TH2 cells differentiation. In recent years, noncoding RNAs (microRNA and long noncoding RNA) join in the crowd. The leukocytes should migrate to the right place to show their impact. There are some successful strategies, which are revealed to targeting chemokines and their receptors, that have been developed to treat human immune-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
20
|
Sun B, Zhang Y. Overview of orchestration of CD4+ T cell subsets in immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:1-13. [PMID: 25261202 DOI: 10.1007/978-94-017-9487-9_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive immunity plays an important role in the host defense of pathogens, among which CD4+ T helper cell takes a major part. The regulation of Th cell differentiation, the function they exerts in immune response, autoimmune diseases, and allergic conditions, has long attracted much attention. Naive CD4+ T cells differentiate into distinct subsets after receiving TCR and costimulation signaling for activation and cytokine signaling to direct their differentiation. In this chapter, we will have a broad overview of all Th cell subsets, including Th1, Th2, Th17, Treg, Tfh, as well as Th9 and Th22.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China,
| | | |
Collapse
|
21
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Mizutani N, Kobayashi M, Sobue S, Ichihara M, Ito H, Tanaka K, Iwaki S, Fujii S, Ito Y, Tamiya-Koizumi K, Takagi A, Kojima T, Naoe T, Suzuki M, Nakamura M, Banno Y, Nozawa Y, Murate T. Sphingosine kinase 1 expression is downregulated during differentiation of Friend cells due to decreased c-MYB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1006-16. [DOI: 10.1016/j.bbamcr.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 12/19/2022]
|
23
|
Vessey DA, Li L, Imhof I, Honbo N, Karliner JS. FTY720 postconditions isolated perfused heart by a mechanism independent of sphingosine kinase 2 and different from S1P or ischemic postconditioning. Med Sci Monit Basic Res 2013; 19:126-32. [PMID: 23567658 PMCID: PMC3659128 DOI: 10.12659/msmbr.883877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background We investigated the hypothesis that postconditioning by FTY720 (FTY) in isolated perfused mouse hearts is independent of the sphingosine 1-phosphate (S1P) pathway. Material/Methods Ex vivo hearts were exposed to postconditioning (POST) by either ischemia or FTY720. Protection against ischemia/reperfusion (IR) injury was measured by recovery of left ventricular developed pressure (LVDP) and infarct size. Results FTY effectively postconditioned (POST) ex vivo hearts against ischemia/reperfusion (IR) injury as measured by recovery of LVDP and a low infarct size. FTY protection, unlike S1P but like sphingosine (Sph), was insensitive to inhibition of S1P G-Protein Coupled Receptors (GPCRs) or inhibition of PI3 kinase. Protection by FTY and Sph was however blocked by inhibitors of PKA and PKG. Thus, FTY follows the same cardioprotective pathway as Sph. This was further supported by studies of FTY POST in knockout (KO) mice lacking the SphK2 form of Sph kinase that is needed for phosphorylation of FTY to an S1P analog. In the absence of SphK2, FTY (and Sph) POST was still cardioprotective. This differed from the effect of SphK2 KO on protection by ischemic POST (IPOST). IPOST was not effective in KO hearts. To see if the GPCR signaling pathway to protection is normal in KO hearts, we looked at POST by GPCR agonists S1P and adenosine. Both provided effective protection even in KO hearts suggesting that the problem with IPOST in KO hearts is a low level of S1P available for release during IPOST. Thus, pharmacologic POST with FTY or Sph, like adenosine and S1P, is unaffected in the KO. Conclusions FTY720 administered in vivo might behave in a dual manner showing both S1P-like effects and sphingosine-like effects. It appears that the latter may have been overlooked and may be the more important in aging hearts.
Collapse
Affiliation(s)
- Donald A Vessey
- Liver Study Unit, Veterans Affairs Medical Center, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
24
|
Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 2013; 34:110-8. [DOI: 10.1016/j.tips.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
|
25
|
Moon H, Chon J, Joo J, Kim D, In J, Lee H, Park J, Choi J. FTY720 preserved islet β-cell mass by inhibiting apoptosis and increasing survival of β-cells in db/db mice. Diabetes Metab Res Rev 2013; 29:19-24. [PMID: 22936676 DOI: 10.1002/dmrr.2341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/22/2012] [Accepted: 08/04/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND FTY720, an analogue of sphingosine-1-phosphate, has shown potential in the treatment of several autoimmune diseases, such as multiple sclerosis, type 1 diabetes and systemic lupus erythematosus. It prevents development or cure of autoimmune diabetes in animal models. Recently, we reported that FTY720 also prevents development of diabetes in db/db mice by β-cell regeneration in vivo. This study investigated the effect of FTY720 on apoptosis in β-cells in db/db mice treated with FTY720 16 weeks. METHODS Six week old female db/db mice were divided into control and FTY720 groups. FTY720 (10 mg/kg) was orally administrated daily. Body weights and fasting glucose levels were measured once a week after overnight fasting. After 16 weeks of treatment, oral glucose and insulin tolerance tests were performed, serum insulin levels and insulin contents in pancreas were determined, and then all mice were subjected to physiological and histological analyses. RESULTS FTY720-treated mice showed normal fasting glucose levels, improved glucose tolerance with normal insulin sensitivity and restored β-cell function to produce and secret insulin. Pancreas histology revealed that FTY720 prevented islet damage and preserved β-cell mass by inhibiting apoptosis and increasing β-cell survival in pancreatic islets. CONCLUSIONS We concluded that early intervention with FTY720 in db/db mice can prevent development of diabetes through preserving β-cell mass by inhibiting apoptosis and increasing survival of islet β-cells.
Collapse
Affiliation(s)
- Hosik Moon
- Anesthesiology and Pain Medicine, Catholic University of Saint Mary Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Spijkers LJA, Alewijnse AE, Peters SLM. FTY720 (fingolimod) increases vascular tone and blood pressure in spontaneously hypertensive rats via inhibition of sphingosine kinase. Br J Pharmacol 2012; 166:1411-8. [PMID: 22251137 DOI: 10.1111/j.1476-5381.2012.01865.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE FTY720 (Fingolimod) is a recently approved orally administered drug for the treatment of multiple sclerosis. Phase II and III clinical trials have demonstrated that this drug modestly increases BP. We previously showed that inhibition of sphingosine kinase increases vascular tone and BP in hypertensive, but not normotensive rats. Since FTY720 is reported to have inhibitory effects on sphingosine kinase, we investigated whether FTY720 increases vascular tone and BP only in hypertensive rats via this mechanism. EXPERIMENTAL APPROACH The contractile and BP modulating effects of FTY720 were studied in vivo and ex vivo (wire myography) in age-matched normotensive Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). KEY RESULTS Oral administration of FTY720 induced an increase in mean arterial pressure in SHR, whereas a decrease in BP was observed in WKY rats, as measured 24 h after administration. Similar to the sphingosine kinase inhibitor dimethylsphingosine (DMS), FTY720 induced large contractions in isolated carotid arteries from SHR, but not in those from WKY. In contrast, the phosphorylated form of FTY720 did not induce contractions in isolated carotid arteries from SHR. FTY720-induced contractions were inhibited by endothelium denudation, COX and thromboxane synthase inhibitors, and by thromboxane receptor antagonism, indicating that (like DMS-induced contractions) they were endothelium-dependent and mediated by thromboxane A₂. CONCLUSIONS AND IMPLICATIONS These data demonstrate that FTY720 increases vascular tone and BP only in hypertensive rats, most likely as a result of its inhibitory effect on sphingosine kinase.
Collapse
Affiliation(s)
- Léon J A Spijkers
- Department of Pharmacology & Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Ren F, Deng G, Wang H, Luan L, Meng Q, Xu Q, Xu H, Xu X, Zhang H, Zhao B, Li C, Guo TB, Yang J, Zhang W, Zhao Y, Jia Q, Lu H, Xiang JN, Elliott JD, Lin X. Discovery of novel 1,2,4-thiadiazole derivatives as potent, orally active agonists of sphingosine 1-phosphate receptor subtype 1 (S1P(1)). J Med Chem 2012; 55:4286-96. [PMID: 22500954 DOI: 10.1021/jm2016107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of 1,2,4-thiadiazole compounds was discovered as selective S1P(1) agonists. The extensive structure-activity relationship studies for these analogues were reported. Among them, 17g was identified to show high in vitro potency with reasonable free unbound fraction in plasma (F(u) > 0.5%), good brain penetration (BBR > 0.5), and desirable pharmacokinetic properties in mouse and rat. Oral administration of 1 mg/kg 17g resulted in significant peripheral lymphocytes reduction at 4 h after dose and rapid lymphocytes recovery at 24 h. 17g showed a transient lymphopenia profile in the repeated dose study in mouse. In addition, 17g also demonstrated efficacy comparable to that of FTY720 (1) in the mouse EAE model of MS.
Collapse
Affiliation(s)
- Feng Ren
- GlaxoSmithKline, R&D China, No. 3 Building, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, PRC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sassoli C, Formigli L, Bini F, Tani A, Squecco R, Battistini C, Zecchi-Orlandini S, Francini F, Meacci E. Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction. J Cell Mol Med 2012; 15:2498-511. [PMID: 21199328 PMCID: PMC3822960 DOI: 10.1111/j.1582-4934.2010.01250.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meng Q, Zhao B, Xu Q, Xu X, Deng G, Li C, Luan L, Ren F, Wang H, Xu H, Xu Y, Zhang H, Xiang JN, Elliott JD, Guo TB, Zhao Y, Zhang W, Lu H, Lin X. Indole-propionic acid derivatives as potent, S1P3-sparing and EAE efficacious sphingosine-1-phosphate 1 (S1P1) receptor agonists. Bioorg Med Chem Lett 2012; 22:2794-7. [PMID: 22429468 DOI: 10.1016/j.bmcl.2012.02.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/08/2012] [Accepted: 02/24/2012] [Indexed: 01/12/2023]
Abstract
Novel indole-propionic acid derivatives were developed as sphingosine-1-phosphate (S1P) receptor agonists through a systematic SAR study. The optimized and S1P(3) selective S1P(1) agonist 9f induced peripheral blood lymphocyte reduction in vivo and has an excellent efficacy in mouse experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Qinghua Meng
- Research and Development, GlaxoSmithKline Pharmaceuticals, Pudong, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Murakami M, Ito H, Hagiwara K, Kobayashi M, Hoshikawa A, Takagi A, Kojima T, Tamiya-Koizumi K, Sobue S, Ichihara M, Suzuki M, Banno Y, Nozawa Y, Murate T. Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription. J Cell Biochem 2012; 112:3449-58. [PMID: 21769916 DOI: 10.1002/jcb.23275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is important for the development and maintenance of dopamine neurons (Lin et al. [1993] Science 260: 1130-1132). GDNF is neuroprotective in animal models of Parkinson disease, where dopamine neurons show selective degeneration. We previously reported GDNF-induced SPHK1 gene expression in a neuroblastoma cell line, TGW (Murakami et al. [2007] J Neurochem 102: 1585-1594). In the present study, we focused on the regulatory mechanism of GAP43 (GDNF-induced neuronal phenotype) transcription to further elucidate physiological roles of GDNF-induced SPHK1 expression and activity. Stable wild-type (SPHK1-WT) but not dominant-negative SPHK1 (SPHK1-DN) overexpression increased both control- and GDNF-induced GAP43 expression. SPHK1-WT cells showed enhanced GDNF-induced sphingosine 1-phosphate (S1P) secretion compared with mock- and SPHK1-DN cells. Exogenous S1P also increased GAP43 expression. In TGW cells, PD98059, a MEK inhibitor, but not SB203580 (a p38 MAPK inhibitor) and LY294002 (a PI3K inhibitor) inhibited GDNF-induced GAP43 expression, suggesting the MEK/ERK pathway has a major role in GDNF-induced GAP43 transcription. A G-protein-coupled receptor inhibitor, pertussis toxin, and S1P(1) and S1P(3) receptor antagonists (VPC23019 and CAY10444) also inhibited ERK activation. Moreover, both S1P1 and S1P3 were serine-phosphorylated by GDNF, suggesting their activated states. C/EBPβ transcription factor was induced by GDNF, and DNA pull-down and chromatin immunoprecipitation assays revealed the C/EBP binding site between -131 bp and -98 bp from the first exon of GAP43. Taken together, our results showed that in TGW cells, GDNF increased SPHK1 transcription, leading to the production and secretion of S1P. Through MEK/ERK pathway, S1P stimulates GAP43 transcription with increased binding of C/EBPβ to the 5'-promoter.
Collapse
Affiliation(s)
- Masashi Murakami
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Z, Choi J, Zhao C, Ma ZA. FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57(KIP2). J Biol Chem 2011; 287:5562-73. [PMID: 22194608 DOI: 10.1074/jbc.m111.305359] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Loss of insulin-producing β-cell mass is a hallmark of type 2 diabetes in humans and diabetic db/db mice. Pancreatic β-cells can modulate their mass in response to a variety of physiological and pathophysiological cues. There are currently few effective therapeutic approaches targeting β-cell regeneration although some anti-diabetic drugs may positively affect β-cell mass. Here we show that oral administration of FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, to db/db mice normalizes fasting blood glucose by increasing β-cell mass and blood insulin levels without affecting insulin sensitivity. Fasting blood glucose remained normal in the mice even after the drug was withdrawn after 23 weeks of treatment. The islet area in the pancreases of the FTY720-treated db/db mice was more than 2-fold larger than that of the untreated mice after 6 weeks of treatment. Furthermore, BrdU incorporation assays and Ki67 staining demonstrated cell proliferation in the islets and pancreatic duct areas. Finally, islets from the treated mice exhibited a significant decrease in the level of cyclin-dependent kinase inhibitor p57(KIP2) and an increase in the level of cyclin D3 as compared with those of untreated mice, which could be reversed by the inhibition of phosphatidylinositol 3-kinase (PI3K). Our findings reveal a novel network that controls β-cell regeneration in the obesity-diabetes setting by regulating cyclin D3 and p57(KIP2) expression through the S1P signaling pathway. Therapeutic strategies targeting this network may promote in vivo regeneration of β-cells in patients and prevent and/or cure type 2 diabetes.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
32
|
Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor. Eur J Pharmacol 2011; 667:105-12. [DOI: 10.1016/j.ejphar.2011.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
|
33
|
Fischer I, Alliod C, Martinier N, Newcombe J, Brana C, Pouly S. Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. PLoS One 2011; 6:e23905. [PMID: 21887342 PMCID: PMC3161076 DOI: 10.1371/journal.pone.0023905] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/28/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P(3)) signaling and SphK1 in activated rat astrocytes has not been defined. METHODOLOGY/PRINCIPAL FINDINGS Using immunohistochemistry we observed the upregulation of S1P(3) and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P(3) and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P(3) agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P(3) upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P(3) signaling compared to S1P(1) signaling was demonstrated by the use of selective S1P(3) or S1P(1) agonists. CONCLUSION/SIGNIFICANCE In summary, our data demonstrate that the SphK1/S1P(3) signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.
Collapse
Affiliation(s)
- Iris Fischer
- TA Neurodegenerative Diseases, Geneva Research Center, Merck Serono International, Geneva, Switzerland
| | - Chantal Alliod
- TA Neurodegenerative Diseases, Geneva Research Center, Merck Serono International, Geneva, Switzerland
| | - Nicolas Martinier
- TA Neurodegenerative Diseases, Geneva Research Center, Merck Serono International, Geneva, Switzerland
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, London, England
| | - Corinne Brana
- TA Neurodegenerative Diseases, Geneva Research Center, Merck Serono International, Geneva, Switzerland
| | - Sandrine Pouly
- TA Neurodegenerative Diseases, Geneva Research Center, Merck Serono International, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
34
|
A sphingosine kinase form 2 knockout sensitizes mouse myocardium to ischemia/reoxygenation injury and diminishes responsiveness to ischemic preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:961059. [PMID: 21904650 PMCID: PMC3166792 DOI: 10.1155/2011/961059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 02/07/2023]
Abstract
Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1:SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC. Langendorff mouse hearts were subjected to IR (30 min equilibration, 50 min global ischemia, and 40 min reperfusion). IPC consisted of 2 min of ischemia and 2 min of reperfusion for two cycles. At baseline, there were no differences in left ventricular developed pressure (LVDP), ± dP/dtmax, and heart rate between SphK2 null (KO) and wild-type (WT) hearts. In KO hearts, SphK2 activity was undetectable, and SphK1 activity was unchanged compared to WT. Total SphK activity was reduced by 53%. SphK2 KO hearts subjected to IR exhibited significantly more cardiac damage (37 ± 1% infarct size) compared with WT (28 ± 1% infarct size); postischemic recovery of LVDP was lower in KO hearts. IPC exerted cardioprotection in WT hearts. The protective effect of IPC against IR was diminished in KO hearts which had much higher infarction sizes (35 ± 2%) compared to the IPC/IR group in control hearts (12 ± 1%). Western analysis revealed that KO hearts had substantial levels of phosphorylated p38 which could predispose the heart to IR injury. Thus, deletion of the SphK2 gene sensitizes the myocardium to IR injury and diminishes the protective effect of IPC.
Collapse
|
35
|
Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, Schutz N, Segal D, Marantz Y, McCauley D, Middleton S, Siu J, Bürli RW, Buys J, Horner M, Salyers K, Schrag M, Vargas HM, Xu Y, McElvain M, Xu H. Benzofuran Derivatives as Potent, Orally Active S1P1 Receptor Agonists: A Preclinical Lead Molecule for MS. ACS Med Chem Lett 2011; 2:97-101. [PMID: 24900286 DOI: 10.1021/ml100227q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/02/2010] [Indexed: 11/30/2022] Open
Abstract
We have discovered novel benzofuran-based S1P1 agonists with excellent in vitro potency and selectivity. 1-((4-(5-Benzylbenzofuran-2-yl)-3-fluorophenyl)methyl) azetidine-3-carboxylic acid (18) is a potent S1P1 agonist with >1000× selectivity over S1P3. It demonstrated a good in vitro ADME profile and excellent oral bioavailability across species. Dosed orally at 0.3 mg/kg, 18 significantly reduced blood lymphocyte counts 24 h postdose and demonstrated efficacy in a mouse EAE model of relapsing MS.
Collapse
Affiliation(s)
- Ashis K. Saha
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Xiang Yu
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Jian Lin
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Mercedes Lobera
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Anurag Sharadendu
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Srinivas Chereku
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Nili Schutz
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Dalia Segal
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Yael Marantz
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | - Dilara McCauley
- EPIX Pharmaceuticals Inc.,
167 Worcester Street, Suite 201, Wellesley Hills, Massachusetts 02481,
United States
| | | | | | | | | | | | | | | | | | - Yang Xu
- Pharmacokinetics and Drug Metabolism
| | | | | |
Collapse
|
36
|
Aarthi JJ, Darendeliler MA, Pushparaj PN. Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 2011; 90:841-54. [PMID: 21248363 DOI: 10.1177/0022034510389178] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
Collapse
Affiliation(s)
- J J Aarthi
- Department of Orthodontics, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, NSW 2010, Australia
| | | | | |
Collapse
|
37
|
Kim DS, Park SH, Jeong YM, Kwon SB, Miller AJ, Fisher DE, Park KC. Sphingosine-1-phosphate decreases melanin synthesis via microphthalmia-associated transcription factor phosphorylation through the S1P3 receptor subtype. ACTA ACUST UNITED AC 2010; 63:409-16. [PMID: 21749389 DOI: 10.1111/j.2042-7158.2010.01223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Previously, we reported that sphingosine-1-phosphate (S1P) reduced melanin synthesis. In this study we have investigated S1P receptor-mediated extracellular signal-regulated protein kinase (ERK) activation and microphthalmia-associated transcription factor (MITF) phosphorylation. METHODS To examine S1P-induced signalling pathways, electron and confocal microscopic studies, reverse transcription-polymerase chain reaction and Western blot analysis were performed. KEY FINDINGS S1P phosphorylated MITF at Ser73, which may have resulted in a MITF mobility shift. Furthermore, 90 kDa ribosomal S6 kinase-1 (RSK-1) phosphorylation was observed after S1P treatment. In addition, PD98059 abrogated the S1P-induced MITF mobility shift and RSK-1 activation. In experiments with MITF mutants, it was shown that dual phosphorylation at Ser73 and Ser409 was indispensable for MITF degradation. We investigated further the actions of S1P on its specific receptors. The results showed that pertussis toxin completely abolished the hypopigmentary effects and ERK pathway activation by S1P, suggesting that S1P regulated melanogenesis via its receptor. The use of specific receptor antagonists indicated that the S1P(3) receptor was dominantly involved in S1P-induced ERK activation and hypopigmentation. CONCLUSIONS The results suggested that S1P reduced melanin synthesis via S1P(3) receptor-mediated ERK and RSK-1 activation, and subsequent MITF dual phosphorylation and degradation.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Heukseok-Dong Dongjak-Gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|