1
|
Richter P, Macovei LA, Rezus C, Boiculese VL, Buliga-Finis ON, Rezus E. IL-10 in Systemic Lupus Erythematosus: Balancing Immunoregulation and Autoimmunity. Int J Mol Sci 2025; 26:3290. [PMID: 40244128 PMCID: PMC11989541 DOI: 10.3390/ijms26073290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Interleukin-10 (IL-10) presents a dual role in systemic lupus erythematosus (SLE), illustrating pro-inflammatory and anti-inflammatory effects. This study addressed the possible associations between serum IL-10 levels and demographic characteristics, laboratory parameters, organ manifestations, disease activity, and treatment response in SLE patients. A total of 88 SLE patients from the Rheumatology Clinic of the Clinical Rehabilitation Hospital, Iași, were enrolled. Disease activity was assessed using the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Serum cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA). Serum IL-10 levels were significantly higher in males compared to females (47.62 pg/mL vs. 13.24 pg/mL, p = 0.011) but not significantly associated with age or disease duration. However, IL-10 showed positive correlations with inflammatory markers and autoantibodies, including C-reactive protein (p = 0.002), IL-6 (p = 0.01), ANA (p = 0.014), and anti-SSB antibodies (p = 0.005). Our findings indicate that IL-10 may be involved in inflammatory and immune processes in SLE, as evidenced by its significant correlations with specific autoantibodies and inflammatory markers in our study. However, IL-10 did not correlate with disease activity, organ involvement, or treatment response. These results underline the participation of IL-10 in SLE and emphasize the need for further research to clarify its potential as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Vasile Lucian Boiculese
- Department of Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Elena Rezus
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| |
Collapse
|
2
|
da Mota JCNL, Carvalho LM, Ribeiro AA, Souza LL, Borba EF, Roschel H, Gualano B, Nicoletti CF. Methyl-donor supplementation in women with systemic lupus erythematosus with different nutritional status: the protocol for a randomised, double-blind, placebo-controlled trial. Lupus Sci Med 2024; 11:e001279. [PMID: 39375179 PMCID: PMC11459299 DOI: 10.1136/lupus-2024-001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION DNA hypomethylation in patients with systemic lupus erythematosus (SLE) has been recently documented in the literature. Low levels of DNA methylation have been observed globally and in genes associated with immune and inflammatory pathways in SLE's CD4+T lymphocytes. Given that certain micronutrients can either donate methyl groups within one-carbon metabolism pathways or serve as cofactors for enzymes involved in the DNA methylation process, this randomised, double-blind, placebo-controlled trial aims to investigate whether a 3-month supplementation of folic acid and vitamin B12 will modulate the DNA methylation profile in subcutaneous adipose tissue (primary outcome) of women with SLE and normal weight or excess body weight. As secondary objectives, we will assess gene expression, telomere length and phenotypic characteristics (ie, clinical parameters, body weight and composition, abdominal circumference, food intake and disordered eating attitude, physical activity, lipid profile, serum concentrations of leptin, adiponectin, and cytokines). METHODS AND ANALYSIS Patients will be classified according to their nutritional status by body mass index in normal weight or excess body weight. Subsequently, patients in each group will be randomly assigned to either a placebo or an intervention group (folic acid (400 mcg) and vitamin B12 (2000 mcg) supplementation). Endpoint evaluations will be conducted using both intention-to-treat and per-protocol analyses. This study has the potential to design new personalised nutritional approaches as adjunctive therapy for patients with SLE. ETHICS AND DISSEMINATION This study has been reviewed and approved by the Ethical Committee from Clinical Hospital of the School of Medicine of the University of Sao Paulo, Brazil (CAAE.: 47317521.8.0000.0068). TRIAL REGISTRATION NUMBER NCT05097365 (first version).
Collapse
Affiliation(s)
| | | | | | | | - Eduardo F Borba
- Rheumatology, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, Brazil
| | | | | | - Carolina F Nicoletti
- Rheumatology Division, Sao Paulo University Faculty of Medicine, Sao Paulo, Brazil
| |
Collapse
|
3
|
Uvarova AN, Zheremyan EA, Ustiugova AS, Murashko MM, Bogomolova EA, Demin DE, Stasevich EM, Kuprash DV, Korneev KV. Autoimmunity-Associated SNP rs3024505 Disrupts STAT3 Binding in B Cells, Leading to IL10 Dysregulation. Int J Mol Sci 2024; 25:10196. [PMID: 39337678 PMCID: PMC11432243 DOI: 10.3390/ijms251810196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Interleukin 10 (IL10) is a major anti-inflammatory cytokine that acts as a master regulator of the immune response. A single nucleotide polymorphism rs3024505(C/T), located downstream of the IL10 gene, is associated with several aggressive inflammatory diseases, including systemic lupus erythematosus, Sjögren's syndrome, Crohn's disease, and ulcerative colitis. In such autoimmune pathologies, IL10-producing B cells play a protective role by decreasing the level of inflammation and restoring immune homeostasis. This study demonstrates that rs3024505 is located within an enhancer that augments the activity of the IL10 promoter in a reporter system based on a human B cell line. The common rs3024505(C) variant creates a functional binding site for the transcription factor STAT3, whereas the risk allele rs3024505(T) disrupts STAT3 binding, thereby reducing the IL10 promoter activity. Our findings indicate that B cells from individuals carrying the minor rs3024505(T) allele may produce less IL10 due to the disrupted STAT3 binding site, contributing to the progression of inflammatory pathologies.
Collapse
Affiliation(s)
- Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Matvey M. Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elvina A. Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Denis E. Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Verma S, Shah S, Nanda R, Meher J, Rathore V, Patel S, Mohapatra E. Exploring the Role of Th10 Cells and IL-10 in Systemic Lupus Erythematosus. Cureus 2024; 16:e63875. [PMID: 39099913 PMCID: PMC11298017 DOI: 10.7759/cureus.63875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and immune complex deposition in various organs. The pathogenesis of SLE is multifactorial, involving genetic, hormonal, environmental, and immune factors. Interleukin-10 (IL-10) is a pleiotropic cytokine produced by various immune cells and has conflicting roles in inflammation. MATERIALS AND METHODS This is a cross-sectional study involving 56 SLE patients and 30 healthy controls. RESULTS AND ANALYSIS We found a significant increase in T helper 10 (Th10) cells and IL-10 levels in SLE patients compared to controls. Disease activity, measured by Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, correlated positively with Th10 cells and IL-10 levels. Further analysis categorized patients into active and inactive SLE, showing significant differences in laboratory parameters, including C3, C4, Th10 cells, and IL-10, between the two groups. Notably, Th10 cells and IL-10 exhibited a significant positive correlation with SLEDAI scores. The study also explored SLE patients with and without nephritis, a severe manifestation of the disease. Th10 cell expression was significantly higher in nephritis patients, while IL-10 levels did not differ significantly between the two groups. CONCLUSION In conclusion, this study provides valuable insights into the association between Th10 cells, IL-10, and disease activity in SLE. The findings suggest that Th10 cells and IL-10 could serve as potential biomarkers for disease activity in SLE, offering a basis for further research into therapeutic interventions targeting these factors. These results contribute to our understanding of the complex immunological factors at play in SLE and may pave the way for more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- Shradha Verma
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Seema Shah
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rachita Nanda
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Jhasaketan Meher
- General Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Vinay Rathore
- Nephrology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Suprava Patel
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Eli Mohapatra
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
5
|
Xu Y, Wang K, Dai Y, Yang W, Ru X, Li W, Feng H, Zhu G, Hu Q, Chen Y. Peripheral cytokine interleukin-10 alleviates perihematomal edema after intracerebral hemorrhage via interleukin-10 receptor/JAK1/STAT3 signaling. CNS Neurosci Ther 2024; 30:e14796. [PMID: 38867395 PMCID: PMC11168964 DOI: 10.1111/cns.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS The extent of perihematomal edema following intracerebral hemorrhage (ICH) significantly impacts patient prognosis, and disruption of the blood-brain barrier (BBB) exacerbates perihematomal edema. However, the role of peripheral IL-10 in mitigating BBB disruption through pathways that link peripheral and central nervous system signals remains poorly understood. METHODS Recombinant IL-10 was administered to ICH model mice via caudal vein injection, an IL-10-inhibiting adeno-associated virus and an IL-10 receptor knockout plasmid were delivered intraventricularly, and neurobehavioral deficits, perihematomal edema, BBB disruption, and the expression of JAK1 and STAT3 were evaluated. RESULTS Our study demonstrated that the peripheral cytokine IL-10 mitigated BBB breakdown, perihematomal edema, and neurobehavioral deficits after ICH and that IL-10 deficiency reversed these effects, likely through the IL-10R/JAK1/STAT3 signaling pathway. CONCLUSIONS Peripheral IL-10 has the potential to reduce BBB damage and perihematomal edema following ICH and improve patient prognosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Kaishan Wang
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yalan Dai
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wei Yang
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Gang Zhu
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qin Hu
- Department of Neurosurgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
6
|
Krajewski D, Ranjitkar S, Tedeschi C, Perez NM, Jordan N, Mire M, Schneider SS, Mathias CB. IL-10 Neutralization Attenuates Mast Cell Responses in a Murine Model of Experimental Food Allergy. Immunohorizons 2024; 8:431-441. [PMID: 38888412 PMCID: PMC11220741 DOI: 10.4049/immunohorizons.2400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.
Collapse
Affiliation(s)
- Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA
| | - Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | | | - Nathan Jordan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
7
|
Żak-Gołąb A, Cieślik P, Siekiera U, Kuśmierz D, Hrycek A, Holecki M. The Impact of the IL-10 Gene Polymorphism on mRNA Expression and IL-10 Serum Concentration in Polish Lupus Patients. Int J Mol Sci 2024; 25:5511. [PMID: 38791549 PMCID: PMC11122543 DOI: 10.3390/ijms25105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies against a lot of nuclear components. Despite many studies on the genetic background of this disease, the pathogenesis remains unclear. The aim of the study is to comprehensively evaluate the polymorphism of the IL-10 promoter gene, its mRNA expression, and the serum IL-10 concentration of SLE female patients and females age-matched controls. Analyzing the association between the level of the tested cytokine and the polymorphism genotype-1082; -819; -592, we found statistically higher serum IL-10 levels in SLE patients compared to in healthy controls (11.9 ± 2.2 pg/mL vs. 9.4 ± 1.7 pg/mL, accordingly; p < 0.0001). We did not find statistically significant differences in the gene polymorphism of IL-10 among SLE patients and controls. The most significant observation derived from our study is that IL-10 mRNA transcripts are upregulated in SLE patients compared to in healthy controls (p < 0.0001). According to our results, the presence of the IL-10 genetic polymorphism has no clinical significance for the development of SLE, and subsequent differences in mRNA and IL-10 concentration results from the influence of other factors which should be the subject of further research.
Collapse
Affiliation(s)
- Agnieszka Żak-Gołąb
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland (A.H.)
| | - Paweł Cieślik
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland (A.H.)
| | - Urszula Siekiera
- Regional Blood Donation and Treatment Center, 40-074 Katowice, Poland
| | - Dariusz Kuśmierz
- Department of Cell Biology, School of Pharmacy, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Antoni Hrycek
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland (A.H.)
| | - Michał Holecki
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland (A.H.)
| |
Collapse
|
8
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
9
|
Bugbee E, Wang AA, Gommerman JL. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14:1188750. [PMID: 37600781 PMCID: PMC10435745 DOI: 10.3389/fimmu.2023.1188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Collapse
|
10
|
Grk M, Miskovic R, Jeremic I, Basaric M, Dusanovic Pjevic M, Jekic B, Miljanovic D, Lazarevic I, Despotovic A, Cirkovic A, Banko A. Association of IL10RA, IL10RB, and IL22RA Polymorphisms/Haplotypes with Susceptibility to and Clinical Manifestations of SLE. Int J Mol Sci 2023; 24:11292. [PMID: 37511050 PMCID: PMC10379357 DOI: 10.3390/ijms241411292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by an imbalance between proinflammatory and anti-inflammatory mediators. Single-nucleotide polymorphisms (SNPs) in genes coding IL10RA, IL10RB, and IL22RA could affect their expression or function and disrupt immune homeostasis. We aimed to analyze the associations of IL10RA, IL10RB, and IL22RA polymorphisms/haplotypes with patients' susceptibility to and clinical manifestations of SLE. Our study included 103 SLE patients and 99 healthy controls. The genotypes of the selected polymorphisms within IL10RA (rs10892202, rs4252270, rs3135932, rs2228055, rs2229113, and rs9610), IL10RB (rs999788, rs2834167, and rs1058867), and IL22RA (rs3795299 and rs16829204) genes were determined by TaqMan® Assays. IL10RB rs1058867 G allele carriers were significantly more frequent among the controls than among the SLE patients (76.8% vs. 61.2%; p = 0.017, OR = 0.477, 95% CI: 0.258-0.879). The IL10RB CAA haplotype was more frequent among the SLE patients than in the control group (42.7% vs. 30.7%; p = 0.027). The IL22RA rs3795299 C allele and rs16829204 CC genotype were associated with Hashimoto thyroiditis in the SLE patients (n = 103; p = 0.002 and p = 0.026, respectively), and in all the included participants (n = 202, p < 0.000 and p = 0.007, respectively), and the IL22RA CC haplotype was more frequent in the SLE patients with Hashimoto thyroiditis (p = 0.047) and in the overall participants with Hashimoto thyroiditis (n = 32, p = 0.004). The IL10RA, IL10RB, and IL22RA polymorphisms/haplotypes could be associated with SLE susceptibility and various clinical manifestations, and the IL22RA CC haplotype could be associated with Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Internal Medicine Department, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivica Jeremic
- Internal Medicine Department, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Basaric
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Jekic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksa Despotovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
12
|
Mariz HA, Sato EI, Cardoso PRG, Gonçalves R, Duarte ALBP, de Melo Rego MJB, da Rocha Pitta I, da Rocha Pitta MG. Vitamin D Presented In Vitro Immunomodulatory Property on T Lymphocyte-Related Cytokines in Systemic Lupus Erythematosus. Inflammation 2023; 46:730-738. [PMID: 36459355 DOI: 10.1007/s10753-022-01768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Inflammatory T lymphocyte cytokines contribute to tissue damage in SLE patients. Vitamin D (Vit D) has a well-established immunomodulatory action, but few studies have addressed the effect of 1,25 dihydroxyvitamin D3 (1,25 (OH)2D3) on peripheral blood mononuclear cells (PBMCs) in SLE patients. The aim of this study was to evaluate the immnunomodulatory effect of 1,25 (OH)2D3 on T lymphocyte-related cytokines. Blood from 27 female SLE patients was collected for PBMC isolation and anti-DNA, complement, and serum 25 (OH)D3 level measurements. PBMCs were stimulated with anti-CD3/anti-CD28 in the presence or absence of dexamethasone or various concentrations of 1,25 (OH)2D3 for 48 h. We assessed IL-17A, IL-22, IL-21, IL-9, IFN-γ, IL-4, IL-10, IL-2, IL-6, and TNF by cytometric bead assay (CBA) and enzyme immune assay (ELISA) on culture supernatant. The mean age of patients was 36.2 (± 10.5 years) and the median Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) was 4 (0-6). The addition of 1,25 (OH)2D3 in PBMC culture reduced IL-17 A, IL-22, IL-9, and IFN-γ levels at 100 nM (p ≤ 0.0001). Furthermore, the addition of 1,25 (OH)2D3 at all concentrations increased IL-4 (p ≤ 0.0006), and 0.1 and 1 nM increased IL-10 (p ≤ 0.0004) and 0.1 nM increased IL-2 levels (p ≤ 0.0001). There was no difference regarding IL-21 and TNF levels. The addition of 1,25 (OH)2D3 in PBMC culture presented an inhibitory effect on proinflammatory cytokines and increased immunoregulatory cytokines in SLE patients, suggesting the beneficial effect of this vitamin.
Collapse
Affiliation(s)
- Henrique Ataíde Mariz
- Rheumatology Division, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
- Rheumatology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Emília Inoue Sato
- Rheumatology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Pablo Ramon Gualberto Cardoso
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Rafaela Gonçalves
- Rheumatology Division, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil.
- Cidade Universitária, CEP 50670-420, Recife, PE, Brazil.
| | | | - Moacyr Jesus Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maíra Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
13
|
Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro. Sci Rep 2022; 12:13101. [PMID: 35908050 PMCID: PMC9338971 DOI: 10.1038/s41598-022-17331-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple systems. Immunopathology believes that abnormal T cell function and excessive production of autoantibodies by B cells are involved in multi-organ damage. Human umbilical cord mesenchymal stem cells (hUCMSCs) therapies have endowed with promise in SLE, while the function of MSC-derived extracellular vesicles (MSC-EVs) was still unclear. Extracellular vesicles (EVs) are subcellular components secreted by a paracellular mechanism and are essentially a group of nanoparticles. EVs play a vital role in cell-to-cell communication by acting as biological transporters. New evidence has shown beneficial effects of MSC-EVs on autoimmune diseases, such as their immunomodulatory properties. In this study, we investigated whether hUCMSCs derived extracellular vesicles (hUCMSC-EVs) could regulate abnormal immune responses of T cells or B cells in SLE. We isolated splenic mononuclear cells from MRL/lpr mice, a classical animal model of SLE. PBS (Phosphate-buffered saline), 2 × 105 hUCMSCs, 25 µg/ml hUCMSC-EVs, 50 µg/ml hUCMSC-EVs were co-cultured with 2 × 106 activated splenic mononuclear cells for 3 days in vitro, respectively. The proportions of CD4+ T cell subsets, B cells and the concentrations of cytokines were detected. Both hUCMSCs and hUCMSC-EVs inhibited CD4+ T cells, increased the production of T helper (Th)17 cells, promoted the production of interleukin (IL)-17 and transforming growth factor beta1 (TGF-β1) (P < 0.05), although they had no significant effects on Th1, Th2, T follicular helper (Tfh), regulatory T (Treg) cells and IL-10 (P > 0.05); only hUCMSCs inhibited CD19+ B cells, promoted the production of interferon-gamma (IFN-γ) and IL-4 (P < 0.05). hUCMSCs exert immunoregulatory effects on SLE at least partially through hUCMSC-EVs in vitro, therefore, hUCMSC-EVs play novel and potential regulator roles in SLE.
Collapse
|
14
|
Parapoxvirus Interleukin-10 Homologues Vary in Their Receptor Binding, Anti-Inflammatory, and Stimulatory Activities. Pathogens 2022; 11:pathogens11050507. [PMID: 35631028 PMCID: PMC9143231 DOI: 10.3390/pathogens11050507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/11/2023] Open
Abstract
Homologues of interleukin (IL)-10, a pleiotropic immunomodulatory cytokine, have been identified in the Parapoxvirus genus. The first identified, Orf virus (ORFV) IL-10, greatly enhanced infection of its host, exhibiting immune modulatory effects equivalent to human IL-10. IL-10-like genes were then identified in Bovine papular stomatitis virus (BPSV), Pseudocowpox virus (PCPV), Red deerpox virus (RDPV) and Grey sealpox virus (GSPV). This study aimed to produce and characterise recombinant parapoxvirus IL-10s, then quantitatively compare their receptor binding and immunomodulatory activities. Recombinant IL-10s were expressed, purified, then characterised using bioinformatic, biochemical and enzymatic analyses. Anti-inflammatory effects were assessed in lipoteichoic acid-activated THP-1 monocytes, and stimulatory effects in MC/9 mast cells. IL-10 receptor (IL-10R)1 binding was detected in a competitive displacement assay. BPSV IL-10 inhibited production of monocyte chemoattractant protein (MCP)-1, IL-8 and IL-1β, induced mast cell proliferation, and bound IL-10R1 similarly to ORFV IL-10. PCPV IL-10 showed reduced MCP-1 inhibition, mast cell proliferation, and IL-10R1 binding. RDPV IL-10 displayed reduced inhibition of IL-8 and MCP-1 production. GSPV IL-10 showed limited inhibition of IL-1β production and stimulation of mast cell proliferation. These findings provide valuable insight into IL-10 receptor interactions, and suggest that the parapoxvirus IL-10s play similar pathogenic roles during infection of their hosts.
Collapse
|
15
|
She Z, Li C, Wu F, Mao J, Xie M, Hun M, Abdirahman AS, Luo S, Wan W, Tian J, Wen C. The Role of B1 Cells in Systemic Lupus Erythematosus. Front Immunol 2022; 13:814857. [PMID: 35418972 PMCID: PMC8995743 DOI: 10.3389/fimmu.2022.814857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multisystemic and multi-organ involvement, recurrent relapses and remissions, and the presence of large amounts of autoantibodies in the body as the main clinical features. The mechanisms involved in this disease are complex and remain poorly understood; however, they are generally believed to be related to genetic susceptibility factors, external stimulation of the body’s immune dysfunction, and impaired immune regulation. The main immune disorders include the imbalance of T lymphocyte subsets, hyperfunction of B cells, production of large amounts of autoantibodies, and further deposition of immune complexes, which result in tissue damage. Among these, B cells play a major role as antibody-producing cells and have been studied extensively. B1 cells are a group of important innate-like immune cells, which participate in various innate and autoimmune processes. Yet the role of B1 cells in SLE remains unclear. In this review, we focus on the mechanism of B1 cells in SLE to provide new directions to explore the pathogenesis and treatment modalities of SLE.
Collapse
Affiliation(s)
- Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Amin Sheikh Abdirahman
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Melamud MM, Ermakov EA, Boiko AS, Parshukova DA, Sizikov AE, Ivanova SA, Nevinsky GA, Buneva VN. Serum cytokine levels of systemic lupus erythematosus patients in the presence of concomitant cardiovascular diseases. Endocr Metab Immune Disord Drug Targets 2022; 22:852-861. [PMID: 35249511 DOI: 10.2174/1871530322666220304214512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is known to be associated with an increased risk of cardiovascular diseases (CVD). SLE patients suffer from CVD 3.5 times more often than healthy people. Cytokine-mediated inflammation is actively involved in the development of cardiovascular pathology. OBJECTIVE Here, we analyzed serum levels of nine cytokines of steroids treated SLE patients depending on the presence of concomitant CVD. METHODS The levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, IL-21, tumor necrosis factor α (TNFα), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL) were analyzed using multiplex immunoassay. RESULTS In the total group of SLE patients (n=29), the concentrations of IL-6 and IL-10 were higher, and the APRIL level decreased compared with healthy donors (n=39, p<0.05). The same changes were observed in the group of patients without CVD (n=15): the levels of IL-6 and IL-10 increased, and the level of APRIL was lower than in healthy individuals (p<0.05). In the group of SLE patients with CVD (n=14), the concentrations of IL-4, IL-6, IL-10, and TNFα increased (p<0.05). Interestingly, the levels of TNFα and BAFF in SLE patients with CVD were higher than in patients without cardiovascular pathology. Thus, TNFα and BAFF levels were significantly altered in SLE with concomitant CVD compared to SLE without CVD. CONCLUSION These findings suggest that cytokine profiles in SLE with concomitant CVD and SLE without CVD are different, which should be considered in further research with large samples.
Collapse
Affiliation(s)
- Mark M Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeny A Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiia S Boiko
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria A Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexey E Sizikov
- Department of Rheumatology, Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana A Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Georgy A Nevinsky
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentina N Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Kuca-Warnawin E, Olesińska M, Szczȩsny P, Kontny E. Impact and Possible Mechanism(s) of Adipose Tissue-Derived Mesenchymal Stem Cells on T-Cell Proliferation in Patients With Rheumatic Disease. Front Physiol 2022; 12:749481. [PMID: 35095547 PMCID: PMC8793746 DOI: 10.3389/fphys.2021.749481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are chronic wasting, incurable rheumatic diseases of autoimmune background, in which T cells play a critical pathogenic role. Autologous adipose tissue-derived mesenchymal stem cells (ASCs) may represent an alternative therapeutic option for SLE and SSc patients, but the biology of these cells is poorly understood. Methods: Herein, we evaluated the anti-proliferative impact of ASCs of healthy donors (HD/ASCs, 5 reference cell lines), SLE patients (n = 20), and SSc patients (n = 20) on T lymphocytes. To assess the direct and indirect pathway of ASCs action, peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells of HD were activated and co-cultured in cell-to-cell contact (C-C) and transwell (T-W) conditions with untreated or cytokine (TNF + IFNΥ, TI)-licensed ASCs, then analyzed by flow cytometry to rate the proliferation response of CD8+ and/or CD4+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), interleukin 10 (IL-10), and transforming growth factor β (TGFβ) were measured from culture supernatants. Specific inhibitors of these factors (1-MT, indomethacin, and cytokine-neutralizing antibody) were used to assess their contribution to anti-proliferative ASCs action. Results: All tested ASCs significantly decreased the number of proliferating CD4+ and CD8+ T cells, the number of division/proliferating cell (PI), and fold expansion (RI), and similarly upregulated kynurenines and PGE2, but not cytokine levels, in the co-cultures with both types of target cells. However, TI-treated SLE/ASCs and SSc/ASCs exerted a slightly weaker inhibitory effect on CD4+ T-cell replication than their respective HD/ASCs. All ASCs acted mainly via soluble factors. Their anti-proliferative effect was stronger, and kynurenine levels were higher in the T-W condition than the C-C condition. Blocking experiments indicated an involvement of kynurenine pathway in inhibiting the number of proliferating cells, PI, and RI values as well as PGE2 role in decreasing the number of proliferating cells. TGFβ did not contribute to ASCs anti-proliferative capabilities, while IL-10 seems to be involved in such activity of only SLE/ASCs. Conclusion: The results indicate that SLE/ASCs and SSc/ASCs retain their capability to restrain the expansion of allogeneic CD4+ and CD8+ T cells and act by similar mechanisms as ASCs of healthy donors and thus may have therapeutic value.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczȩsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
18
|
Association of High Calcitriol Serum Levels and Its Hydroxylation Efficiency Ratio with Disease Risk in SLE Patients with Vitamin D Deficiency. J Immunol Res 2022; 2021:2808613. [PMID: 35005031 PMCID: PMC8741361 DOI: 10.1155/2021/2808613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
Vitamin D (calcidiol) deficiency in systemic lupus erythematosus (SLE) is more frequent than in healthy subjects (HS); it is associated with clinical activity and damage in SLE. Although calcidiol is considered the best indicator of the vitamin D serum status, its deficiency could not reflect its hydroxylation efficiency ratio and calcitriol serum status. This study was aimed at assessing the association of calcidiol and calcitriol serum levels and its hydroxylation efficiency ratio with the risk to clinical and renal disease activities in SLE patients. A cross-sectional study was conducted in 308 SLE and HS women; calcidiol and calcitriol serum levels were evaluated by immunoassays. SLE patients showed lower calcidiol serum levels vs. HS (21.2 vs. 24.2 ng/mL; p < 0.001). Active SLE patients presented higher calcidiol/calcitriol ratio scores vs. inactive SLE patients (2.78 vs. 1.92 pg/ng; p = 0.02), and SLE patients with renal disease activity showed a pattern of calcidiol-deficient levels (19.5 vs. 25.3 ng/mL; p < 0.04) with higher calcitriol levels (47 pg/mL vs. 41.5 pg/mL; p = 0.02) and calcidiol/calcitriol ratio scores (2.13 vs. 1.54 pg/ng; p < 0.02) compared to SLE patients without renal disease activity. Calcidiol levels were negatively correlated with calcitriol levels (r = −0.26; p = 0.001) and urine proteins (mg/dL) (r = −0.39; p < 0.01). Regarding calcitriol levels, it was positively correlated with the blood lymphocyte count (r = 0.30; p < 0.001) and negatively correlated with the glomerular filtration rate (r = −0.28; p = 0.001). Moreover, the calcitriol/calcidiol ratio was positively correlated with urine proteins (r = 0.38; p < 0.01). The calcidiol deficiency (OR = 2.27; 95% CI = 1.15-4.49; p < 0.01), high calcitriol levels (T3rd, OR = 4.19, 95% CI = 2.23-7.90; p < 0.001), and a high calcitriol/calcidiol ratio score (T3rd, OR = 5.93, 95% CI: 3.08-11.5; p < 0.001) were associated with the risk for SLE. In conclusion, a pattern of calcidiol deficiency with high calcitriol serum levels and a high vitamin D hydroxylation efficiency ratio was associated with disease risk in SLE patients.
Collapse
|
19
|
Idborg H, Oke V. Cytokines as Biomarkers in Systemic Lupus Erythematosus: Value for Diagnosis and Drug Therapy. Int J Mol Sci 2021; 22:ijms222111327. [PMID: 34768756 PMCID: PMC8582965 DOI: 10.3390/ijms222111327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease. The disease is characterized by activation and dysregulation of both the innate and the adaptive immune systems. The autoimmune response targets self-molecules including cell nuclei, double stranded DNA and other intra and extracellular structures. Multiple susceptibility genes within the immune system have been identified, as well as disturbances in different immune pathways. SLE may affect different organs and organ systems, and organ involvement is diverse among individuals. A universal understanding of pathophysiological mechanism of the disease, as well as directed therapies, are still missing. Cytokines are immunomodulating molecules produced by cells of the immune system. Interferons (IFNs) are a broad group of cytokines, primarily produced by the innate immune system. The IFN system has been observed to be dysregulated in SLE, and therefore IFNs have been extensively studied with a hope to understand the disease mechanisms and identify novel targeted therapies. In several autoimmune diseases identification and subsequent blockade of specific cytokines has led to successful therapies, for example tumor necrosis factor-alpha (TNF-α) inhibition in rheumatoid arthritis. Authors of this review have sought corresponding developments in SLE. In the current review, we cover the actual knowledge on IFNs and other studied cytokines as biomarkers and treatment targets in SLE.
Collapse
Affiliation(s)
- Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Care Services, 11365 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
20
|
Nakano M, Ayano M, Kushimoto K, Kawano S, Higashioka K, Inokuchi S, Mitoma H, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. Increased Proportion of CD226 + B Cells Is Associated With the Disease Activity and Prognosis of Systemic Lupus Erythematosus. Front Immunol 2021; 12:713225. [PMID: 34367178 PMCID: PMC8334729 DOI: 10.3389/fimmu.2021.713225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD226, an activating receptor expressed on the surface of natural killer (NK) cells and T cells, is also seen on B cells and CD226 polymorphism is associated with systemic lupus erythematosus (SLE). Because the specific roles of CD226+ B cells in SLE are still unknown, we investigated the association of CD226+ B cells with SLE. Methods We measured CD226 expression on B cells and its subsets using flow cytometry in 48 SLE patients and 24 healthy controls (HCs). We assessed the relationships between CD226+ B cells and SLE Disease Activity Index 2000 (SLEDAI-2K), clinical manifestations, laboratory data, and prognosis after 12 months. Results The proportions of CD226+ cells in whole B cells and all its subsets were significantly higher in SLE patients than HCs. In SLE patients, the proportions of CD226+ B cells and CD226+ switched-memory (SM) B cells were significantly correlated with SLEDAI-2K scores and anti-dsDNA antibody titers, and negatively correlated with serum complement levels. Moreover, basal percentages of CD226+ B cells and CD226+ SM B cells were low in patients who were in Lupus Low Disease Activity State after 12 months. In patients with renal involvement, the proportion of CD226+ B cells increased. Additionally, the proportion of CD226+ B cells was higher in patients who were not in complete renal remission after 12 months. Conclusions Increased proportion of CD226+ B cells was associated with disease activity and prognosis of SLE. CD226+ B cells may be a useful biomarker for the management of SLE.
Collapse
Affiliation(s)
- Miki Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuo Kushimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoichiro Inokuchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
21
|
Gachpazan M, Akhlaghipour I, Rahimi HR, Saburi E, Mojarrad M, Abbaszadegan MR, Moghbeli M. Genetic and molecular biology of systemic lupus erythematosus among Iranian patients: an overview. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:2. [PMID: 33516274 PMCID: PMC7847600 DOI: 10.1186/s13317-020-00144-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a clinicopathologically heterogeneous chronic autoimmune disorder affecting different organs and tissues. It has been reported that there is an increasing rate of SLE incidence among Iranian population. Moreover, the Iranian SLE patients have more severe clinical manifestations compared with other countries. Therefore, it is required to introduce novel methods for the early detection of SLE in this population. Various environmental and genetic factors are involved in SLE progression. MAIN BODY In present review we have summarized all of the reported genes which have been associated with clinicopathological features of SLE among Iranian patients. CONCLUSIONS Apart from the reported cytokines and chemokines, it was interestingly observed that the apoptosis related genes and non-coding RNAs were the most reported genetic abnormalities associated with SLE progression among Iranians. This review clarifies the genetics and molecular biology of SLE progression among Iranian cases. Moreover, this review paves the way of introducing an efficient panel of genetic markers for the early detection and better management of SLE in this population.
Collapse
Affiliation(s)
- Meisam Gachpazan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Amend A, Wickli N, Schäfer AL, Sprenger DTL, Manz RA, Voll RE, Chevalier N. Dual Role of Interleukin-10 in Murine NZB/W F1 Lupus. Int J Mol Sci 2021; 22:1347. [PMID: 33572870 PMCID: PMC7866297 DOI: 10.3390/ijms22031347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.
Collapse
Affiliation(s)
- Anaïs Amend
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Natalie Wickli
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Rudolf A. Manz
- Institute for Systemic Inflammation, University of Lübeck, 23562 Lübeck, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| |
Collapse
|
23
|
Klavdianou K, Lazarini A, Fanouriakis A. Targeted Biologic Therapy for Systemic Lupus Erythematosus: Emerging Pathways and Drug Pipeline. BioDrugs 2021; 34:133-147. [PMID: 32002918 DOI: 10.1007/s40259-020-00405-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following the approval of belimumab, the first drug to be approved for systemic lupus erythematosus (SLE) in over 50 years, advances in our understanding of the pathogenesis of the disease have led to a remarkable number of clinical trials for investigational drugs, each with a unique mechanism of action. These include, but are not limited to, antibodies targeting B or T cells or their interaction, dendritic cells, interferon, and other cytokines. Frustratingly, this boost of studies has not been accompanied by a corresponding success and subsequent approval of novel agents, for reasons only partly attributed to the efficacy of the drugs per se. Successful phase II trials are often followed by failed phase III studies, which typically require many more patients. Nevertheless, recent successes, such as the ustekinumab and baricitinib trials and the positive results from the phase III TULIP-2 study of anifrolumab, provide room for cautious optimism. In this review, we attempt to draw the current landscape of the drug pipeline in SLE, focusing on the rationale behind each drug development, its mechanism of action, and the available preclinical and clinical data. We also highlight lessons learned from failed attempts that have helped to optimize clinical trial design for this challenging disease. We conclude with a look into the future, commenting on the surge of studies in the field of biomarkers and the use of omics technologies in lupus, which aim to pinpoint different disease phenotypes and, ideally, identify subsets of patients with disease that will respond to different biologic drugs.
Collapse
Affiliation(s)
- Kalliopi Klavdianou
- Department of Rheumatology, "Asklepieion" General Hospital, 1 Vasileos Pavlou Str., Voula, 16673, Athens, Greece
| | - Argyro Lazarini
- Department of Rheumatology, "Asklepieion" General Hospital, 1 Vasileos Pavlou Str., Voula, 16673, Athens, Greece
| | - Antonis Fanouriakis
- Department of Rheumatology, "Asklepieion" General Hospital, 1 Vasileos Pavlou Str., Voula, 16673, Athens, Greece.
- Rheumatology and Clinical Immunology, 4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece.
| |
Collapse
|
24
|
Abrego-Peredo A, Romero-Ramírez H, Espinosa E, López-Herrera G, García-García F, Flores-Muñoz M, Sandoval-Montes C, Rodríguez-Alba JC. Naringenin mitigates autoimmune features in lupus-prone mice by modulation of T-cell subsets and cytokines profile. PLoS One 2020; 15:e0233138. [PMID: 32421738 PMCID: PMC7233587 DOI: 10.1371/journal.pone.0233138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Naringenin is flavonoid mainly found in citrus fruits which has shown several biological properties. In this work, we evaluated the therapeutic potential of the flavonoid Naringenin. Five-month-old B6.MRL-Faslpr/J lupus-prone mice were administered daily orally with Naringenin for seven months. We showed that Naringenin treatment at 50 or 100 mg/kg inhibited the splenomegaly and decreased the levels of anti-nuclear and anti-dsDNA autoantibodies. Furthermore, a reduction in serum concentration of TNF-α, IFN-γ and IL-6 was observed in the mice provided with Naringenin. Interestingly, serum levels of IL-10 increased. Naringenin decreased the frequency and absolute numbers of splenic effector memory T cells. Additionally, in order to be able to evaluate whether Naringenin prevented kidney damage, twelve-week-old MRL/MpJ-Faslpr/J mice, an accelerated lupus model, were orally administered with Naringenin at 100 mg/kg for six weeks. Surprisingly, Naringenin treatment prevented kidney damage and reduced the development of fibrosis similar to cyclophosphamide group. Moreover, Naringenin treatment increased the percentage of regulatory T cells in this aggressive model of lupus. Together, these results suggest a potential ability of Naringenin to reduce the autoimmunity in lupus-prone mice by modulation of T-cell subsets and cytokines profile that mitigate the development of important lupus clinical manifestations.
Collapse
Affiliation(s)
- Amayrani Abrego-Peredo
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Enrique Espinosa
- Investigación en Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Gabriela López-Herrera
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Fabio García-García
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Biología del Sueño, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Investigación en Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Claudia Sandoval-Montes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Carlos Rodríguez-Alba
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
25
|
Zuo S, Zheng T, Li H. Association between interleukin-10-819T/C polymorphism and risk of ischemic stroke: A meta-analysis. Medicine (Baltimore) 2020; 99:e19808. [PMID: 32443287 PMCID: PMC7253870 DOI: 10.1097/md.0000000000019808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The interleukin-10 (IL-10)-819T/C polymorphism has been indicated to be correlated with ischemic stroke susceptibility, but this relationship remains controversial. A meta-analysis was conducted to investigate the potential association between IL-10-819T/C polymorphism and ischemic stroke risk. METHODS Databases including Pubmed, Embase, and CNKI were searched. Data were extracted and odds ratios (OR) with 95% confidence intervals (CI) were calculated. RESULTS Eight case-control studies with 1832 cases and 1520 controls were included in this meta-analysis. IL-10-819T/C polymorphism may decrease the risk of ischemic stroke (C vs T: OR = 1.01, 95% CI: 0.91-1.12; CC vs TT: OR = 0.91, 95% CI: 0.73-1.14; CT vs TT: OR = 1.10, 95% CI: 0.95-1.28; CC + CT vs TT: OR = 1.06, 95% CI: 0.92-1.22; CC vs CT + TT: OR = 0.91, 95% CI: 0.75-1.11). In the stratified analysis by sample size, and case-control matched status, significant associations were still not observed in all genetic models. In the subgroup meta-analysis based on source of controls, IL-10-819T/C polymorphism had decreased ischemic stroke risk for recessive model in population-based controls' subgroup (CC vs CT + TT: OR = 0.69, 95% CI: 0.50-0.95), but not in the hospital-based controls' subgroup. In the stratified analysis based on ethnicity, IL-10-819T/C polymorphism had decreased ischemic stroke risk for recessive model in Asian populations (CC vs CT + TT: OR = 0.78, 95% CI: 0.62-0.99), but not in Caucasian populations. CONCLUSIONS In conclusion, the results suggest that the IL-10-819T/C polymorphism is not associated with ischemic stroke risk. Larger scale studies are needed for confirmation.
Collapse
|
26
|
McSorley EM, van Wijngaarden E, Yeates AJ, Spence T, Mulhern MS, Harrington D, Thurston SW, Love T, Jusko TA, Allsopp PJ, Conway MC, Davidson PW, Myers GJ, Watson GE, Shamlaye CF, Strain JJ. Methylmercury and long chain polyunsaturated fatty acids are associated with immune dysregulation in young adults from the Seychelles child development study. ENVIRONMENTAL RESEARCH 2020; 183:109072. [PMID: 32007747 PMCID: PMC7213642 DOI: 10.1016/j.envres.2019.109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to the environmental toxicant mercury (Hg) has been associated with immune dysregulation, including autoimmune disease, but few human studies have examined methylmercury (MeHg) exposure from fish consumption. OBJECTIVES We examined associations between MeHg exposure and biological markers of autoimmunity and inflammation while adjusting for long chain polyunsaturated fatty acids (LCPUFA). METHOD At age 19 years, hair total Hg (Y19Hg), LCPUFA status, a panel of 13 antinuclear antibodies (ANA), total serum immunoglobulins (Ig) IgG, IgA, and IgM and serum markers of inflammation (IL-1, IL-2, IL-6, IL-10, C-reactive protein (CRP), IFN-γ, TNF-α) were measured in the Seychelles Child Development Study (SCDS) Main Cohort (n = 497). Multivariable regression models investigated the association between Y19Hg and biomarkers, adjusting for prenatal total hair Hg (MatHg) and other relevant covariates, and with and without adjustment for LCPUFA. RESULTS With each 1 ppm increase in Y19Hg (mean 10.23 (SD 6.02) ppm) we observed a 4% increased odds in a positive Combined ANA following adjustment for the n6:n3 LCPUFA ratio (β = 0.036, 95%; CI: 0.001, 0.073). IgM was negatively associated with Y19Hg (β = -0.016, 95%CI: 0.016, -0.002) in models adjusted for n-3, n-6 LCPUFA and when separately adjusted for the n-6:n-3 LCPUFA ratio. No associations were observed with MatHg. Total n-3 LCPUFA status was associated with reduced odds of a positive anti-ribonuclear protein (RNP) A. The n-3 LCPUFA were negatively associated with IL-6, IL-10, CRP, IFN-γ, TNF-α and positively with TNF-α:IL-10. There were positive associations between the n-6:n-3 ratio and IL-6, IL-10, CRP, IFN-γ, TNF-α and a negative association with TNF-α:IL-10. DISCUSSION The Y19Hg exposure was associated with higher ANA and lower IgM albeit only following adjustment for the n-3 LCPUFA or the n-6:n-3 LCPUFA ratio. The clinical significance of these findings is unclear, but warrant follow up at an older age to determine any relationship to the onset of autoimmune disease.
Collapse
Affiliation(s)
- Emeir M McSorley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom.
| | | | - Alison J Yeates
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Toni Spence
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Maria S Mulhern
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Donald Harrington
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Sally W Thurston
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Tanzy Love
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Todd A Jusko
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Philip J Allsopp
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Marie C Conway
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Philip W Davidson
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Gary J Myers
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Gene E Watson
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | | | - J J Strain
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
27
|
Evidence for a pathogenic role of extrafollicular, IL-10-producing CCR6 +B helper T cells in systemic lupus erythematosus. Proc Natl Acad Sci U S A 2020; 117:7305-7316. [PMID: 32184325 DOI: 10.1073/pnas.1917834117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interleukin 10 (IL-10) is an antiinflammatory cytokine, but also promotes B cell responses and plays a pathogenic role in systemic lupus erythematosus (SLE). CD4+CCR6+IL-7R+T cells from human tonsils produced IL-10 following stimulation by naïve B cells, which promoted B cell immunoglobulin G (IgG) production. These tonsillar CCR6+B helper T cells were phenotypically distinct from follicular helper T (TFH) cells and lacked BCL6 expression. In peripheral blood, a CCR6+T cell population with similar characteristics was identified, which lacked Th17- and TFH-associated gene signatures and differentiation-associated surface markers. CD4+CCR6+T cells expressing IL-10, but not IL-17, were also detectable in the spleens of cytokine reporter mice. They provided help for IgG production in vivo, and expanded systemically in pristane-induced lupus-like disease. In SLE patients, CD4+CCR6+IL-7R+T cells were associated with the presence of pathogenic anti-dsDNA (double-stranded DNA) antibodies, and provided spontaneous help for autoantibody production ex vivo. Strikingly, IL-10-producing CCR6+T cells were highly abundant in lymph nodes of SLE patients, and colocalized with B cells at the margins of follicles. In conclusion, we identified a previously uncharacterized population of extrafollicular B helper T cells, which produced IL-10 and could play a prominent pathogenic role in SLE.
Collapse
|
28
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
29
|
Geginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, Flavell RA, Meroni P, Abrignani S. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin Immunol 2019; 44:101330. [PMID: 31735515 DOI: 10.1016/j.smim.2019.101330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future.
Collapse
Affiliation(s)
- J Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
| | - M Vasco
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - M Gerosa
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy; ASST Istituto G. Pini, Milan, Italy
| | - S W Tas
- Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - M Pagani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - F Grassi
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - R A Flavell
- Department of Immunobiology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, USA
| | - Pl Meroni
- Istituto Auxologico Italiano, Milano, Italy
| | - S Abrignani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy
| |
Collapse
|
30
|
Murphy KA, Bhamidipati K, Rubin SJS, Kipp L, Robinson WH, Lanz TV. Immunomodulatory receptors are differentially expressed in B and T cell subsets relevant to autoimmune disease. Clin Immunol 2019; 209:108276. [PMID: 31669582 DOI: 10.1016/j.clim.2019.108276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Inhibitory cell-surface receptors on lymphocytes, often called immune checkpoints, are powerful targets for cancer therapy. Despite their direct involvement in autoimmune pathology, they are currently not exploited therapeutically for autoimmune diseases. Understanding the expression pattern of these receptors in health and disease is essential for targeted drug design. Here, we designed three 23-colour flow cytometry panels for peripheral-blood T cells, including 15 lineage-defining markers and 21 immunomodulatory cell-surface receptors, and a 22-marker panel for B cells. Blood samples from healthy individuals, multiple sclerosis (MS), and lupus (SLE) patients were included in the study. Several receptors show differential expression on regulatory T cells (Treg) compared to T helper (Th) 1 and Th17 cells, and functional relevance of this difference could be shown for BTLA and CD5. Unbiased multiparametric analysis revealed a subset of activated CD8+ T cells and a subset of unswitched memory B cells that are diminished in MS and SLE, respectively.
Collapse
Affiliation(s)
- Katherine A Murphy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Kartik Bhamidipati
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel J S Rubin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Lucas Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States; Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
31
|
Fernández Matilla M, Grau García E, Fernández-Llanio Comella N, Chalmeta Verdejo I, Ivorra Cortés J, Castellano Cuesta JA, Román Ivorra JA. Increased interferon-1α, interleukin-10 and BLyS concentrations as clinical activity biomarkers in systemic lupus erythematosus. Med Clin (Barc) 2019; 153:225-231. [PMID: 30795903 DOI: 10.1016/j.medcli.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE to analyse the association between interferon-1α (INF1α), interleukin-10 (IL-10) and BLyS concentrations and clinical activity in systemic lupus erythematosus (SLE). PATIENTS AND METHODS A cross-sectional, observational study of 142 SLE patients and 34 healthy controls was performed, through a complete blood and urine test and review of their medical history. Serum concentration of INF1α, IL-10 and BLyS was determined by colorimetric methods. A biostatistical analysis was performed with R (3.3.2.). RESULTS 69% of our SLE patients showed at least one cytokine increased. INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls (P<.001, P=.005 and P=.043, respectively), being INF1α the most frequent. Patients were categorised according to low or high concentrations of the three cytokines. We found a significant association between increased IL-10/INF1α concentrations and a higher clinical activity measured by SELENA-SLEDAI (P<.0001) and, to a lesser extent, an association with increased INF1α/IL-10/BLyS concentrations. Elevated levels of IL-10/INF1α and INF1α/IL-10/BLyS related to increased C3-C4 consumption (P<.001 and P=.001 respectively) and anti-dsDNA titres (P=.001 and P=.002 respectively). Elevated INF1α/BLyS related to higher anti-dsDNA titres (P=.004) and ENA positivity (P<.001). Increased levels of INF1α/IL-10/BLyS related to positivity of ANAs (P<.001) and APL (P=.004). CONCLUSIONS INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls. Increased IL-10 levels, regardless of whether or not there were also increased levels of BLyS and/or INF1α, was the cytokine that best fit with clinical activity in SLE measured with classic methods.
Collapse
Affiliation(s)
- Meritxell Fernández Matilla
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, España; Sección de Reumatología, Hospital Arnau de Vilanova, Valencia, España.
| | - Elena Grau García
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | | - José Ivorra Cortés
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | |
Collapse
|
32
|
Ou Y, Yang Y, Xiang X, Wu Y. Relationship between the IL-10 (-1082 A/G) polymorphism and the risk of immune/idiopathic thrombocytopenic purpura: A meta-analysis. Cytokine 2019; 125:154820. [PMID: 31493564 DOI: 10.1016/j.cyto.2019.154820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/28/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The association of the IL-10 gene polymorphism with immune thrombocytopenic purpura (ITP, also called idiopathic thrombocytopenic purpura) susceptibility has been investigated in several studies; however, the association remains controversial. The present meta-analysis aimed to determine whether the IL-10 (-1082) polymorphism is associated with an increased risk of ITP. MATERIALS AND METHODS Eligible articles were searched in EMBASE, PubMed, CNKI, WanFang, and HuGE Navigator, without any restriction of publication language. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to identify any potential associations between the IL-10 (-1082 A/G) polymorphism and the risk of ITP. RESULTS This meta-analysis included six eligible studies with 384 cases and 409 controls. There was no significant association between the IL-10 (-1082) polymorphism and the risk of ITP in any of the genetic models. Three subgroups were stratified according to population ethnicity, disease subtype (acute or chronic), and age (child or adult). No statistically significant differences were observed in age and ethnicity between cases and controls. However, subtype analysis indicated significant associations for acute ITP in the allele model (OR = 1.76, 95% CI = [1.07; 2,89]), the recessive model (OR = 2.66, 95% CI = [1.17; 6.07]), and the homozygote model (OR = 2.65, 95% CI = [1.07; 6.55]). CONCLUSIONS There is scarce evidence to confirm an association between the IL-10 (-1082) polymorphism and the risk of ITP. However, the IL-10 (-1082) polymorphism might be associated with the risk of acute ITP. Additional large, well-designed epidemiological studies should be performed to draw definitive conclusions.
Collapse
Affiliation(s)
- Yang Ou
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Yang
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xinrong Xiang
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
33
|
Yakoub AM, Schülke S. A Model for Apoptotic-Cell-Mediated Adaptive Immune Evasion via CD80-CTLA-4 Signaling. Front Pharmacol 2019; 10:562. [PMID: 31214024 PMCID: PMC6554677 DOI: 10.3389/fphar.2019.00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cells carry a plethora of self-antigens but they suppress eliciting of innate and adaptive immune responses to them. How apoptotic cells evade and subvert adaptive immune responses has been elusive. Here, we propose a novel model to understand how apoptotic cells regulate T cell activation in different contexts, leading mostly to tolerogenic responses, mainly via taking control of the CD80-CTLA-4 coinhibitory signal delivered to T cells. This model may facilitate understanding of the molecular mechanisms of autoimmune diseases associated with dysregulation of apoptosis or apoptotic cell clearance, and it highlights potential therapeutic targets or strategies for treatment of multiple immunological disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Schülke
- Vice President's Research Group: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
34
|
Dima A, Pricopi I, Balanescu E, Balanescu P, Baicus C. Interleukin 10 related to lymphopenia in lupus. Eur J Intern Med 2019; 64:e9-e10. [PMID: 31036439 DOI: 10.1016/j.ejim.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022]
Affiliation(s)
- A Dima
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Romania; Department of Internal Medicine, Colentina Research Center, Colentina Clinical Hospital, Romania.
| | - I Pricopi
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - E Balanescu
- Department of Internal Medicine, Colentina Research Center, Colentina Clinical Hospital, Romania
| | - P Balanescu
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Romania; Department of Internal Medicine, Colentina Research Center, Colentina Clinical Hospital, Romania
| | - C Baicus
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Romania; Department of Internal Medicine, Colentina Research Center, Colentina Clinical Hospital, Romania
| |
Collapse
|
35
|
Su X, Ye L, Chen X, Zhang H, Zhou Y, Ding X, Chen D, Lin Q, Chen C. MiR-199-3p promotes ERK-mediated IL-10 production by targeting poly (ADP-ribose) Polymerase-1 in patients with systemic lupus erythematosus. Chem Biol Interact 2019; 306:110-116. [PMID: 30991045 DOI: 10.1016/j.cbi.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in both biological and pathological processes in patients with systemic lupus erythematosus (SLE). Previous studies have demonstrated dysregulated expression of miR-199-3p, interleukin (IL)-10, and poly (ADP-ribose) polymerase-1 (PARP-1) in SLE. However, the underlying mechanisms of these aberrations have not been fully elucidated. In this study, we investigated the mechanism through which miR-199-3p dysregulation contributed to the pathogenesis of SLE. Altered gene expression was assessed by ChIP analysis. We then silenced the expression of candidate genes using siRNA for functional analysis; mRNA expression, protein levels, and protein expression were determined by qRT-PCR, ELISA, and western blotting, respectively. According to ChIP and qRT-PCR results, miR-199-3p was up-regulated in SLE patients. Moreover, IL-10 was found to be highly expressed in SLE patients by ELISA. Further, PARP1 was significantly down-regulated in SLE patients based on western blotting. Our results also indicated that miR-199-3p inhibits PARP1 expression by activating the ERK1/2 pathway, thereby increasing IL-10 expression. Significantly up-regulated miR-199-3p was inversely related to PARP-1 expression and positively correlated with IL-10 levels in SLE. As miR-199-3p was shown to target PARP-1 to activate the ERK1/2 pathway and promote IL-10 production, restoring physiological miR-199-3p levels could represent a potential therapeutic strategy for SLE treatment.
Collapse
Affiliation(s)
- Xiaoping Su
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Xiaokai Ding
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Dan Chen
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
36
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
37
|
Mohammadi S, Saghaeian Jazi M, Zare Ebrahimabad M, Eghbalpour F, Abdolahi N, Tabarraei A, Yazdani Y. Interleukin 10 gene promoter polymorphisms (rs1800896, rs1800871 and rs1800872) and haplotypes are associated with the activity of systemic lupus erythematosus and IL10 levels in an Iranian population. Int J Immunogenet 2019; 46:20-30. [PMID: 30430731 DOI: 10.1111/iji.12407] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unknown aetiology. According to the role of interleukin 10 (IL10) in SLE pathogenesis, the genetic alterations in its promoter region could be associated with elevated IL10 levels and exacerbated disease. Here, we investigated the association of genotype and haplotype frequencies of three IL10 gene promoter polymorphisms with susceptibility to SLE, IL10 plasma levels and disease activity of patients in an Iranian population. A total of 116 SLE patients and 131 healthy subjects were enrolled. The PCR-RFLP technique was used to detect IL10 promoter genotypes at the positions of -1082 (G/A), -819 (C/T) and -592 (C/A) in association with IL10 plasma levels and SLEDAI scores. The GG genotype of -1082 polymorphism was associated with the increased risk of SLE [OR = 2.65, 95% CI (1.21-5.82), p-value = 0.046]. The CC genotype in -819 region was associated with SLE susceptibility [OR = 3.38, 95% CI (1.26-9.07), p-value = 0.034] and C allele was introduced as risk allele [OR = 1.86, 95% CI (1.15-3.01), p-value = 0.009] in this region. IL10 plasma levels were overexpressed in CC genotype carriers of -592 SNP and decreased in AA genotype carriers of -1082. IL10 was also increased in SLE patients with CGT (-592/-1082/-819) haplotype. The SLEDAI score was higher among CC genotype carriers at the position of -592 and TT genotype carriers at the region of -819. SLEDAI was also elevated among patients with CGC (-592/-1082/-819) and CAC (p = 0.011) haplotypes. The present study suggests that the IL10 -819(C/T), -1082(G/A) and -592(C/A) polymorphisms and the haplotypes are associated with SLE susceptibility, increased disease activity and elevated IL10 levels. While this is the first time to report such an association in an Iranian population, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Biochemistry and Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mojtaba Zare Ebrahimabad
- Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Eghbalpour
- Department of Molecular medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Abdolahi
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
38
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Comprehensive assessment of the association between genes on JAK-STAT pathway (IFIH1, TYK2, IL-10) and systemic lupus erythematosus: a meta-analysis. Arch Dermatol Res 2018; 310:711-728. [DOI: 10.1007/s00403-018-1858-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
|
40
|
|
41
|
Felten R, Dervovic E, Chasset F, Gottenberg JE, Sibilia J, Scher F, Arnaud L. The 2018 pipeline of targeted therapies under clinical development for Systemic Lupus Erythematosus: a systematic review of trials. Autoimmun Rev 2018; 17:781-790. [PMID: 29885544 DOI: 10.1016/j.autrev.2018.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
Currently, Systemic Lupus Erythematosus (SLE) therapies range from antimalarials to glucocorticoids, in addition to immunosupressive agents or biologics such as rituximab or belimumab, when needed. Several unmet needs remain in the treatment SLE and more targeted drugs with improved safety profiles are expected. Based on recent advances in the understanding of the complex pathogenesis of SLE, several targeted treatments are currently assessed in clinical trials. In this study, we performed a systematic review of all targeted therapies under clinical development in SLE in 17 online registries of clinical trials. The search yielded a total of 1140 trials, from which we identified 74 targeted therapies for SLE. Those treatments target inflammatory cytokines, chemokines, or their receptors (n = 17), B cells or plasma cells (n = 17), intracellular signalling pathways (n = 10), T/B cells costimulation molecules (n = 8), interferons (n = 7), plasmacytoid dendritic cells (pDC) (n = 3), as well as various other targets (n = 12). Not all these candidate drugs will reach phase III, but the broad spectrum of drugs being investigated may satisfy the urgent need for improved lupus medications. The identification of biomarkers that would allow adequate prediction of response-to-therapy remains high, but when solved will allow a more rationale selection of the optimal pharmacological agent at the patient level.
Collapse
Affiliation(s)
- Renaud Felten
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, RESO, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, France
| | - Elida Dervovic
- Service de Pharmacie-Stérilisation, Hôpitaux Universitaires de Strasbourg, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine Sorbonne Université, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, F-75020 Paris, France
| | - Jacques-Eric Gottenberg
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, RESO, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, France
| | - Jean Sibilia
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, INSERM UMR_S1109, RESO, Université de Strasbourg, F-67000 Strasbourg, France
| | - Florence Scher
- Service de Pharmacie-Stérilisation, Hôpitaux Universitaires de Strasbourg, France
| | - Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, INSERM UMR_S1109, RESO, Université de Strasbourg, F-67000 Strasbourg, France.
| |
Collapse
|
42
|
Landa SB, Korabliov PV, Semenova EV, Filatov MV. Peculiarities of the formation and subsequent removal of the circulating immune complexes from the bloodstream during the process of digestion. F1000Res 2018; 7:618. [PMID: 30079242 PMCID: PMC6058468 DOI: 10.12688/f1000research.14406.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Large protein aggregates, known as circulating immune complexes (CICs), are formed in biological fluids as a result of the development of the body's immune response to various provoking factors. The kinetic characteristics of the formation and removal of immune complexes (ICs), their physical parameters, the isotypic composition of immunoglobulins (Igs) and the antigenic component of the CICs may reflect certain aspects of certain pathological and metabolic processes taking place in humans and animals. The aim of this study is to assess the kinetic characteristics of the formation and removal of the CICs that form in blood after eating. We also analyze the changes in the isotypic composition of Igs of ICs that accompany this biological process in rodents and humans. Methods: We identified the CICs, which differed in size and class of Igs, using dynamic light scattering. To remove ICs from the plasma, we used immune-affinity sedimentation. Monoclonal antibodies for the Igs of different isotypes were added to the plasma samples to determine the isotypic composition of the ICs. Results: A large number of ICs were formed in the blood of rats and humans after eating (food CICs). In rats, food ICs are almost immediately filtered in the liver, without circulating in the bloodstream through the body. In humans, the level of food ICs in the blood increases for 3.5 h after ingestion, then within 7-8 h their gradual removal takes place. It was found that in the process of digestion in humans, the isotypic composition of Igs in the CICs changes and becomes more diverse. Conclusions: The molecular-cellular mechanisms of the formation and utilization of food CICs in humans and rodents do not match completely.
Collapse
Affiliation(s)
- Sergej B. Landa
- Division of Molecular and Radiation Biophysics, National Research Center , Gatchina, 188300, Russian Federation
| | - Pavel V. Korabliov
- State Research Institute Center for Innovative Medicine, Vilnius, LT-01102, Lithuania
| | - Elena V. Semenova
- Division of Molecular and Radiation Biophysics, National Research Center , Gatchina, 188300, Russian Federation
| | - Michael V. Filatov
- Division of Molecular and Radiation Biophysics, National Research Center , Gatchina, 188300, Russian Federation
- Saint Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, 191036, Russian Federation
| |
Collapse
|
43
|
Zhang TP, Lv TT, Xu SZ, Pan HF, Ye DQ. Association of interleukin-10 gene single nucleotide polymorphisms with rheumatoid arthritis in a Chinese population. Postgrad Med J 2018; 94:284-288. [PMID: 29487192 DOI: 10.1136/postgradmedj-2017-135441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE STUDY Increasing numbers of studies show that interleukin (IL)-10 plays a key role in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and acts as an immunomodulatory cytokine. The purpose of the present study was to analyse the relationship between gene single nucleotide polymorphisms (SNPs) in the IL-10 gene and RA susceptibility. STUDY DESIGN We genotyped three SNPs (rs1800890, rs3024495, rs3024505) of the IL-10 gene in a Chinese population of 354 RA patients and 367 controls. Genotyping was conducted using TaqMan SNP genotyping assays. Plasma IL-10 levels were measured by ELISA. RESULTS The A allele of the rs1800890 variant was significantly related to decreased risk for RA compared with the T allele (A vs T: OR 0.580, 95% CI 0.345 to 0.975, P=0.038). No significant association between the genotype distribution of these SNPs and RA susceptibility was detected. The genotype effect of the dominant model was also evaluated, but no statistical difference was found. Further analysis in RA patients demonstrated that none of these SNPs were associated with rheumatoid factor (RF) or anti-citrullinated protein antibody (anti-CCP). In addition, no significant differences in plasma IL-10 levels were observed among RA patients with different genotypes. CONCLUSIONS The IL-10 rs1800890 variant might contribute to RA susceptibility in the Chinese population. Replication studies in different ethnic groups are required to further examine the critical role of IL-10 gene variation in the pathogenesis of RA.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Tian-Tian Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China
| |
Collapse
|
44
|
The roles of interleukins in perfusion recovery after peripheral arterial disease. Biosci Rep 2018; 38:BSR20171455. [PMID: 29358309 PMCID: PMC5809615 DOI: 10.1042/bsr20171455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/02/2018] [Accepted: 01/20/2018] [Indexed: 11/22/2022] Open
Abstract
In peripheral arterial disease (PAD) patients, occlusions in the major arteries that supply the leg makes blood flow dependent on the capacity of neovascularization. There is no current medication that is able to increase neovascularization to the ischemic limb and directly treat the primary problem of PAD. An increasing body of evidence supports the notion that inflammation plays an important role in the vascular remodeling and perfusion recovery after PAD. Interleukins (ILs), a group of proteins produced during inflammation, have been considered to be important for angiogenesis and arteriogenesis after tissue ischemia. This review summarizes the latest clinical and experimental developments of the role of ILs in blood perfusion recovery after PAD.
Collapse
|
45
|
Abd Elazeem MI, Mohammed RA, Abdallah NH. Correlation of serum interleukin-10 level with disease activity and severity in systemic lupus erythematosus. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2018. [DOI: 10.4103/err.err_15_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, Saavedra J, Rodríguez-Jiménez M, Mantilla RD, Ramírez-Santana C, Molano-González N, Anaya JM. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med 2017; 15:239. [PMID: 29178890 PMCID: PMC5702157 DOI: 10.1186/s12967-017-1345-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
Background Evidence supports the existence of different subphenotypes in systemic lupus erythematosus (SLE) and the pivotal role of cytokines and autoantibodies, which interact in a highly complex network. Thus, understanding how these complex nonlinear processes are connected and observed in real-life settings is a major challenge. Cluster approaches may assist in the identification of these subphenotypes, which represent such a phenomenon, and may contribute to the development of personalized medicine. Therefore, the relationship between autoantibody and cytokine clusters in SLE was analyzed. Methods This was an exploratory study in which 67 consecutive women with established SLE were assessed. Clinical characteristics including disease activity, a 14-autoantibody profile, and a panel of 15 serum cytokines were measured simultaneously. Mixed-cluster methodology and bivariate analyses were used to define autoantibody and cytokine clusters and to identify associations between them and related variables. Results First, three clusters of autoantibodies were defined: (1) neutral, (2) antiphospholipid antibodies (APLA)-dominant, and (3) anti-dsDNA/ENA-dominant. Second, eight cytokines showed levels above the threshold thus making possible to find 4 clusters: (1) neutral, (2) chemotactic, (3) G-CSF dominant, and (4) IFNα/Pro-inflammatory. Furthermore, the disease activity was associated with cytokine clusters, which, in turn, were associated with autoantibody clusters. Finally, when all biomarkers were included, three clusters were found: (1) neutral, (2) chemotactic/APLA, and (3) IFN/dsDNA, which were also associated with disease activity. Conclusion These results support the existence of three SLE cytokine-autoantibody driven subphenotypes. They encourage the practice of personalized medicine, and support proof-of-concept studies. Electronic supplementary material The online version of this article (10.1186/s12967-017-1345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Julián Barahona-Correa
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Juliana Saavedra
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Mónica Rodríguez-Jiménez
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Rubén D Mantilla
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Nicolás Molano-González
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia.
| |
Collapse
|
47
|
Wang T, Li Z, Li X, Chen L, Zhao H, Jiang C, Song L. Expression of CD19+CD24highCD38high B cells, IL-10 and IL-10R in peripheral blood from patients with systemic lupus erythematosus. Mol Med Rep 2017; 16:6326-6333. [DOI: 10.3892/mmr.2017.7381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
|
48
|
Cavalcanti A, Santos R, Mesquita Z, Duarte ALBP, Lucena-Silva N. Cytokine profile in childhood-onset systemic lupus erythematosus: a cross-sectional and longitudinal study. ACTA ACUST UNITED AC 2017; 50:e5738. [PMID: 28380214 PMCID: PMC5423750 DOI: 10.1590/1414-431x20175738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) exhibits an aggressive clinical phenotype and severe complications. This could be due to a pro-inflammatory cytokine milieu. Therefore, we determined plasma levels of Th1 (IL-2, IFN-γ, TNF), Th2 (IL-4), Th17 (IL-17A, IL-6), and Treg (IL-10) cytokines in a cohort of cSLE patients and healthy controls, and we evaluated the association between these cytokines and disease activity. We conducted a cross-sectional study with 51 cSLE patients from two pediatric rheumatology services. Ten cSLE patients participated in a longitudinal follow-up study. Blood samples were collected from the same patient during active and inactive disease. Disease activity was evaluated according to SLE Disease Activity Index 2000 (SLEDAI-2K). Cytokines levels were measured by cytometric bead array technique. cSLE patients had higher IL-6 (P<0.001) and IL-10 (P<0.001) levels than healthy controls. Patients with active disease had higher IL-6 and IL-10 levels than patients with inactive disease (P=0.001 and P=0.014, respectively) and the control group (both P<0.001). IL-6 (P=0.022), IL-10 (P=0.013), and IL-17A (P=0.041) levels were significantly higher during active than inactive disease. Linear regression analysis revealed IL-6 (P=0.002, 95%CI=0.006-0.025) and IL-10 (P=0.01 95%CI=0.021-0.150) as independent factors for increased SLEDAI-2K. IL-6, IL-10, and IL-17A are candidate biomarkers for disease activity in cSLE patients. This is the first longitudinal study to support their pivotal role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- A Cavalcanti
- Unidade de Reumatologia, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil
| | - R Santos
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil
| | - Z Mesquita
- Unidade de Reumatologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira, Recife, PE, Brasil
| | - A L B P Duarte
- Unidade de Reumatologia, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - N Lucena-Silva
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil.,Unidade de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira, Recife, PE, Brasil
| |
Collapse
|
49
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Buweiayixiemu•Yidisi, Kasimujiang•Aximujiang, Zhang JP, Xilinguli•Wushouer, Abulaiti•Ahemaiti, Huang JJ, Mairepaiti•Abodula, Adila•Abuduaini, Kurexi•Yunusi. Expression of IL-1 and IL-10 mRNAs in colonic tissue of ulcerative colitis rats with abnormal sapra syndrome. Shijie Huaren Xiaohua Zazhi 2017; 25:775-782. [DOI: 10.11569/wcjd.v25.i9.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of interleukin (IL)-1α, IL-1β and IL-10 in the pathogenesis and development of ulcerative colitis in rats with abnormal sapra syndrome.
METHODS A rat model of abnormal sapra syndrome was used to develop UC using trinitro-benzene-sulfonic acid (TNBS)/ethanol. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the differences in IL-1α, IL-1β and IL-10 mRNA expression levels in the colonic tissues between normal rats (control group) and UC rats with abnormal sapra syndrome (model group).
RESULTS Rat signs, symptoms and colonic mucosa damage suggested that UC with abnormal sapra syndrome was successfully induced. qRT-PCR results showed that compared with the normal group, the expression of IL-1α, IL-1β and IL-10 mRNAs was significantly up-regulated in the model group (P < 0.05).
CONCLUSION Imbalance of inflammatory factors may occur in colon tissue of UC rats with abnormal sapra syndrome.
Collapse
|