1
|
Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, Zhao X, Fernandes RA, Hassman LM, Paley GL, Savvides CS, Brackenridge S, Quastel MN, Chudakov DM, Bowness P, Yokoyama WM, McMichael AJ, Gillespie GM, Garcia KC. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 2022; 612:771-777. [PMID: 36477533 PMCID: PMC10511244 DOI: 10.1038/s41586-022-05501-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region-complementary-determining region 3β (BV9-CDR3β) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3β TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.
Collapse
Affiliation(s)
- Xinbo Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lee I Garner
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivan V Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Michael A Paley
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina A Komech
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn M Hassman
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Grace L Paley
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina S Savvides
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Max N Quastel
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dmitriy M Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Muscuoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Oxford, UK
| | - Wayne M Yokoyama
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Dong Y, Wang P, Jiao J, Yang X, Chen M, Li J. Antihypertensive Therapy by ACEI/ARB Is Associated With Intestinal Flora Alterations and Metabolomic Profiles in Hypertensive Patients. Front Cell Dev Biol 2022; 10:861829. [PMID: 35399511 PMCID: PMC8986158 DOI: 10.3389/fcell.2022.861829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ACEI/ARB) are the first-line drugs for the treatment of essential hypertension (HTN), one of the most important risk factors for cardiovascular and cerebrovascular diseases. Intestinal flora and microbial metabolites have been demonstrated to play important roles in blood pressure (BP) regulation and HTN development. However, it remains elusive that intestinal bacteria and metabolites are associated with the protective effects of ACEI/ARB anti-hypertensive drugs against HTN. In this study, we evaluated the effect of ACEI/ARB on gut microbiome and metabolites in patients suffering from HTN. We performed 16S rRNA sequencing and fecal metabolomic analysis of 36 HTN patients placed on ACEI/ARB therapy and 19 newly diagnosed HTN patients with no history of anti-hypertensive treatment. Patients under medication treatment were further classified into well-controlled (n = 24) and poor-controlled (n = 12) groups according to their BP levels. The ACEI/ARB improved the intestinal microbiome of the HTN patients by reducing potentially pathogenic bacteria such as Enterobacter and Klebsiella and increasing beneficial bacteria such as Odoribacter. Moreover, ACEI/ARB therapy was correlated with significant metabolomic changes in the HTN patients, including progressively enhanced inositol from poor-controlled to well-controlled groups. The profiles of gut bacteria were linked to the production of metabolites, and inositol was negatively correlated with Klebsiella, Enterobacter, and Proteobacteria. Our study suggests that ACEI/ARB modulates gut microbial composition and functions and alters microbial metabolites in HTN patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Li
- *Correspondence: Jing Li, ; Mulei Chen,
| |
Collapse
|
3
|
Mapping the relationships between inflammatory bowel disease and comorbid diagnoses to identify disease associations. Eur J Gastroenterol Hepatol 2020; 32:1341-1347. [PMID: 32804850 PMCID: PMC9639789 DOI: 10.1097/meg.0000000000001869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Massive amounts of patient data are captured daily in electronic medical records (EMR). Utilizing the power of such large data may help identify disease associations and generate hypotheses that can lead to a better understanding of disease associations and mechanisms. We aimed to comprehensively identify and validate associations between inflammatory bowel disease (IBD) and concurrent comorbid diagnoses. METHODS We performed a cross-sectional study using EMR data collected between 1986 and 2009 at a large tertiary referral center to identify associations with a diagnosis of IBD. The resulting associations were externally validated using the Truven MarketScan database, a large nationwide dataset of private insurance claims. RESULTS A total of 6225 IBD patients and 31 125 non-IBD controls identified using EMR data were used to abstract 41 comorbid diagnoses associated with an IBD diagnosis. The strongest associations included Clostridiodes difficile infection, pyoderma gangrenosum, parametritis, pernicious anemia, erythema nodosum, and cytomegalovirus infection. Two IBD association clusters were found, including diagnoses of nerve conduction abnormalities and nonspecific inflammatory conditions of organs outside the gut. These associations were validated in a national cohort of 80 907 patients with IBD and 404 535 age- and sex-matched controls. CONCLUSION We leveraged a big data approach to identify several associations between IBD and concurrent comorbid diagnoses. EMR and big data provide the opportunity to explore disease associations with large sample sizes. Further studies are warranted to refine the characterization of these associations and evaluate their usefulness for increasing our understanding of disease associations and mechanisms.
Collapse
|
4
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
5
|
Kaur CP, Vadivelu J, Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis 2018; 19:262-271. [PMID: 29573336 DOI: 10.1111/1751-2980.12595] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/26/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The 2016 Global Burden of Disease report by WHO revealed that diseases of the gastrointestinal tract (GIT) had one of the highest incidence rates worldwide. The plethora of factors that contribute to the development of GIT-related illnesses can be divided into genetic, environmental and lifestyle factors. Apart from that, the role that infectious agents play in the development of GIT diseases has piqued the interest of researchers worldwide. The human gut harbors approximately 1014 bacteria in it with increasing concentration toward the lower GIT. Among the various microbiota that colonize the human gut, Gram-negative bacteria have been most notoriously linked to GIT-related diseases such as inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis and colorectal cancer (CRC). Some of the notable culprits that have been attributed to these diseases are Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli and Helicobacter pylori. However, studies in recent years are beginning to recognize a new player, Klebsiella pneumoniae (K. pneumoniae) in the causation and progression of GIT diseases. Once synonymous with infections and diseases of the upper respiratory tract, K. pneumoniae has now emerged as one of the pathogens commonly isolated from patients with GIT diseases. However, extensive studies attributing K. pneumoniae to GIT diseases, particularly that of CRC are scanty. Therefore, this review intends to shed light on the association of K. pneumoniae in gastrointestinal diseases such as Crohn's disease, ulcerative colitis as well as CRC.
Collapse
Affiliation(s)
- Christina Parvinder Kaur
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, Kiguchi Y, Yasuma K, Watanabe E, Tanoue T, Thaiss CA, Sato M, Toyooka K, Said HS, Yamagami H, Rice SA, Gevers D, Johnson RC, Segre JA, Chen K, Kolls JK, Elinav E, Morita H, Xavier RJ, Hattori M, Honda K. Ectopic colonization of oral bacteria in the intestine drives T H1 cell induction and inflammation. Science 2018; 358:359-365. [PMID: 29051379 DOI: 10.1126/science.aan4526] [Citation(s) in RCA: 630] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Intestinal colonization by bacteria of oral origin has been correlated with several negative health outcomes, including inflammatory bowel disease. However, a causal role of oral bacteria ectopically colonizing the intestine remains unclear. Using gnotobiotic techniques, we show that strains of Klebsiella spp. isolated from the salivary microbiota are strong inducers of T helper 1 (TH1) cells when they colonize in the gut. These Klebsiella strains are resistant to multiple antibiotics, tend to colonize when the intestinal microbiota is dysbiotic, and elicit a severe gut inflammation in the context of a genetically susceptible host. Our findings suggest that the oral cavity may serve as a reservoir for potential intestinal pathobionts that can exacerbate intestinal disease.
Collapse
Affiliation(s)
- Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wataru Suda
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Chengwei Luo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Iori Motoo
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuya Kiguchi
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Keiko Yasuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eiichiro Watanabe
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Heba S Said
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering, The School of Biological Sciences, Nanyang Technological University, Singapore
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan C Johnson
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. .,Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Te Velde AA. The C-Type Lectin Mincle: Clues for a Role in Crohn's Disease Adjuvant Reaction. Front Immunol 2017; 8:1304. [PMID: 29109721 PMCID: PMC5660320 DOI: 10.3389/fimmu.2017.01304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
8
|
Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, Zhou J, Guan X, Ding Y, Wang S, Khan M, Xin Y, Li S, Ma Y. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol 2017; 7:381. [PMID: 28884091 PMCID: PMC5573791 DOI: 10.3389/fcimb.2017.00381] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/25/2022] Open
Abstract
Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s) have not yet been surveyed in a comprehensive manner. Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing. Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS) revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05) and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC) of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension. Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between hypertension and gut microbiota will offer new prospects for treating and preventing the hypertension and its associated diseases.
Collapse
Affiliation(s)
- Qiulong Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China.,Department of Microbiology, Dalian Medical UniversityDalian, China
| | - Yifang Gu
- Shenzhen Puensum Genetech InstituteShenzhen, China
| | | | - Wei Yang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Changming Chen
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Yukun Huang
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Peng Li
- Shenzhen Puensum Genetech InstituteShenzhen, China
| | - Zhiwei Fang
- Shenzhen Puensum Genetech InstituteShenzhen, China
| | - Junpeng Zhou
- Shenzhen Puensum Genetech InstituteShenzhen, China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yanchun Ding
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Muhammad Khan
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical UniversityDalian, China
| | - Shenghui Li
- Shenzhen Puensum Genetech InstituteShenzhen, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| |
Collapse
|
9
|
A bicentre retrospective study of features and outcomes of patients with reactive arthritis. Joint Bone Spine 2017; 85:201-205. [PMID: 28238883 DOI: 10.1016/j.jbspin.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Reactive arthritis (ReA) is a sterile arthritis following an extra-articular infection, usually of the gastrointestinal or genitourinary tract. The aim of this study was to assess the incidence and the clinical and therapeutic characteristics of ReA and to compare them with those of a historical cohort. We hypothesised that improved hygiene together with prevention and treatment of sexually transmitted infections may have decreased the incidence of ReA. METHODS All patients with ReA diagnosed in the University Hospital Centres of Lyon Sud and Besançon from January 2002 to December 2012 were included in the study retrospectively and were compared with ReA patients diagnosed from January 1986 to December 1996 in the same two hospitals. Medical records were reviewed, clinical features, treatments and outcomes were analysed and diagnoses were compared with international diagnostic criteria. RESULTS Twenty-seven patients were included between 2002 and 2012 compared with 31 between 1986 and 1996. The overall incidence of ReA in patients hospitalised in the rheumatology department did not change, although the current evolution is more severe with development of chronic disease in the form of more frequent spondyloarthritis. While the incidence of Chlamydiae trachomatis has decreased, new microbes are now found to be involved. CONCLUSIONS ReA still exists and its incidence has been stable over the last 30 years. However, ReA currently more often progress to spondyloarthritis. Our study also highlights the need for diagnostic criteria that accurately detect ReA.
Collapse
|
10
|
Yang L, Wang L, Wang X, Xian CJ, Lu H. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci 2016; 17:ijms17122126. [PMID: 27999312 PMCID: PMC5187926 DOI: 10.3390/ijms17122126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.
Collapse
Affiliation(s)
- Lianjun Yang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Liping Wang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD4059, Australia.
| | - Cory J Xian
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Hai Lu
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Qasem A, Safavikhasraghi M, Naser SA. A single capsule formulation of RHB-104 demonstrates higher anti-microbial growth potency for effective treatment of Crohn's disease associated with Mycobacterium avium subspecies paratuberculosis. Gut Pathog 2016; 8:45. [PMID: 27708718 PMCID: PMC5041445 DOI: 10.1186/s13099-016-0127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 02/08/2023] Open
Abstract
Background Most recently we reported that RHB‑104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn’s disease (CD)-associated with Mycobacterium avium subspecies paratuberculosis (MAP) (Alcedo et al. in Gut Pathog 14:32, 2016). The combination exhibited unique synergistic antimicrobial growth activity. The proprietary RHB-104 capsule formulation contains active ingredients (63.3 % Clarithromycin (CLA), 6.7 % Clofazimine (CLO) and 30 % Rifabutin (RIF)). In our earlier study, we could not dissolve the proprietary RHB-104 capsule formulation in one compatible solvent. Consequently, we re-created RHB-104 analog by adding appropriate concentrations of each of the three antibiotics into the cultures. The Minimum inhibitory concentration (MIC) for RHB-104 analog, CLA, CLO, RIF, CLA-CLO, CLA-RIF, CLO-RIF and their individual solvents were reported earlier (Alcedo et al. in Gut Pathog 14:32, 2016). In this study, we succeeded in dissolving the proprietary RHB-104 capsule formulation in a single proprietary solvent. This study is designed to compare of the MIC the proprietary RHB-104 capsule formulation to RHB-104 analog against MAP and other microorganisms. Methods BD Bactec™ MGIT™ Para-TB medium (Sparks, MD) system was used to determine the MIC of the proprietary RHB-104 capsule formulation and RHB-104 analog and their solvents against MAP and several other microorganisms. The final concentration of solvents used to dissolve all the drugs were ≤0.5 % (v/v). Results The MIC for the RHB-104 proprietary solvent against MAP was consistent against all microorganisms tested in the study at 12.5 % (v/v). The MIC for the proprietary RHB-104 capsule formulation was similar to RHB-104 analog against several MAP clinical strains with MIC ≤ 0.2 μg/mL. The MIC for the proprietary RHB-104 capsule formulation was at 2.0 μg/mL against MAP strain MS 137 and M. avium strain JF7 compared to 4.0 ug/mL for RHB-104 analog. Similarly, the MIC of RHB-104 formulation capsule was significantly lower than RHB-104 analog against M. tuberculosis HR237, M. fortuitism subspecies fortuitum, M. smegmatis ATCC 27199, Staphylococcus aureus ATCC 25923 and Listeria monocytogenes ATCC 19112. Conclusion The data demonstrated that the proprietary RHB-104 capsule formulation is more potent in culture against Mycobacteria and other microorganisms especially those with MIC >0.2. Formulation of multi-drugs in a single capsule results in potent synergistic anti-microbial activity far exceeds treatment the culture with multi-individually dissolved drugs. RHB-104 capsule formulation should be more effective to eradicate MAP infection in patients with CD. The study provides evidence that combining weak antibiotics in one formulation might be the new silver bullet to combat bacteria.
Collapse
Affiliation(s)
- Ahmad Qasem
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| | - Mitra Safavikhasraghi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| |
Collapse
|
12
|
Ramirez MS, Xie G, Traglia GM, Johnson SL, Davenport KW, van Duin D, Ramazani A, Perez F, Jacobs MR, Sherratt DJ, Bonomo RA, Chain PSG, Tolmasky ME. Whole-Genome Comparative Analysis of Two Carbapenem-Resistant ST-258 Klebsiella pneumoniae Strains Isolated during a North-Eastern Ohio Outbreak: Differences within the High Heterogeneity Zones. Genome Biol Evol 2016; 8:2036-43. [PMID: 27289094 PMCID: PMC4943203 DOI: 10.1093/gbe/evw135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae has become one of the most dangerous causative agents of hospital infections due to the acquisition of resistance to carbapenems, one of the last resort families of antibiotics. Resistance is usually mediated by carbapenemases coded for by different classes of genes. A prolonged outbreak of carbapenem-resistant K. pneumoniae infections has been recently described in northeastern Ohio. Most strains isolated from patients during this outbreak belong to MLST sequence type 258 (ST258). To understand more about this outbreak two isolates (strains 140 and 677), one of them responsible for a fatal infection, were selected for genome comparison analyses. Whole genome map and sequence comparisons demonstrated that both strains are highly related showing 99% average nucleotide identity. However, the genomes differ at the so-called high heterogeneity zone (HHZ) and other minor regions. This study identifies the potential value of the HHZ as a potential marker for K. pneumoniae clinical and epidemiological studies.
Collapse
Affiliation(s)
- María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA
| | - Gang Xie
- Bioscience Division Los Alamos National Laboratory, Los Alamos, NM
| | - German M Traglia
- IMPaM (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | | | | | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC
| | - Azam Ramazani
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA Department of Biochemistry, University of Oxford, United Kingdom
| | - Federico Perez
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - Michael R Jacobs
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, United Kingdom
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Patrick S G Chain
- IMPaM (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA
| |
Collapse
|
13
|
Wędrychowicz A, Zając A, Tomasik P. Advances in nutritional therapy in inflammatory bowel diseases: Review. World J Gastroenterol 2016; 22:1045-1066. [PMID: 26811646 PMCID: PMC4716019 DOI: 10.3748/wjg.v22.i3.1045] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease are chronic, life-long, and relapsing diseases of the gastrointestinal tract. Currently, there are no complete cure possibilities, but combined pharmacological and nutritional therapy may induce remission of the disease. Malnutrition and specific nutritional deficiencies are frequent among IBD patients, so the majority of them need nutritional treatment, which not only improves the state of nutrition of the patients but has strong anti-inflammatory activity as well. Moreover, some nutrients, from early stages of life are suspected as triggering factors in the etiopathogenesis of IBD. Both parenteral and enteral nutrition is used in IBD therapy, but their practical utility in different populations and in different countries is not clearly established, and there are sometimes conflicting theories concerning the role of nutrition in IBD. This review presents the actual data from research studies on the influence of nutrition on the etiopathogenesis of IBD and the latest findings regarding its mechanisms of action. The use of both parenteral and enteral nutrition as therapeutic methods in induction and maintenance therapy in IBD treatment is also extensively discussed. Comparison of the latest research data, scientific theories concerning the role of nutrition in IBD, and different opinions about them are also presented and discussed. Additionally, some potential future perspectives for nutritional therapy are highlighted.
Collapse
|
14
|
Zollner-Schwetz I, Herzog KAT, Feierl G, Leitner E, Schneditz G, Sprenger H, Prattes J, Petritsch W, Wenzl H, Kump P, Gorkiewicz G, Zechner E, Högenauer C. The Toxin-Producing Pathobiont Klebsiella oxytoca Is Not Associated with Flares of Inflammatory Bowel Diseases. Dig Dis Sci 2015; 60:3393-8. [PMID: 26091802 DOI: 10.1007/s10620-015-3765-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alterations in the intestinal microbiota are thought to be involved in the pathogenesis of inflammatory bowel diseases (IBD). Klebsiella oxytoca is an intestinal pathobiont that can produce a cytotoxin (tillivaline). AIM We aimed to elucidate the pathogenetic relevance of toxin-producing K. oxytoca in patients with IBD flares and investigated the clonal relationship of K. oxytoca isolates from IBD patients using multilocus sequence typing (MLST). METHODS Fecal samples of 235 adult IBD patients were collected from January 2008 to May 2009 and were tested for K. oxytoca, C. difficile toxin, and other pathogens by standard microbiological methods. Clinical data and disease activity scores were collected. K. oxytoca isolates were tested for toxin production using cell culture assays. A total of 45 K. oxytoca isolates from IBD patients, healthy, asymptomatic carriers and from patients with antibiotic-associated hemorrhagic colitis in part from our strain collection were tested for their clonal relationship using MLST. RESULTS The prevalence of K. oxytoca in IBD overall was 4.7%. Eleven K. oxytoca isolates were detected. Two of 11 isolates were tested positive for toxin production. There was no significant difference in the distribution of K. oxytoca isolates between the groups (active vs. remission in UC and CD). MLST yielded 33 sequence types. K. oxytoca isolates from IBD did not cluster separately from isolates from asymptomatic carriers. CONCLUSIONS Our data demonstrate that toxin (tilivalline)-producing K. oxytoca is not associated with IBD flares.
Collapse
Affiliation(s)
- Ines Zollner-Schwetz
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Kathrin A T Herzog
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gebhard Feierl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Eva Leitner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Georg Schneditz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hanna Sprenger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Jürgen Prattes
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Wolfgang Petritsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heimo Wenzl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Ellen Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Bednarz-Misa I, Serek P, Dudek B, Pawlak A, Bugla-Płoskońska G, Gamian A. Application of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for two-dimensional gel electrophoresis. J Microbiol Methods 2014; 107:74-9. [PMID: 25261774 DOI: 10.1016/j.mimet.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023]
Abstract
Klebsiella pneumoniae is a frequent cause of nosocomial respiratory, urinary and gastrointestinal tract infections and septicemia with the multidrug-resistant K. pneumoniae being a major public health concern. Outer membrane proteins (OMPs) are important virulence factors responsible for the appropriate adaptation to the host environment. They constitute of the antigens being the first in contact with infected organism. However, K. pneumoniae strains are heavily capsulated and it is important to establish the OMPs isolation procedure prior to proteomics extensive studies. In this study we used Zwittergent Z 3-14® as a detergent to isolate the OMPs from K. pneumoniae cells and resolve them using two-dimensional electrophoresis (2-DE). As a result we identified 134 protein spots. The OMPs identified in this study are possible candidates for the development of a protein-based vaccine against K. pneumoniae infections.
Collapse
Affiliation(s)
- I Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland.
| | - P Serek
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland
| | - B Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - A Pawlak
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - G Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - A Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
16
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
17
|
The role of Klebsiella in Crohn's disease with a potential for the use of antimicrobial measures. Int J Rheumatol 2013; 2013:610393. [PMID: 24223596 PMCID: PMC3810322 DOI: 10.1155/2013/610393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022] Open
Abstract
There is a general consensus that Crohn's disease (CD) develops as the result of immune-mediated tissue damage triggered by infections with intestinal microbial agents. Based on the results of existing microbiological, molecular, and immunological studies, Klebsiella microbe seems to have a key role in the initiation and perpetuation of the pathological damage involving the gut and joint tissues in patients with CD. Six different gastroenterology centres in the UK have reported elevated levels of antibodies to Klebsiella in CD patients. There is a relationship between high intake of starch-containing diet, enhanced growth of gut microbes, and the production of pullulanases by Klebsiella. It is proposed that eradication of these microbes by the use of antibiotics and low starch diet, in addition to the currently used treatment, could help in alleviating or halting the disease process in CD.
Collapse
|
18
|
Rashid T, Wilson C, Ebringer A. The link between ankylosing spondylitis, Crohn's disease, Klebsiella, and starch consumption. Clin Dev Immunol 2013; 2013:872632. [PMID: 23781254 PMCID: PMC3678459 DOI: 10.1155/2013/872632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/23/2013] [Indexed: 12/22/2022]
Abstract
Both ankylosing spondylitis (AS) and Crohn's disease (CD) are chronic and potentially disabling interrelated conditions, which have been included under the group of spondyloarthropathies. The results of a large number of studies support the idea that an enteropathic pathogen, Klebsiella pneumoniae, is the most likely triggering factor involved in the initiation and development of these diseases. Increased starch consumptions by genetically susceptible individuals such as those possessing HLA-B27 allelotypes could trigger the disease in both AS and CD by enhancing the growth and perpetuation of the Klebsiella microbes in the bowel. Exposure to increased levels of these microbes will lead to the production of elevated levels of anti-Klebsiella antibodies as well as autoantibodies against cross-reactive self-antigens with resultant pathological lesions in the bowel and joints. Hence, a decrease of starch-containing products in the daily dietary intake could have a beneficial therapeutic effect on the disease especially when used in conjunction with the currently available medical therapies in the treatment of patients with AS and CD.
Collapse
Affiliation(s)
- Taha Rashid
- Analytical Sciences Group, Kings College, 150 Stamford Street, London SE1 9NH, UK
| | - Clyde Wilson
- Department of Pathology and Microbiology, Kings Edward VII Memorial Hospital, 7 Point Finger Road, Paget DV04, Bermuda
| | - Alan Ebringer
- Analytical Sciences Group, Kings College, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
19
|
Peluso R, Di Minno MND, Iervolino S, Manguso F, Tramontano G, Ambrosino P, Esposito C, Scalera A, Castiglione F, Scarpa R. Enteropathic spondyloarthritis: from diagnosis to treatment. Clin Dev Immunol 2013; 2013:631408. [PMID: 23690825 PMCID: PMC3649644 DOI: 10.1155/2013/631408] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/25/2013] [Indexed: 02/08/2023]
Abstract
Enteropathic arthritis (EA) is a spondyloarthritis (SpA) which occurs in patients with inflammatory bowel diseases (IBDs) and other gastrointestinal diseases. Diagnosis is generally established on the medical history and physical examination. It was, generally, made according to the European Spondyloarthropathy Study Group (ESSG) criteria. Rheumatic manifestations are the most frequent extraintestinal findings of IBD with a prevalence between 17% and 39%, and IBD is associated, less frequently, with other rheumatic disease such as rheumatoid arthritis, Sjogren syndrome, Takayasu arteritis, and fibromyalgia. Although the pathogenesis of EA has not been plainly clarified, the most popular theory supposes that joint inflammation occurs in genetically predisposed subjects with bacterial gut infections, provided an important evidence for a possible relationship between inflammation of the gut mucosa and arthritis. The management of patients with EA requires an active cooperation between the gastroenterologist and rheumatologist.
Collapse
Affiliation(s)
- Rosario Peluso
- Rheumatology Research Unit, University Federico II, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boll EJ, Nielsen LN, Krogfelt KA, Struve C. Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation. BMC Microbiol 2012; 12:201. [PMID: 22967317 PMCID: PMC3463446 DOI: 10.1186/1471-2180-12-201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022] Open
Abstract
Background Klebsiella pneumoniae is an important opportunistic pathogen causing pneumonia, sepsis and urinary tract infections. Colonisation of the gastrointestinal (GI) tract is a key step in the development of infections; yet the specific factors important for K. pneumoniae to colonize and reside in the GI tract of the host are largely unknown. To identify K. pneumoniae genes promoting GI colonisation, a novel genomic-library-based approach was employed. Results Screening of a K. pneumoniae C3091 genomic library, expressed in E. coli strain EPI100, in a mouse model of GI colonisation led to the positive selection of five clones containing genes promoting persistent colonisation of the mouse GI tract. These included genes encoding the global response regulator ArcA; GalET of the galactose operon; and a cluster of two putative membrane-associated proteins of unknown function. Both ArcA and GalET are known to be involved in metabolic pathways in Klebsiella but may have additional biological actions beneficial to the pathogen. In support of this, GalET was found to confer decreased bile salt sensitivity to EPI100. Conclusions The present work establishes the use of genomic-library-based in vivo screening assays as a valuable tool for identification and characterization of virulence factors in K. pneumoniae and other bacterial pathogens.
Collapse
Affiliation(s)
- Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | |
Collapse
|
21
|
Zadoks RN, Griffiths HM, Munoz MA, Ahlstrom C, Bennett GJ, Thomas E, Schukken YH. Sources of Klebsiella and Raoultella species on dairy farms: be careful where you walk. J Dairy Sci 2011; 94:1045-51. [PMID: 21257074 DOI: 10.3168/jds.2010-3603] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022]
Abstract
Klebsiella spp. are a common cause of mastitis, milk loss, and culling on dairy farms. Control of Klebsiella mastitis is largely based on prevention of exposure of the udder to the pathogen. To identify critical control points for mastitis prevention, potential Klebsiella sources and transmission cycles in the farm environment were investigated, including oro-fecal transmission, transmission via the indoor environment, and transmission via the outdoor environment. A total of 305 samples was collected from 3 dairy farms in upstate New York in the summer of 2007, and included soil, feed crops, feed, water, rumen content, feces, bedding, and manure from alleyways and holding pens. Klebsiella spp. were detected in 100% of rumen samples, 89% of water samples, and approximately 64% of soil, feces, bedding, alleyway, and holding pen samples. Detection of Klebsiella spp. in feed crops and feed was less common. Genotypic identification of species using rpoB sequence data showed that Klebsiella pneumoniae was the most common species in rumen content, feces, and alleyways, whereas Klebsiella oxytoca, Klebsiella variicola, and Raoultella planticola were the most frequent species among isolates from soil and feed crops. Random amplified polymorphic DNA-based strain typing showed heterogeneity of Klebsiella spp. in rumen content and feces, with a median of 4 strains per 5 isolates. Observational and bacteriological data support the existence of an oro-fecal transmission cycle, which is primarily maintained through direct contact with fecal contamination or through ingestion of contaminated drinking water. Fecal shedding of Klebsiella spp. contributes to pathogen loads in the environment, including bedding, alleyways, and holding pens. Hygiene of alleyways and holding pens is an important component of Klebsiella control on dairy farms.
Collapse
Affiliation(s)
- R N Zadoks
- Quality Milk Production Services, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Inflammatory arthritis presents in a variety of diseases, from rheumatoid arthritis to hepatitis. Antibodies to autoantigens or to microbial constituents are commonly associated with these conditions. In some cases, the antibodies have diagnostic and prognostic relevance. It cannot as yet be determined definitively that any of them mediate joint damage, although the evidence from animal models indicates that this mechanism is likely. The purpose of this article is to give an overview of the spectrum of antibodies found in a variety of inflammatory arthritides. The relevant animal models are also discussed.
Collapse
Affiliation(s)
- Ann Duskin
- Department of Medicine, Pennsylvania Hospital, Philadelphia, PA, USA
| | | |
Collapse
|
23
|
Rodríguez-Reyna TS, Martínez-Reyes C, Yamamoto-Furusho JK. Rheumatic manifestations of inflammatory bowel disease. World J Gastroenterol 2009; 15:5517-24. [PMID: 19938189 PMCID: PMC2785053 DOI: 10.3748/wjg.15.5517] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This article reviews the literature concerning rheumatic manifestations of inflammatory bowel disease (IBD), including common immune-mediated pathways, frequency, clinical course and therapy. Musculoskeletal complications are frequent and well-recognized manifestations in IBD, and affect up to 33% of patients with IBD. The strong link between the bowel and the osteo-articular system is suggested by many clinical and experimental observations, notably in HLA-B27 transgenic rats. The autoimmune pathogenic mechanisms shared by IBD and spondyloarthropathies include genetic susceptibility to abnormal antigen presentation, aberrant recognition of self, the presence of autoantibodies against specific antigens shared by the colon and other extra-colonic tissues, and increased intestinal permeability. The response against microorganisms may have an important role through molecular mimicry and other mechanisms. Rheumatic manifestations of IBD have been divided into peripheral arthritis, and axial involvement, including sacroiliitis, with or without spondylitis, similar to idiopathic ankylosing spondylitis. Other periarticular features can occur, including enthesopathy, tendonitis, clubbing, periostitis, and granulomatous lesions of joints and bones. Osteoporosis and osteomalacia secondary to IBD and iatrogenic complications can also occur. The management of the rheumatic manifestations of IBD consists of physical therapy in combination with local injection of corticosteroids and nonsteroidal anti-inflammatory drugs; caution is in order however, because of their possible harmful effects on intestinal integrity, permeability, and even on gut inflammation. Sulfasalazine, methotrexate, azathioprine, cyclosporine and leflunomide should be used for selected indications. In some cases, tumor necrosis factor-α blocking agents should be considered as first-line therapy.
Collapse
|
24
|
Role of Klebsiella and collagens in Crohn's disease: a new prospect in the use of low-starch diet. Eur J Gastroenterol Hepatol 2009; 21:843-9. [PMID: 19352192 DOI: 10.1097/meg.0b013e328318ecde] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crohn's disease is suggested to result from a microbially triggered immune-mediated autoimmune process, involving mainly the terminal ileum and ileo-caecal junction. Klebsiella pneumoniae shares certain molecular structures present in pullulanase pulA and pulD secretion enzymes with various self-antigens present in collagens and HLA-B27 molecules, respectively. A link exists between high dietary starch intake and the growth of intestinal microflora, involving especially Klebsiella microbes. Increased exposure to Klebsiella in the gut as the result of high starch intake would lead to high production of antiKlebsiella antibodies as well as autoantibodies to the cross-reactive self-antigens with the resultant inflammation at the pathological sites. Eradication of these microbes from the gut in patients with Crohn's disease with the use of low-starch diet and antibacterial agents as well as immunomodulatory measures could be beneficial in the management of this disease.
Collapse
|
25
|
Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. ACTA ACUST UNITED AC 2008; 58:2307-17. [PMID: 18668556 DOI: 10.1002/art.23655] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Collapse
Affiliation(s)
- Camilla Jandus
- Ludwig Institute for Cancer Research, University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Sartor RB, Muehlbauer M. Microbial host interactions in IBD: implications for pathogenesis and therapy. Curr Gastroenterol Rep 2008; 9:497-507. [PMID: 18377803 DOI: 10.1007/s11894-007-0066-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD), ulcerative colitis (UC), and pouchitis appear to be caused by pathogenic T-cell responses to discrete antigens from the complex luminal microbiota, with susceptibility conferred by genetic polymorphisms that regulate bacterial killing, mucosal barrier function, or immune responses. Environmental triggers initiate or reactivate inflammation and modulate genetic susceptibility. New pathogenesis concepts include defective bacterial killing by innate immune cells in CD, colonization of the ileum in CD with functionally abnormal Escherichia coli that adhere to and invade epithelial cells and resist bacterial killing, and alterations in enteric microbiota composition in CD, UC, and pouchitis detected by molecular probes. The considerable therapeutic potential of manipulating the enteric microbiota in inflammatory bowel disease patients has not been realized, probably due to failure to recognize heterogenic disease mechanisms that require individualized use of antibiotics, probiotics, prebiotics, combination therapies, and genetically engineered bacteria to restore mucosal homeostasis.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, CB #7032, Room 7309, Medical Biomolecular Research Building, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
27
|
Günstige Ernährung bei Morbus Bechterew. Wien Med Wochenschr 2008; 158:294-7. [DOI: 10.1007/s10354-008-0536-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/02/2008] [Indexed: 10/21/2022]
|
28
|
Soler Bistué AJC, Birshan D, Tomaras AP, Dandekar M, Tran T, Newmark J, Bui D, Gupta N, Hernandez K, Sarno R, Zorreguieta A, Actis LA, Tolmasky ME. Klebsiella pneumoniae multiresistance plasmid pMET1: similarity with the Yersinia pestis plasmid pCRY and integrative conjugative elements. PLoS One 2008; 3:e1800. [PMID: 18350140 PMCID: PMC2262945 DOI: 10.1371/journal.pone.0001800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/15/2008] [Indexed: 11/30/2022] Open
Abstract
Background Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria. Principal Findings The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the blaTEM-1 gene and a perfect duplication of a 3-kbp region including the aac(6′)-Ib, aadA1, and blaOXA-9 genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPIECOR31), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICEKp1, an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPIECOR31. Conclusions The comparative analyses of pMET1 with pCRY, HPIECOR31, and ICEKp1 show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains.
Collapse
Affiliation(s)
- Alfonso J. C. Soler Bistué
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Daniel Birshan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Andrew P. Tomaras
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Manisha Dandekar
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Jason Newmark
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Duyen Bui
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Nisha Gupta
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Keziah Hernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Renee Sarno
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Angeles Zorreguieta
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134:577-94. [PMID: 18242222 DOI: 10.1053/j.gastro.2007.11.059] [Citation(s) in RCA: 1372] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/28/2007] [Indexed: 02/07/2023]
Abstract
The predominantly anaerobic microbiota of the distal ileum and colon contain an extraordinarily complex variety of metabolically active bacteria and fungi that intimately interact with the host's epithelial cells and mucosal immune system. Crohn's disease, ulcerative colitis, and pouchitis are the result of continuous microbial antigenic stimulation of pathogenic immune responses as a consequence of host genetic defects in mucosal barrier function, innate bacterial killing, or immunoregulation. Altered microbial composition and function in inflammatory bowel diseases result in increased immune stimulation, epithelial dysfunction, or enhanced mucosal permeability. Although traditional pathogens probably are not responsible for these disorders, increased virulence of commensal bacterial species, particularly Escherichia coli, enhance their mucosal attachment, invasion, and intracellular persistence, thereby stimulating pathogenic immune responses. Host genetic polymorphisms most likely interact with functional bacterial changes to stimulate aggressive immune responses that lead to chronic tissue injury. Identification of these host and microbial alterations in individual patients should lead to selective targeted interventions that correct underlying abnormalities and induce sustained and predictable therapeutic responses.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
30
|
Delaporte E. Affections inflammatoires à médiation immunitaire et psoriasis. Ann Dermatol Venereol 2008; 135 Suppl 4:S269-74. [DOI: 10.1016/s0151-9638(08)70547-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|