1
|
Eissa E, Kandil R, Dorgham D, Ghorab R, Kholoussi N. Lymphocyte apoptosis and its association with the inflammatory markers and disease severity in juvenile-onset systemic lupus erythematosus patients. Pediatr Rheumatol Online J 2024; 22:20. [PMID: 38243322 PMCID: PMC10799351 DOI: 10.1186/s12969-024-00953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The defective clearance of apoptotic bodies in juvenile-onset systemic lupus erythematosus (jSLE) potentially leads to the persistence of autoreactive lymphocytes and the perpetuation of the autoimmune response. These factors contribute to the disturbance in lymphocyte apoptosis and show potential as key determinants in the clinical course and severity of jSLE. This study evaluates the role of peripheral blood (PB) lymphocyte apoptosis in prognosis of jSLE and as a predictor for disease activity. METHODS The study involved 100 jSLE patients and 50 healthy controls. Flow cytometry was used to analyze percentages of lymphocyte apoptosis in PB of all study participants. Plasma levels of pro-inflammatory cytokines were determined using ELISA. RESULTS Our results showed that percentages of lymphocyte apoptosis in PB of jSLE patients are significantly higher than those of healthy controls. These percentages are significantly positively associated with disease activity of patients (SLEDAI-2 K). Furthermore, plasma cytokine levels (IL-17, IFN-γ and TNF-α) are significantly elevated in jSLE patients compared to their levels in healthy controls. Also, there are weak significant positive correlations between percentages of PB lymphocyte apoptosis and each of IL-17 and IFN-γ plasma levels in jSLE patients. Moreover, PB lymphocyte apoptosis percentages among jSLE patients are higher in the presence of some clinical and laboratory features than those in their absence. CONCLUSION Peripheral apoptotic lymphocytes could contribute to the prognosis of jSLE and could be used as a predictor for disease activity in jSLE patients.
Collapse
Affiliation(s)
- Eman Eissa
- Department of Immunogenetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Rania Kandil
- Department of Immunogenetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dalia Dorgham
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Raghda Ghorab
- Department of Immunogenetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Naglaa Kholoussi
- Department of Immunogenetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of neopterin in rheumatic diseases. Front Immunol 2023; 14:1271383. [PMID: 37799718 PMCID: PMC10548830 DOI: 10.3389/fimmu.2023.1271383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Novel biomarkers of inflammation and oxidative stress might enhance the early recognition, management, and clinical outcomes of patients with rheumatic diseases (RDs). We assessed the available evidence regarding the pathophysiological role of neopterin, the oxidation product of 7,8-dihydroneopterin, a pteridine generated in macrophages activated by interferon-γ, by conducting a systematic review and meta-analysis of studies reporting its concentrations in biological fluids in RD patients and healthy controls. Methods We searched electronic databases for relevant articles published between inception and 31 August 2023. The risk of bias and the certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and the Grades of Recommendation, Assessment, Development and Evaluation Working Group system, respectively. Results In 37 studies, when compared to healthy controls, RD patients had significantly higher concentrations of neopterin both in plasma or serum (standard mean difference, SMD=1.31, 95% CI 1.01 to 1.61; p<0.001; moderate certainty of evidence) and in the urine (SMD=1.65, 95% CI 0.86 to 2.43, p<0.001; I2 = 94.2%, p<0.001; low certainty of evidence). The results were stable in sensitivity analysis. There were non-significant associations in meta-regression and subgroup analysis between the effect size and age, male to female ratio, year of publication, sample size, RD duration, C-reactive protein, erythrocyte sedimentation rate, specific type of RD, presence of connective tissue disease, analytical method used, or biological matrix investigated (plasma vs. serum). By contrast, the effect size was significantly associated with the geographical area in studies assessing serum or plasma and with the type of RD in studies assessing urine. Discussion Pending additional studies that also focus on early forms of disease, our systematic review and meta-analysis supports the proposition that neopterin, a biomarker of inflammation and oxidative stress, can be useful for the identification of RDs. (PROSPERO registration number: CRD42023450209). Systematic review registration PROSPERO, identifier CRD42023450209.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Nikolakis D, Garantziotis P, Sentis G, Fanouriakis A, Bertsias G, Frangou E, Nikolopoulos D, Banos A, Boumpas DT. Restoration of aberrant gene expression of monocytes in systemic lupus erythematosus via a combined transcriptome-reversal and network-based drug repurposing strategy. BMC Genomics 2023; 24:207. [PMID: 37072752 PMCID: PMC10114456 DOI: 10.1186/s12864-023-09275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE. RESULTS We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE. CONCLUSIONS Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.
Collapse
Affiliation(s)
- Dimitrios Nikolakis
- Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Department of Gastroenterology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Onassis Foundation, Athens, Greece
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece
- Department of Propaedeutic Internal Medicine, "Laiko" General Hospital, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, Medical School, University Hospital of Heraklion, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Dionysis Nikolopoulos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece.
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
4
|
Wu J, Li Y, Feng D, Yu Y, Long H, Hu Z, Lu Q, Zhao M. Integrated analysis of ATAC-seq and RNA-seq reveals the transcriptional regulation network in SLE. Int Immunopharmacol 2023; 116:109803. [PMID: 36738683 DOI: 10.1016/j.intimp.2023.109803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND CD4+ T cells have a vital role in the pathogenesis of systemic lupus erythematosus (SLE), abnormal gene expression in CD4+ T cells partly accounting for dysfunctional CD4+T cells. However, the underying regulatory mechanisms of abnormal gene expression in CD4+ T cells derived from SLE patients are not fully understood. METHODS The peripheral blood CD4+ T cells were acquired from 4 SLE patients and 4 matched healthy controls. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) was conducted to screen differentially accessible chromatin regions between SLE and normals, and motif prediction was used to identify potentially key transcription factors (TFs) involved in CD4+T dysfunction. RNA sequencing (RNA-seq) was performed to screen differentially expressed genes in SLE CD4+T cells. ATAC-seq and RNA-seq were integrated to further analyze the relationship between chromatin accessibility and gene expression. KEGG pathway enrichment analysis was to determine enriched pathways of interactions between all predicted TFs and differentially expressed genes (DEGs). Meanwhile, the expression changes of target genes followed by siRNA knockdown of the predicted TF were experimentally verified by qPCR. Finally, the H3K27ac modification levels of immune-related genes with open chromatin and up-regulated expression in SLE CD4+T cells was detected by ChIP-qPCR. RESULTS We identified 3067 differentially accessible regions (DARs) and 1292 DEGs. TF prediction and functional enrichment analyses showed the TF-gene interaction networks were enriched predominantly in T helper 17 (Th17) cell differentiation, the cell cycle and some signaling pathways. Top 5 TFs were predicted based on overlapping genes between the DAR-related genes and the DEGs: ZNF770, THAP11, ZBTB14, ETV1, POU3F1. Validation experiments indicated that the expression of TRIM25, CD163, BST2, IFIT5, IFITM3, OASL, TBX21, IL15RA and IL12RB2 was significantly downregulated in CD4+Tcells with ZNF770 knockdown. H3K27ac showed significantly higher levels in the promoter regions of KLF4 and MX2 in SLE CD4+ T cells. CONCLUSION These DARs associated with this disease may become targets for future treatment of SLE.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Yuwei Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Haojun Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China.
| |
Collapse
|
5
|
Sepand MR, Aghsami M, Keshvadi MH, Bigdelou B, Behzad R, Zanganeh S, Shadboorestan A. The role of macrophage polarization and function in environmental toxicant-induced cancers. ENVIRONMENTAL RESEARCH 2021; 196:110933. [PMID: 33689818 DOI: 10.1016/j.envres.2021.110933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Macrophages are a critical member of the innate immune system and can intensify tumor invasiveness and assist the growth of neoplastic cells. Moreover, they have the capability to reinforce immunosuppression and angiogenesis. Various investigations suggest that health-related issues, including inflammatory disorders and neoplastic diseases may be caused by environmental toxicant exposure. However, it is still unclear what role these environmental toxicants play in causing carcinogenesis by disturbing the mechanisms of migration, polarization, differentiation, and immune-stimulatory functions of macrophages. Accordingly, in this article, we will explore the interaction between environmental chemicals and inflammatory macrophage processes at the molecular level and their association with tumor progression and carcinogenesis.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Keshvadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Assiri K, Hameed MS, Dawasaz AA, Alamoudi E, Asiri AM, Hitesh V, Ajmal M. Correlation of Buccal Micronucleus with Disease Activity Score Using Buccal Micronucleus Cytome Analysis (BMCA) in Systemic Lupus Erythematosus. Indian J Dermatol 2020; 65:265-268. [PMID: 32831365 PMCID: PMC7423229 DOI: 10.4103/ijd.ijd_620_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A disease activity score obtained by using systemic lupus erythematosus disease activity index (SLEDAI) has traditionally been a reliable method to assess the SLE status of patients. More recently, a buccal micronucleus cytome assay (BMCA) has been developed for use as a biomarker of DNA damage in patients with SLE. There has been a very limited number of studies pertaining to the oral lesions in Arab population suffering from SLE in Asir region. Hence, it became utmost important to study epidemiological data of oral mucosal lesions in SLE patients. Distribution of oral lesions in SLE patients could also be helpful in better management of oral complications. Aim: The aim of this study was to determine the existence of a correlation between SLEDAI score and the degree of micronuclei (MN) formation using BMCA. Materials and Methods: After thorough oral examination of adult Saudi SLE patients of Asir hospital and that of healthy control subjects, the subjects underwent BMCA from normal unaffected bilateral buccal mucosae. Results: Pearson's correlation test showed that MN count did not significantly correlate with either disease activity or duration of SLE. Conclusions: Controlled state SLE does not lead to a significant increase in MN formation. Thus, the occurrence of premalignant lesions in the oral cavity could be minimized using proper management protocols.
Collapse
Affiliation(s)
- Khalil Assiri
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ali Azhar Dawasaz
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Eman Alamoudi
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Vij Hitesh
- Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
| | - Muhammed Ajmal
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Attar A, Khosravi Maharlooei M, Nazarinia MA, Hosseini A, Bajalli Z, Moeini YS, Monabati A, Amirmoezi F, Jaberipour M, Habibagahi M. Expression Pattern of Telomerase Reverse Transcriptase (hTERT) Variants and Bcl-2 in Peripheral Lymphocytes of Systemic Lupus Erythematosus Patients. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:225-231. [PMID: 32754218 PMCID: PMC7354072 DOI: 10.30699/ijp.2020.110994.2187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/10/2020] [Indexed: 11/06/2022]
Abstract
Background & Objective: It is not clear whether activated lymphocytes of patients with systemic lupus erythematosus (SLE) are more proliferative or less apoptotic. We aimed to delineate potential differences between B and T cells of SLE patients compared to healthy controls regarding the telomerase activity and apoptosis status. Methods: In this cross-sectional case control study, Blood samples were taken from 10 SLE patients and 10 healthy controls. B and T cells were separated using magnetic cell sorting system. Telomeric repeat amplification protocol (TRAP) assay and real-time PCR were used to determine the telomerase activity and the expression of alternatively spliced variants. Results: Four patients under treatment showed significant telomerase activity in their T cells. Four of the newly diagnosed patients showed telomerase activity in their B cells (20% of all patients and 40% of new onset patients). There was no specific pattern of human telomerase reverse transcriptase variant expression within the patients’ lymphocytes. A significantly reduced expression of Bcl-2 was detected in B cells (P=0.018) and a trend toward lower Bcl-2 expression in T cells was seen in SLE patients compared to healthy controls. Conclusion: Although not definitive, our results may suggest that B cells may have more active roles during the earlier phases of the disease attack, while T cells take over when the disease reaches its chronic stages.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, Division of Interventional Cardiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Khosravi Maharlooei
- Students' Research Committee, Cell and Molecular Medicine Research Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Nazarinia
- Internal Medicine Department, Rheumatology Division, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Institute of Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohre Bajalli
- Students' Research Committee, Cell and Molecular Medicine Research Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Sadat Moeini
- Department of Anesthesiology, Division of Intensive Care Unit, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran.,Hematology research center, Shiraz university of medical sciences, Shiraz, Iran
| | - Fatemeh Amirmoezi
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Jaberipour
- Institute of Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Habibagahi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
10
|
Lu KL, Wu MY, Wang CH, Wang CW, Hung SI, Chung WH, Chen CB. The Role of Immune Checkpoint Receptors in Regulating Immune Reactivity in Lupus. Cells 2019; 8:E1213. [PMID: 31597242 PMCID: PMC6829486 DOI: 10.3390/cells8101213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint receptors with co-stimulatory and co-inhibitory signals are important modulators for the immune system. However, unrestricted co-stimulation and/or inadequate co-inhibition may cause breakdown of self-tolerance, leading to autoimmunity. Systemic lupus erythematosus (SLE) is a complex multi-organ disease with skewed and dysregulated immune responses interacting with genetics and the environment. The close connections between co-signaling pathways and SLE have gradually been established in past research. Also, the recent success of immune checkpoint blockade in cancer therapy illustrates the importance of the co-inhibitory receptors in cancer immunotherapy. Moreover, immune checkpoint blockade could result in substantial immune-related adverse events that mimic autoimmune diseases, including lupus. Together, immune checkpoint regulators represent viable immunotherapeutic targets for the treatment of both autoimmunity and cancer. Therefore, it appears reasonable to treat SLE by restoring the out-of-order co-signaling axis or by manipulating collateral pathways to control the pathogenic immune responses. Here, we review the current state of knowledge regarding the relationships between SLE and the co-signaling pathways of T cells, B cells, dendritic cells, and neutrophils, and highlight their potential clinical implications. Current clinical trials targeting the specific co-signaling axes involved in SLE help to advance such knowledge, but further in-depth exploration is still warranted.
Collapse
Affiliation(s)
- Kun-Lin Lu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Ming-Ying Wu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chi-Hui Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chuang-Wei Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Shuen-Iu Hung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Wen-Hung Chung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chun-Bing Chen
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium. Sci Rep 2019; 9:1283. [PMID: 30718722 PMCID: PMC6361939 DOI: 10.1038/s41598-018-37852-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The importance of neutrophils in the pathogenesis of autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is increasingly recognised. Generation of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) by activated neutrophils are both thought to contribute to pathology; although the underlying mechanisms, particularly the effects of IgG autoantibodies upon neutrophil function, are not fully understood. Therefore, we determined whether purified IgG from patients with SLE or RA have differential effects upon neutrophil activation and function. We found that SLE- and RA-IgG both bound human neutrophils but differentially regulated neutrophil function. RA- and SLE-IgG both increased PMA-induced β1 integrin-mediated adhesion to fibronectin, whilst only SLE-IgG enhanced αMβ2 integrin-mediated adhesion to fibrinogen. Interestingly, only SLE-IgG modulated neutrophil adhesion to endothelial cells. Both SLE- and RA-IgG increased ROS generation and DNA externalisation by unstimulated neutrophils. Only SLE-IgG however, drove DNA externalisation following neutrophil activation. Co-culture of neutrophils with resting endothelium prevented IgG-mediated increase of extracellular DNA, but this inhibition was overcome for SLE-IgG when the endothelium was stimulated with TNF-α. This differential pattern of neutrophil activation has implications for understanding SLE and RA pathogenesis and may highlight avenues for development of novel therapeutic strategies.
Collapse
|
13
|
Su YJ, Chiu WC, Kuo HC. Inverse Association Between Antiviral Immunity and Lupus Disease Activity. Viral Immunol 2018; 31:689-694. [PMID: 30394862 DOI: 10.1089/vim.2018.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This longitudinal study focused on the relationship between lupus activity and the levels of intracellular proteins, phosphorylated interferon regulatory factor 7 (pIRF7), caspase-9 and -10, and mitochondrial antiviral signaling protein (MAVS) and melanoma differentiation-associated protein 5 (MDA5). Ten patients with systemic lupus erythematosus (SLE) were followed at clinics, and their disease activity indexes (SLEDAIs) were determined. Correlation analysis was used to test the influence of changes in intracellular markers on changes in SLEDAI score at two time points. All the patients were women with a median age of 43.5 years. Time to disease condition change varied from 30 to 283 days in this study (188.5 ± 74.31 days). The intracellular protein levels increased after regular follow-up and oral medication. Although there was a decreasing trend in SLEDAI scores in patients after regular follow-up and oral medication, the changes were not statistically significant. The statistical results were as follows: pIRF7 (r = -0.58, p = 0.04), MAVS (r = -0.587, p = 0.04), MDA5 (r = -0.914, p < 0.001), and caspase-10 (44 kDa) (r = 0.593, p = 0.04). The disease activity of SLE was inversely associated with levels of antiviral immunity. The antiviral immunity was represented with MDA5, MAVS, and pIRF7.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chan Chiu
- Department of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Zahran AM, Elsayh KI, Saad K, Eloseily EMA, Osman NS, Alblihed MA, Badr G, Mahmoud MH. Effects of royal jelly supplementation on regulatory T cells in children with SLE. Food Nutr Res 2016; 60:32963. [PMID: 27887663 PMCID: PMC5124115 DOI: 10.3402/fnr.v60.32963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/16/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE To our knowledge, no previous studies have focused on the immunomodulatory effects of fresh royal jelly (RJ) administration on systemic lupus erythematosus (SLE) in humans. Our aim was to study the effect of fresh RJ administration on the disease course in children with SLE with some immunological markers (CD4+ and CD8+ regulatory T cells and T lymphocytes apoptosis). METHODS This was an open-label study in which 20 SLE children received 2 g of freshly prepared RJ daily, for 12 weeks. RESULTS The percentages of CD4+ CD25+high FOXP3+cells (CD4+ regulatory T cells) and CD8+CD25+high FOXP3+cells (CD8+ regulatory T cells) were significantly increased after RJ treatment when compared with baseline values. Apoptotic CD4 T lymphocytes were significantly decreased after RJ therapy when compared with baseline values and the control group. CONCLUSION This is the first human study on the effect of RJ supplementation in children with SLE. Our results showed improvements with 3-month RJ treatment with regard to the clinical severity score and laboratory markers for the disease. At this stage, it is a single study with a small number of patients, and a great deal of additional wide-scale randomized controlled studies are needed to critically validate the efficacy of RJ in SLE.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Khalid I Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt; ;
| | - Esraa M A Eloseily
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Naglaa S Osman
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamd A Alblihed
- Medical Biochemistry Department, College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia
| | - Gamal Badr
- Zoology Department, Laboratory of Immunology & Molecular Physiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohamed H Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Food Science and Nutrition Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Rai R, Chauhan SK, Singh VV, Rai M, Rai G. Heat shock protein 27 and its regulatory molecules express differentially in SLE patients with distinct autoantibody profiles. Immunol Lett 2015; 164:25-32. [PMID: 25655337 DOI: 10.1016/j.imlet.2015.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023]
Abstract
Generation of autoantigens of nuclear origin, like dsDNA and extractable nuclear antigens (ENA) have largely been associated with dysregulated apoptosis and defective clearance of apoptotic debris in SLE. Heat shock protein (HSP) 27 has been reported to have anti-apoptotic properties hence it was of interest to study the expression of HSP27 and its regulatory molecule Brn3a and hsa-miR-939 in SLE patients with distinct autoantibodies specificities. SLE patients were categorized into three subsets based on their distinct sero-positivity for either anti-dsDNA antibody alone (anti-dsDNA(+) group) or anti-ENA antibody alone (anti-ENA(+) group) or both (anti-dsDNA(+) ENA(+) group). We investigated the mRNA and protein expression of HSP27 and Brn3a in peripheral blood leukocytes (PBLs) by real-time reverse transcriptase PCR and Western blotting. Expression of apoptosis markers caspase 3 and poly (ADP-ribose) polymerase (PARP) was determined by Western blotting. Hsa-miR-939 expression was determined using TaqMan(®) miRNA assay. In this study, we report significant downregulation of HSP27 in anti-ENA(+) patients and increased expression of caspase 3 and PARP in both anti-ENA(+) and anti-dsDNA(+) SLE subsets. A negative correlation was observed between the expression of HSP27 and apoptosis markers caspase 3 and PARP. Decreased Brn3a expression was observed in anti-ENA(+) SLE patients, which correlated positively with HSP27 expression. Expression of hsa-miR-939, which has a potential target site for Brn3a 3' UTR, was also elevated specifically in anti-ENA(+) patients. The decreased expressions of HSP27, Brn3a along with elevated levels of hsa-miR-939 are selectively associated with anti-ENA(+) patients and HSP27 was observed to be inversely associated with apoptosis. These findings are suggestive of distinct regulatory processes operative in SLE patient subsets with different autoantibody specificities.
Collapse
Affiliation(s)
- Richa Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sudhir Kumar Chauhan
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Vikas Vikram Singh
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
16
|
Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J, van der Vlag J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin Exp Immunol 2015; 179:68-74. [PMID: 24758196 DOI: 10.1111/cei.12359] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 12/20/2022] Open
Abstract
In addition to disturbed apoptosis and insufficient clearance of apoptotic cells, there is recent evidence for a role of neutrophils in the aetiopathogenesis of systemic lupus erythematosus (SLE). In response to various stimuli, neutrophils can rapidly release DNA fibres decorated with citrullinated histones and anti-microbial peptides. These structures are referred to as neutrophil extracellular traps (NETs). In addition to apoptotic cell-derived microparticles, these NETs may comprise a further source of autoantigens, able to drive the autoimmune response in SLE. Our group recently identified specific histone modifications occurring during apoptosis that play an important role in the autoimmune response in SLE. In the current study, we evaluated the presence and immunostimulatory potential of these previously identified histone modifications in NETs. Compared to NETs from healthy donors, the histones present in NETs formed by SLE-derived neutrophils contain increased amounts of acetylated and methylated residues, which we previously observed to be associated with apoptosis and SLE. Treatment of neutrophils with histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), prior to induction of NETosis, induced NETs containing hyperacetylated histones, endowed with an increased capacity to activate macrophages. This implies that specific histone modifications, in particular acetylation, might enhance the immunostimulatory potential of NETs in SLE.
Collapse
Affiliation(s)
- E Pieterse
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Mok MY. Tolerogenic dendritic cells: role and therapeutic implications in systemic lupus erythematosus. Int J Rheum Dis 2014; 18:250-9. [DOI: 10.1111/1756-185x.12532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mo Yin Mok
- Division of Rheumatology & Clinical Immunology Department of Medicine Queen Mary Hospital The University of Hong Kong Hong Kong China
| |
Collapse
|
18
|
Investigation of the caspase-dependent mitochondrial apoptotic pathway in mononuclear cells of patients with systemic Lupus erythematosus. J Transl Med 2014; 12:303. [PMID: 25370148 PMCID: PMC4226892 DOI: 10.1186/s12967-014-0303-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/21/2014] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to explore the role of apoptosis initiators, caspase-9, caspase-10, mitochondrial anti-viral signaling protein (MAVS), and interferon regulatory factor 7 (pIRF7), in patients with systemic lupus erythematosus (SLE). Methods Leukocyte apoptosis was determined by flow cytometry, including annexin V, APO2.7, and 7-amino-actinomycin D (7-AAD) on each subtype of leukocyte in 35 patients with SLE, 15 disease controls, and 17 volunteer normal controls. Levels of caspase-9, caspase-10, MAVS, and pIRF7 in mononuclear cells and the disease activity index (SLEDAI) in the SLE patients were determined. Correlation among intracellular adaptor proteins and caspase levels were calculated. Results The SLE patients had higher APO2.7 in total leukocyte, lymphocyte, and monocytes, and higher late apoptosis markers in total leukocytes and neutrophils than normal controls (all p < 0.05). Disease activity was positively associated with the APO2.7 of CD19+ cells in SLE, but negatively associated with MAVS and caspase-9 levels (all p < 0.05). Markers of viral infection and anti-virus transcription factors like MDA5, MAVS, and pIRF7 were significantly higher in SLE patients than in disease controls (p < 0.05). Caspase-9 and caspase-10 levels positively correlated with MAVS and pIRF7 in SLE patients (p < 0.05). Conclusions The disease activity of SLE is positively associated with APO2.7 level of CD19+ cells but negatively associated with MAVS and caspase-9 levels, which all point to a mitochondrial pathway.
Collapse
|
19
|
Al-Rawi ZS, Gorial FI, Tawfiq RF, Mohammed AK, Al-Naaimi AS, Al'aadhmi MA, Hayyawi AA. Brief Report: A Novel Application of Buccal Micronucleus Cytome Assay in Systemic Lupus Erythematosus: A Case-Control Study. Arthritis Rheumatol 2014; 66:2837-41. [DOI: 10.1002/art.38764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/24/2014] [Indexed: 11/10/2022]
|
20
|
Xiao P, Dong C, Yue Y, Xiong S. Dynamic expression of microRNAs in M2b polarized macrophages associated with systemic lupus erythematosus. Gene 2014; 547:300-9. [DOI: 10.1016/j.gene.2014.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
|
21
|
Su YJ, Cheng TT, Chen CJ, Chiu WC, Hsu CY, Chang WN, Tsai NW, Kung CT, Wang HC, Lin WC, Huang CC, Chang YT, Su CM, Chiang YF, Cheng BC, Lin YJ, Lu CH. The association among leukocyte apoptosis, autoantibodies and disease severity in systemic lupus erythematosus. J Transl Med 2013; 11:261. [PMID: 24138706 PMCID: PMC3853096 DOI: 10.1186/1479-5876-11-261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Background Both apoptosis and autoantibodies are important factors associated with disease activity in the pathogenesis of systemic lupus erythematosus (SLE). This study tested the hypothesis that increased leukocyte apoptosis is associated with elevated levels of autoantibodies and the disease activity of SLE. Methods Leukocyte apoptosis was determined by flow cytometry, including annexin V, APO2.7, and 7-amino-actinomycin D (7-AAD) on each subtype of leukocyte in 23 patients with SLE. Leukocyte apoptosis was also evaluated in nine patients with Sjogren’s syndrome (SJS) and in 20 volunteer subjects. Titers of common autoantibodies and the disease activity index (SLEDAI-2 k) of the SLE patients were also determined. Results Except for annexin V and APO 2.7 of monocytes and late apoptosis (annexin V + 7-ADD) of lymphocytes, apoptosis in the total and in subsets of leukocytes were significantly higher in SLE patients than in controls (all p < 0.05, post hoc analysis). The mean percentage of late apoptosis of leukocytes (annexin V + 7-AAD) positively correlated with levels of anti-Ro52/60 (r = 0.513, p < 0.01), anti-La (r = 0.439, p = 0.04), and anti-Mi-2 (r = 0.492, p = 0.02), and inversely correlated with both C3 and C4 levels, although not statistically significant. The percentage of APO2.7 of CD19+ cells positively correlated with SLEDAI-2 K score (p = 0.01). Conclusions Leukocyte apoptosis is significantly higher in patients with SLE and correlates well with the levels of several autoantibodies. The APO2.7 of B-lymphocyte (CD19+) cells positively correlates with the disease activity of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cheng-Hsien Lu
- Department of Neurology, Chang Gung Memorial Hospital, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung Taiwan.
| |
Collapse
|
22
|
Chan VSF, Nie YJ, Shen N, Yan S, Mok MY, Lau CS. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev 2012; 11:890-7. [DOI: 10.1016/j.autrev.2012.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 01/12/2023]
|
23
|
Gatto M, Zen M, Ghirardello A, Bettio S, Bassi N, Iaccarino L, Punzi L, Doria A. Emerging and critical issues in the pathogenesis of lupus. Autoimmun Rev 2012; 12:523-36. [PMID: 23000207 DOI: 10.1016/j.autrev.2012.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, autoimmune disease, encompassing either mild or severe manifestations. SLE was originally labeled as being an immune complex-mediated disease, but further knowledge suggested its pathogenesis is motlier than that, involving complex interactions between predisposed individuals and their environment. People affected with SLE have their immune system skewed toward aberrant self-recognition usually after encountering a triggering agent. Defeats in early and late immune checkpoints contribute to tolerance breakdown and further generation and expansion of autoreactive cell-clones. B and T cells play a master role in SLE, however clues are emerging about other cell types and new light is being shed on SLE autoantibodies, since some of them display really harmful potential (pathogenic antibodies), while others are just connected with disease development (pathological antibodies) and may even be protective. Autoantibody generation is elicited by abnormal apoptosis and inefficient clearance of cellular debris causing intracellular autoantigens (e.g. nucleosomes) to persist in the extracellular environment, being further recognized by autoreactive cells. Here we explore the complexity of SLE pathogenesis through five core issues, i.e. genetic predisposition, B and T cell abnormalities, abnormal autoantigen availability, autoantibody generation and organ damage, relying on current knowledge and recent insights into SLE development.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shah D, Sah S, Wanchu A, Wu MX, Bhatnagar A. Altered redox state and apoptosis in the pathogenesis of systemic lupus erythematosus. Immunobiology 2012; 218:620-7. [PMID: 22940256 DOI: 10.1016/j.imbio.2012.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/24/2012] [Accepted: 07/29/2012] [Indexed: 02/01/2023]
Abstract
An altered redox status and increased lymphocyte apoptosis have been implicated in the development of systemic lupus erythematosus (SLE). In this study, we evaluated the relationship between glutathione (GSH) depletion, reactive oxygen species (ROS) and, the progression of apoptosis and their association with SLE severity. Significant low levels of intracellular glutathione, total thiol and altered redox state (GSH/GSSG) were found in SLE patients, in which lymphocyte apoptosis and activated caspase-3 expression in the lymphocytes were remarkably increased. The severity of disease was positively allied with the increased levels of lymphocyte apoptosis and caspase-3, but negatively with the decreased levels of total thiol, depleted intracellular glutathione and altered redox state (GSH/GSSG). The lymphocyte apoptosis and activated caspase-3 expression were negatively associated with intracellular levels of GSH and redox state and positively associated with the elevated levels of multiple oxidative stress markers; ROS and lipid peroxidation measured as malondialdehyde (MDA). These results suggest that GSH depletion and elevated oxidative stress trigger apoptosis and may be coupled with the severity of the disease.
Collapse
Affiliation(s)
- Dilip Shah
- Department of Dermatology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, USA
| | | | | | | | | |
Collapse
|
25
|
Li Y, Zhao LD, Tong LS, Qian SN, Ren Y, Zhang L, Ding X, Chen Y, Wang YX, Zhang W, Zeng XF, Zhang FC, Tang FL, Zhang X, Ba DN, He W, Cao XT, Lipsky PE. Aberrant CD200/CD200R1 expression and function in systemic lupus erythematosus contributes to abnormal T-cell responsiveness and dendritic cell activity. Arthritis Res Ther 2012; 14:R123. [PMID: 22621248 PMCID: PMC3446504 DOI: 10.1186/ar3853] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/17/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION CD200 is a type I transmembrane glycoprotein that can regulate the activation threshold of inflammatory immune responses, polarize cytokine production, and maintain immune homeostasis. We therefore evaluated the functional status of CD200/CD200 receptor 1 (CD200R1) interactions in subjects with systemic lupus erythematosus (SLE). METHODS Serum CD200 level was detected by ELISA. The expression of CD200/CD200R1 by CD4+ T cells and dendritic cells (DCs) was examined by flow cytometry, and then compared between SLE patients and healthy controls. Peripheral blood mononuclear cells were stained with carboxyfluorescein diacetate succinimidyl ester and annexin V/propidium iodide for evaluation of the effect of CD200 on cell proliferation and apoptosis. In addition, the effect of CD200 on DC function was determined by transwell migration assay as well as by measurement of binding and phagocytosis of apoptotic cells. RESULTS In SLE patients, the number of CD200+ cells and the level of soluble CD200 were significantly higher than in healthy controls, whereas the expression of CD200R1 by CD4+ T cells and DCs was decreased. Furthermore, the increased CD200 expression by early apoptotic cells contributed to their diminished binding and phagocytosis by DCs in SLE. Importantly, the engagement of CD200 receptor on CD4+ T cells with CD200-Fc fusion protein in vitro reduced the differentiation of T-helper type 17 cells and reversed the defective induction of CD4+CD25highFoxP3+ T cells by transforming growth factor beta in SLE patients. Conversely, blockade of CD200-CD200R1 interaction with anti-CD200R1 antibody promoted CD4+ T-cell proliferation. CONCLUSION CD200 and CD200R1 expression and function are abnormal in SLE and may contribute to the immunologic abnormalities in SLE.
Collapse
Affiliation(s)
- Yang Li
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 41# Da-Mu-Cang-Hu-Tong Street, Beijing 100032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Macrophages and neutrophils in SLE—An online molecular catalog. Autoimmun Rev 2012; 11:365-72. [DOI: 10.1016/j.autrev.2011.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022]
|
27
|
Serum adenosine deaminase activity in patients with systemic lupus erythematosus: a study based on ADA1 and ADA2 isoenzymes pattern. Rheumatol Int 2011; 32:1633-8. [PMID: 21350874 DOI: 10.1007/s00296-011-1836-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 02/09/2011] [Indexed: 01/21/2023]
Abstract
Adenosine deaminase (ADA) plays a crucial role in the development and maintenance of normal immune system. So, any immunological imbalances could associate with its altered activity in serum. This study evaluated the activity of total ADA and its isoenzymes in serum of 45 patients with systemic lupus erythematosus (SLE). Included were 23 patients with active SLE, 22 during the inactive phase of the disease, and 45 healthy subjects. Our results provided evidence that the significantly elevated total ADA activity in serum of SLE patients is correlated mainly with the increased ADA2 level. The highest mean ADA2 activity during the relapse phase of the disease could be an indication to the macrophages, the main source of ADA2. It might be concluded that ADA and its isoenzymes analysis in serum of patients could be used as a useful and non-invasive diagnostic tool in evaluation of SLE active phase and the disease severity.
Collapse
|
28
|
Shah D, Aggarwal A, Bhatnagar A, Kiran R, Wanchu A. Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus. Free Radic Res 2011; 45:559-67. [PMID: 21284579 DOI: 10.3109/10715762.2011.555765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased oxidative stress and lymphocyte apoptosis are a hallmark of the autoimmune disease systemic lupus erythematosus (SLE). However, the association between oxidative stress and T lymphocytes apoptosis has still to be elucidated in SLE. In order to appraise the interaction between oxidative stress and T lymphocyte apoptosis with the severity of disease, oxidative stress profile and T lymphocytes apoptosis were studied. Increased levels of ROS, MDA and CD4(+) lymphocyte apoptosis were positively associated with disease activity while decreased levels of GSH and percentage expression of CD4(+) lymphocyte were negatively associated with disease activity. The decrease in intracellular levels of GSH was negatively associated with T lymphocyte, CD4(+) lymphocyte, CD8(+) lymphocyte apoptosis and intracellular caspase-3 expression. The present study suggests that increased T lymphocyte sub-sets apoptosis may be mediated by decreased intracellular glutathione concentration and severity of disease might be enhanced together by over-production of ROS in SLE.
Collapse
Affiliation(s)
- Dilip Shah
- Department of Biochemistry, Basic Medical Science Block, Panjab University, Chandigarh, India.
| | | | | | | | | |
Collapse
|
29
|
Novel approach to improve molecular imaging research: correlation between macroscopic and molecular pathological findings in patients. Eur J Radiol 2010; 79:365-8. [PMID: 20863640 DOI: 10.1016/j.ejrad.2010.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/24/2010] [Indexed: 11/22/2022]
Abstract
PURPOSE Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. MATERIALS AND METHODS The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. RESULTS Two SLE groups could be identified: patients with normal (annexin V binding<20%), and with increased apoptosis (annexin V binding>20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p<0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. CONCLUSION This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.
Collapse
|
30
|
Jin O, Kavikondala S, Mok MY, Sun L, Gu J, Fu R, Chan A, Yeung J, Nie Y, Lau CS. Abnormalities in circulating plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R137. [PMID: 20618924 PMCID: PMC2945027 DOI: 10.1186/ar3075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 05/12/2010] [Accepted: 07/09/2010] [Indexed: 12/20/2022] Open
Abstract
Introduction Dendritic cells (DCs) are capable of inducing immunity or tolerance. Previous studies have suggested plasmacytoid DCs (pDCs) are pathogenic in systemic lupus erythematosus (SLE). However, the functional characteristics of directly isolated peripheral circulating blood pDCs in SLE have not been evaluated previously. Methods Peripheral blood pDCs from 62 healthy subjects and 58 SLE patients were treated with apoptotic cells derived from polymorphonuclear cells (PMNs). Antigen loaded or unloaded pDCs were then co-cultured with autologous or allogenous T cells. Changes in T cell proliferation, cell surface CD25 expression, intracellular Foxp3 expression and cytokine production were evaluated. pDCs that had captured apoptotic PMNs (pDCs + apoPMNs were also studied for their cytokine production (interferon (IFN)-alpha, interleukin (IL)-6, IL-10, IL-18) and toll like receptor (TLR) expression. Results Circulating pDCs from SLE patients had an increased ability to stimulate T cells when compared with control pDCs. Using allogenous T cells as responder cells, SLE pDCs induced T cell proliferation even in the absence of apoptotic PMNs. In addition, healthy pDCs + apoPMNs induced suppressive T regulatory cell features with increased Foxp3 expression in CD4 + CD25 + cells while SLE pDCs + apoPMNs did not. There were differences in the cytokine profile of pDCs that had captured apoptotic PMNs between healthy subjects and patients with SLE. Healthy pDCs + apoPMNs showed decreased production of IL-6 but no significant changes in IL-10 and IL-18. These pDCs + apoPMNs also showed increased mRNA transcription of TLR9. On the other hand, while SLE pDCs + apoPMNs also had decreased IL-6, there was decreased IL-18 mRNA expression and persistent IL-10 protein synthesis. In addition, SLE pDCs lacked TLR9 recruitment. Conclusions We have demonstrated that peripheral circulating pDCs in patients with SLE were functionally abnormal. They lacked TLR9 expression, were less capable of inducing regulatory T cell differentiation and had persistent IL-10 mRNA expression following the capture of apoptotic PMNs. We suggest circulating pDCs may be pathogenically relevant in SLE.
Collapse
Affiliation(s)
- Ou Jin
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Anti-TNF-alpha therapies in systemic lupus erythematosus. J Biomed Biotechnol 2010; 2010:465898. [PMID: 20625488 PMCID: PMC2896679 DOI: 10.1155/2010/465898] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/20/2010] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor (TNF)-α is not just a proinflammatory cytokine. It has also been proposed to be an immunoregulatory molecule that can alter the balance of T regulatory cells. Anti-TNF-α therapies have been provided clinical benefit to many patients and introduced for treating moderate to severe rheumatoid arthritis, Crohn's disease, and other chronic inflammatory disorders. However, their use also is accompanied by new or aggravated forms of autoimmunity, such as formation of autoantibodies, including antinuclear antibodies (ANAs), antidouble-stranded DNA (dsDNA) antibodies, and anticardiolipin antibodies (ACL). Systemic lupus erythematosus (SLE) is a disease with autoimmune disturbance and inflammatory damage. The role of TNF-α in human SLE is controversial. Here we review the role of TNF-α in the pathophysiological processes of SLE and the likely effects of blocking TNF-α in treatment of SLE.
Collapse
|
32
|
Katsiari CG, Liossis SNC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal. Semin Arthritis Rheum 2010; 39:491-503. [DOI: 10.1016/j.semarthrit.2008.11.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/09/2008] [Accepted: 11/08/2008] [Indexed: 01/20/2023]
|
33
|
Das J, Arora P, Gracias D, Praveen A, Raj BPJ, Martin E, Pal R. Endogenous humoral autoreactive immune responses to apoptotic cells: Effects on phagocytic uptake, chemotactic migration and antigenic spread. Eur J Immunol 2008; 38:3561-74. [DOI: 10.1002/eji.200838624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Grossmayer GE, Munoz LE, Weber CK, Franz S, Voll RE, Kern PM, Kalden JR, Schett G, Herrmann M, Gaipl US. IgG autoantibodies bound to surfaces of necrotic cells and complement C4 comprise the phagocytosis promoting activity for necrotic cells of systemic lupus erythaematosus sera. Ann Rheum Dis 2008; 67:1626-32. [PMID: 18165321 DOI: 10.1136/ard.2007.081828] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Accumulation of dying and dead cells is thought to be involved in the etiopathogenesis of systemic lupus erythaematosus (SLE). Clearance has been described mainly for apoptotic cells; however, the knowledge of serum factors participating in the phagocytosis of necrotic cells is limited. PATIENTS AND METHODS Sera from 18 patients with SLE and 10 normal healthy donors (NHD), and macrophages from 3 NHD were included. Autoantibodies and complement were measured by ELISA and phagocytosis by flow cytometry. Binding of serum IgG to necrotic cells was assessed by flow cytometry and confocal microscopy. RESULTS Sera from patients with SLE and NHD generally promoted the phagocytosis of necrotic cells by macrophages isolated from NHD. Five independent experiments with macrophages from three different NHD led to similar results. The sera from healthy controls displayed a homogeneous activity, whereas sera from patients with SLE showed a dichotomic behaviour. Only sera containing autoantibodies binding to the surfaces of necrotic cells and sufficient complement showed increased phagocytosis promoting activities. In SLE sera, C4 turned out to be the critical complement component in this process. Sera de-complemented by heat treatment strongly reduced phagocytosis of necrotic cells. CONCLUSIONS Serum components influence the uptake of necrotic cells by phagocytosis competent macrophages from NHD. Complement is required for this process and autoantibodies binding to the surfaces of necrotic cells additionally promote their phagocytosis.
Collapse
Affiliation(s)
- G E Grossmayer
- Institute for Clinical Immunology, Department for Internal Medicine 3, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jin O, Kavikondala S, Sun L, Fu R, Mok MY, Chan A, Yeung J, Lau CS. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus 2008; 17:654-62. [PMID: 18625638 DOI: 10.1177/0961203308089410] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are functionally abnormal in systemic lupus erythematosus (SLE). However, previous studies have involved in-vitro cytokine-induced DCs. In this investigation, directly isolated circulating plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in SLE were studied. Blood dendritic cell antigen (BDCA)-4 and BDCA-1 magnetic isolation kits were used to isolate blood pDCs and mDCs from 30 SLE patients and 36 controls. Their number and surface markers, and their relationship with lupus disease activity were evaluated. The percentage of pDCs per peripheral blood mononuclear cells was higher in SLE (0.33+/-0.14) than in controls (0.16+/-0.09, P<0.01), but that of mDCs was lower in SLE (0.43+/-0.14) than in controls (0.63+/-0.32; P<0.01). In controls, both pDCs and mDCs expressed high levels of MHC-II, however, the expression of CD86, CD83 and CCR7 on pDCs were significantly lower than that on mDCs (all P<0.05). mDCs from patients with SLE, particularly those with active disease, expressed lower CD83 than controls. In health, circulating mDCs may be more efficient than pDCs in stimulating T cells. In SLE, the increased number of circulating pDCs supports a pathogenic role for these cells, and the decreased mDC number and CD83 expression may explain the susceptibility to infections in these patients.
Collapse
Affiliation(s)
- Ou Jin
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Suh CH, Kim HA. Cytokines and their receptors as biomarkers of systemic lupus erythematosus. Expert Rev Mol Diagn 2008; 8:189-98. [PMID: 18366305 DOI: 10.1586/14737159.8.2.189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus is the most clinically diverse autoimmune disease. Owing to its heterogeneous presentation, clinical management of systemic lupus erythematosus remains as one of the greatest challenges. Therefore, there is a great need to assess disease activity accurately. Biomarkers can be objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes or pharmacologic responses to a therapeutic intervention, and may also predict the risk of the disease, confirm diagnosis, monitor disease activity and provide prognostic information. Cytokines play an important and diverse role in the immune dysregulation in systemic lupus erythematosus. Measuring serum levels of soluble IL-2 receptor, IL-6, IL-10, soluble TNF receptor and IFN-alpha/IFN-induced genes may be promising biomarkers of disease activity in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Chang-Hee Suh
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Woncheon-dong, San5, Youngtong-gu, Suwon, 443-721 South Korea.
| | | |
Collapse
|
37
|
Varghese B, Haase N, Low PS. Depletion of folate-receptor-positive macrophages leads to alleviation of symptoms and prolonged survival in two murine models of systemic lupus erythematosus. Mol Pharm 2007; 4:679-85. [PMID: 17848087 DOI: 10.1021/mp0700615] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving deposition of immune complexes in normal tissues and the consequent accumulation of immune cells and tissue injury. Activated macrophages are thought to contribute to disease pathogenesis by releasing inflammatory mediators that both cause direct tissue damage and attract other immune cells that augment inflammation. Previous studies in animal models of rheumatoid arthritis have shown that activated macrophages express a folate receptor that can be targeted with folate-linked haptens, leading to (1) marking of the activated macrophages with highly immunogenic haptens, (2) recognition of the marked cells by Fc receptor-expressing immune cells, and (3) destruction of the antibody-coated macrophages by the body's own immune system. Here we demonstrate that the same folate-hapten-targeted immunotherapy can greatly suppress symptoms of SLE in two animal models of the disease, resulting in reduced immune complex deposition, diminished damage to normal tissues, and prolonged animal survival.
Collapse
Affiliation(s)
- Bindu Varghese
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
38
|
Monrad S, Kaplan MJ. Dendritic cells and the immunopathogenesis of systemic lupus erythematosus. Immunol Res 2007; 37:135-45. [PMID: 17695248 DOI: 10.1007/bf02685895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, the role of dendritic cells (DCs) in the immunopathogenesis of systemic lupus erythematosus (SLE) has become apparent. As unique mediators of both tolerance and immunity, aberrant myeloid and plasmacytoid DC function can promote autoimmune responses via a number of mechanisms and proinflammatory pathways. This review provides an overview of DC function, the potential role of DCs in promoting autoimmune responses in SLE, and how other abnormalities in lupus can lead to an enhanced engagement of DCs in immune responses. How medications used to treat SLE and other autoimmune conditions may exert effects on DCs is also explored.
Collapse
Affiliation(s)
- Seetha Monrad
- Division of Rheumatology, University of Michigan, 5520 MSRBI, Box 0680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
39
|
Chen G, Zhang FJ, Gong M, Yan M. Effect of perioperative autologous versus allogeneic blood transfusion on the immune system in gastric cancer patients. J Zhejiang Univ Sci B 2007; 8:560-5. [PMID: 17657857 PMCID: PMC1934950 DOI: 10.1631/jzus.2007.b0560] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/28/2007] [Indexed: 12/14/2022]
Abstract
BACKGROUND Allogeneic blood transfusion-induced immunomodulation (TRIM) and its adverse effect on the prognosis of patients treated surgically for cancer remain complex and controversial. However, the potential risk associated with allogeneic blood transfusion has heightened interest in the use of autologous blood transfusion. In the present study, the serum concentrations of neopterin, interferon-gamma (IFN-gamma), T lymphocyte subsets (CD3(+), CD4(+), CD8(+), CD4(+)/CD8(+)) and a possible association between these variables were investigated. The purpose was to further evaluate the effect of autologous versus allogeneic blood transfusion on immunological status in patients undergoing surgery for gastric cancer. METHODS Sixty ASA I-II (American Society of Anesthesiologists) patients undergoing elective radical resection for stomach cancer were randomly allocated to receive either allogeneic blood transfusion (n=30) or autologous blood transfusion (n=30). Serum concentrations of the neopterin, IFN-gamma and T lymphocyte subsets in the recipients were measured before induction of anesthesia, after operation, and on the 5th postoperative day. RESULTS Both two groups, serum neopterin, IFN-gamma, percentages of T-cell subsets (CD3(+), CD4(+)), and CD4(+)/CD8(+) ratio had significantly decreased after operation, but decreased more significantly in group H (receiving allogeneic blood transfusion) than those in group A (receiving autologous whole blood transfusion) (P<0.05). On the 5th postoperative day, serum neopterin, IFN-gamma, CD3(+), CD4(+) T-cells, and CD4(+)/CD8(+) ratio returned to the baseline values in group A. In contrast, the above remain decreasing in group H, where there were no significant relations between serum neopterin and IFN-gamma. CONCLUSION Perioperative surgical trauma and stress have an immunosuppressive impact on gastric cancer patients. Allogeneic blood transfusion exacerbates the impaired immune response. Autologous blood transfusion might be significantly beneficial for immune-compromised patients in the perioperative period, clearly showing its superiority over allogeneic blood transfusion.
Collapse
|
40
|
Westerweel PE, Luijten RKMAC, Hoefer IE, Koomans HA, Derksen RHWM, Verhaar MC. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann Rheum Dis 2007; 66:865-70. [PMID: 17329307 PMCID: PMC1955125 DOI: 10.1136/ard.2006.065631] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2007] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is associated with a high prevalence of cardiovascular disease. Circulating endothelial progenitor cells (EPCs) contribute to vascular regeneration and repair, thereby protecting against atherosclerotic disease. EPCs are derived from CD34+ haematopoietic stem cells (HSCs), which have an increased propensity for apoptosis in the bone marrow of patients with SLE. AIM To determine whether circulating HSCs and EPCs are reduced in SLE, contributing to an increased cardiovascular risk. METHODS Progenitor cells were sampled from 15 female patients with SLE in prolonged clinical remission from their disease and 15 matched healthy controls. HSC and CD34+KDR+ EPCs were quantified by flow cytometry. Annexin V staining was used to identify apoptotic cells. RESULTS Patients with SLE had reduced levels of circulating CD34+ HSCs and CD34+KDR+ EPCs, associated with increased HSC apoptosis. Compared with controls, the fraction of HSCs that could be identified as EPCs was higher in patients with SLE, consistent with a primary defect of HSCs. EPC outgrowth from mononuclear cells, which depends mainly on CD34- cells, was unaffected. CONCLUSIONS Patients with SLE have lower levels of circulating HSCs and EPCs, even during clinical remission. The data suggest that increased HSC apoptosis is the underlying cause for this depletion. These observations indicate that progenitor cell-mediated endogenous vascular repair is impaired in SLE, which may contribute to the accelerated development of atherosclerosis.
Collapse
Affiliation(s)
- Peter E Westerweel
- Department of Vascular Medicine, F02.126, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Zhu L, Yang X, Chen W, Li X, Ji Y, Mao H, Nie J, Yu X. Decreased expressions of the TNF-alpha signaling adapters in peripheral blood mononuclear cells (PBMCs) are correlated with disease activity in patients with systemic lupus erythematosus. Clin Rheumatol 2007; 26:1481-9. [PMID: 17235653 DOI: 10.1007/s10067-006-0531-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/19/2006] [Accepted: 12/27/2006] [Indexed: 01/29/2023]
Abstract
Tumor necrosis factor (TNF)-alpha is a pleiotropic cytokine. Systemic lupus erythematosus (SLE) is an autoimmune and inflammatory disease. However, until now, the expression and pathophysiological role of TNF adapters in SLE have been poorly understood. This study aims to investigate the expression of mRNA for the TNF adapter proteins including TNF receptor-associated death domain (TRADD) protein, Fas-associated death domain (FADD) protein, receptor-interacting protein 1 (RIP-1), and TNF receptor-associated factor-2 (TRAF-2) in peripheral blood mononuclear cells (PBMCs) from patients with SLE and to explore the relationship between the expression of these adapters and the SLE disease activity. PBMCs were isolated from the venous blood of 51 SLE patients and 17 healthy subjects. The expression of mRNA for TNF adapter molecules such as TRADD, FADD, RIP-1, and TRAF-2 in PBMCs were analyzed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. There were constitutive expressions of mRNA for TRADD, FADD, RIP-1, and TRAF-2 in PBMCs from healthy subjects. The expression of mRNA for all the adapter molecules significantly decreased in PBMCs from patients with SLE, which were 0.38-, 0.69-, 0.59-, and 0.55-fold, respectively, compared to those of control subjects (P < 0.05). The expression of Caspase 3 was significantly increased in SLE patients (P < 0.01); however, the expression of IL-1beta was not significantly different between SLE and control subjects. The expression of TRADD, FADD, RIP-1, and TRAF-2 in PBMCs from patients with SLE were negatively correlated with SLEDAI, the correlation coefficient of which was -0.285, -0.280, -0.307, and -0.298, respectively (P < 0.05). The expression of mRNA for TNF adapter molecules TRADD, FADD, RIP-1, and TRAF-2 decreased significantly in PBMCs from patients with SLE, and the expression of these adapters were negatively correlated with the SLE activity index. These abnormalities may be involved in the immunopathogenic injury mediated by the aberration TNF-alpha signaling pathway in SLE.
Collapse
Affiliation(s)
- Langjing Zhu
- Department of Nephrology, First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Programmed cell death and the disposal of cell corpses by phagocytic cells are highly regulated ongoing processes essential for the survival and well-being of higher organisms. Abnormalities in the susceptibility of certain cells to receptor-induced death are known to lead to certain human diseases (e.g., autoimmune lymphoproliferative syndrome) and may contribute to the pathogenesis of systemic lupus erythematosus. Impaired clearance of apoptotic cells is also likely to be an important factor in lupus pathogenesis, though the biological basis of such a defect remains elusive. Finally, the process of apoptosis has been shown to contribute to lupus disease effector mechanisms. A better understanding of the role of apoptosis in lupus very likely will lead to improved diagnosis and therapy.
Collapse
Affiliation(s)
- Philip L Cohen
- University of Pennsylvania, 421 Curie Boulevard, Suite 757, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Reville K, Crean JK, Vivers S, Dransfield I, Godson C. Lipoxin A4 Redistributes Myosin IIA and Cdc42 in Macrophages: Implications for Phagocytosis of Apoptotic Leukocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:1878-88. [PMID: 16424219 DOI: 10.4049/jimmunol.176.3.1878] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipoxins (LXs) are endogenously produced anti-inflammatory agents that modulate leukocyte trafficking and stimulate nonphlogistic macrophage phagocytosis of apoptotic neutrophils, thereby promoting the resolution of inflammation. Previous data suggest a role for altered protein phosphorylation and cytoskeletal rearrangement in LX-stimulated phagocytosis but the exact mechanisms remain unclear. In this study we examine the effects of LXA4 on the protein phosphorylation pattern of THP-1 cells differentiated into a macrophage-like phenotype. THP-1 cells stimulated with LXA4 (1 nM) exhibit dephosphorylation of a 220-kDa protein. Using mass spectrometry, this protein was identified as MYH9, a nonmuscle myosin H chain II isoform A, which is involved in cytoskeleton rearrangement. THP-1 cells treated with LXA4 adopt a polarized morphology with activated Cdc42 localized toward the leading edge and MYH9 localized at the cell posterior. Polarized distribution of Cdc42 is associated with Akt/PKB-mediated Cdc42 activation. Interestingly, the annexin-derived peptide Ac2-26, a recently described agonist for the LXA4 receptor, also stimulates macrophage phagocytosis, MYH9 dephosphorylation, and MYH9 redistribution. In addition, we demonstrate that LXA4 stimulates the phosphorylation of key polarity organization molecules: Akt, protein kinase Czeta, and glycogen synthase kinase-3beta. Inhibition of LXA4-induced Akt and protein kinase Czeta activity with specific inhibitors prevented LXA4-stimulated phagocytosis of both apoptotic polymorphonuclear neutrophils and lymphocytes, highlighting a potential use for LXA4 in the treatment of autoimmune diseases. Furthermore, phosphorylation and subsequent inactivation of glycogen synthase kinase-3beta resulted in an increase in phagocytosis similar to that of LXA4. These data highlight an integrated mechanism whereby LXA4 regulates phagocytosis through facilitative actin cytoskeleton rearrangement and cell polarization.
Collapse
Affiliation(s)
- Keira Reville
- School of Medicine and Medical Sciences, Conway Institute, University College Dublin, Belfield, Ireland
| | | | | | | | | |
Collapse
|
44
|
Pitidhammabhorn D, Kantachuvesiri S, Totemchokchyakarn K, Kitiyanant Y, Ubol S. Partial construction of apoptotic pathway in PBMC obtained from active SLE patients and the significance of plasma TNF-α on this pathway. Clin Rheumatol 2006; 25:705-14. [PMID: 16391890 DOI: 10.1007/s10067-005-0162-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/24/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects various organs and systems. Increased apoptosis, together with defects in the uptake of apoptotic bodies, are thought to have a pathogenic role in SLE. By detection of chromatin condensation, 30% of apoptosis was detected in peripheral blood mononuclear cells (PBMC) from Thai patients with active SLE. Therefore, understanding of the molecular processes in PBMC apoptosis may allow us to gain insight into pathophysiology of SLE. Thus, genes involved in the apoptosis of PBMC from these patients were investigated ex vivo by cDNA array analysis. Seventeen apoptosis-related genes were stimulated in active SLE, more than twofold higher than in inactive SLE. These genes are classified into six groups, namely death receptors, death ligands, caspases, bcl-family, and neutral proteases and genes involved in endoplasmic reticulum stress-mediated apoptosis, such as caspase-4 and GADD153. Among those stimulated genes, tumor necrosis factor (TNF) and the TNF-receptor family were drastically up-regulated 60- and 19-fold higher than in healthy controls, respectively. Moreover, the degree of apoptosis correlated with the level of TNF-alpha in plasma, suggesting that the TNF family plays a role in the induction of apoptosis in SLE. To verify this hypothesis, PBMC from healthy individuals were treated with plasma from active SLE patients in the presence or absence of etanercept, a TNF inhibitor. In the presence of etanercept, active SLE plasma reduced the level of apoptosis to 26.43%. In conclusion, massive apoptotic death of PBMC occurred during the active stage of SLE. The molecular pathway of SLE-PBMC apoptosis was mediated at least via TNF/TNFR signaling pathway, which was confirmed by functional test of TNF-alpha in SLE patients' plasma.
Collapse
Affiliation(s)
- Dhanesh Pitidhammabhorn
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Rd., Rachtevee, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|