1
|
Anastasilakis AD, Tsourdi E. Τhe story of sclerostin inhibition: the past, the present, and the future. Hormones (Athens) 2025; 24:41-58. [PMID: 38170438 DOI: 10.1007/s42000-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Sclerostin inhibits osteoblast activity by hampering activation of the canonical Wnt signaling pathway and simultaneously stimulates osteoclastogenesis through upregulation of the receptor activator of NFκB ligand (RANKL). Thus, antibodies against sclerostin (Scl-Abs), besides promoting bone formation, suppress bone resorption and dissociate bone formation from resorption. This dual action results in remarkable increases of bone mineral density which are of a greater magnitude compared to the other antiosteoporotic treatments and are accompanied by decreases of fracture risk at all skeletal sites. The anabolic effect subsides after the first few months of treatment and a predominantly antiresorptive effect remains after this period, limiting its use to 12 months. Furthermore, these effects are largely reversible upon discontinuation; therefore, subsequent treatment with antiresorptives is indicated to maintain or further increase the bone gains achieved. Romosozumab is currently the only Scl-Ab approved for the treatment of severe postmenopausal osteoporosis. Indications for use in other populations, such as males, premenopausal women, and patients with glucocorticoid-induced osteoporosis, are pending. Additionally, the efficacy of Scl-Abs in other bone diseases, such as osteogenesis imperfecta, hypophosphatasia, X-linked hypophosphatemia, and bone loss associated with malignancies, is under thorough investigation. Cardiovascular safety concerns currently exclude patients at high cardiovascular risk from this treatment.
Collapse
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 Military General Hospital, Ring Road, 564 29 N. Efkarpia, Thessaloniki, Greece.
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Stokar J, Szalat A. Cardiovascular Safety of Romosozumab vs PTH Analogues for Osteoporosis Treatment: A Propensity-Score-Matched Cohort Study. J Clin Endocrinol Metab 2025; 110:e861-e867. [PMID: 38482603 DOI: 10.1210/clinem/dgae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024]
Abstract
CONTEXT Romosozumab, a monoclonal sclerostin antibody, is a recently approved highly potent antiosteoporotic agent with osteoanabolic properties. Clinical use of romosozumab is hindered by the fear of adverse cardiovascular (CV) events raised following the pivotal ARCH trial. OBJECTIVE This work aimed to assess real-world CV safety of romosozumab vs alternative osteoanabolic therapies used for treatment of severe osteoporosis. METHODS Data were obtained from TriNetX, a global federated health research network including real-time electronic medical records from 113 health care organizations with 136 460 930 patients across 16 countries at time of analysis. Inclusion criteria were age 40 years or older, a diagnosis of osteoporosis and prescription of romosozumab or a parathyroid hormone (PTH) analogue (teriparatide/abaloparatide) during August 2019 through August 2022. Propensity-score-matched cohorts were created 1:1 using demographic variables, comorbidities, and medications. Kaplan-Meier analysis was used to estimate the probability of the outcomes. Outcome measures included incident 3-point major adverse CV event or death (3P-MACE) during 1-year of follow-up after the initial prescription. RESULTS A total of 5626 and 15 986 patients met the criteria for romosozumab and PTH analogue cohorts, respectively, with 5610 patients per group following propensity score matching. 3P-MACE was significantly less frequent in the romosozumab vs PTH analogue cohort (158 vs 211 patients with an outcome; P = .003) with reductions in the individual components of the composite outcome: myocardial ischemic events (31 vs 58; P = .003); cerebrovascular events 56 vs 79; P = .037; deaths (83 vs 104; P = .099). CONCLUSION In a diverse, real-world setting, prescription of romosozumab for osteoporosis is associated with fewer adverse CV events when compared to PTH analogue therapy.
Collapse
Affiliation(s)
- Joshua Stokar
- Department of Internal Medicine, Faculty of Medicine, Osteoporosis Center, Hadassah Medical Center, The Hebrew University of Jerusalem, 9124001 Jerusalem, Israel
| | - Auryan Szalat
- Department of Internal Medicine, Faculty of Medicine, Osteoporosis Center, Hadassah Medical Center, The Hebrew University of Jerusalem, 9124001 Jerusalem, Israel
| |
Collapse
|
3
|
Takeuchi Y. Cardiovascular safety of osteoanabolic agents. J Bone Miner Metab 2025; 43:26-32. [PMID: 39825110 PMCID: PMC11954844 DOI: 10.1007/s00774-025-01580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
PURPOSE Several osteoanabolic agents have been developed to build new bone more efficiently than anti-resorptive drugs. Among them, romosozumab, an anti-sclerostin antibody, is a potent pharmacological tool to prevent fractures in osteoporosis patients. The efficacy of romosozumab in preventing osteoporotic fractures is robust. However, there remains a concern about increased cardiovascular (CV) adverse events related to romosozumab. Available data have been reviewed to address this concern. METHODS Published articles on romosozumab of which pivotal randomized controlled trials (RCTs), meta-analyses of RCTs, pharmacovigilance investigations, and retrospective observational clinical studies using real-world data were collected through PubMed and other available tools. RESULTS Meta-analyses of RCTs of romosozumab compared to placebo and other anti-osteoporosis drugs have left room for controversy in the CV safety of romosozumab. Investigations of the real-world data also provide no conclusive evidence in this issue. CONCLUSION We need more robust evidence to establish an appropriate and reasonable guide to prescribe romosozumab in our clinical practice.
Collapse
Affiliation(s)
- Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| |
Collapse
|
4
|
Li Y, Luo Y, Huang D, Peng L. Sclerostin as a new target of diabetes-induced osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1491066. [PMID: 39720253 PMCID: PMC11666367 DOI: 10.3389/fendo.2024.1491066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Sclerostin, a protein synthesized by bone cells, is a product of the SOST gene. Sclerostin is a potent soluble inhibitor of the WNT signaling pathway, and is known to inhibit bone formation by inhibiting osteocyte differentiation and function. Currently, sclerostin has been the subject of numerous animal experiments and clinical investigations. By conducting a literature review, we have gained insights into the most recent advancements in research. Patients with both type 1 diabetes and type 2 diabetes have high levels of serum sclerostin. Patients with type 1 diabetes and type 2 diabetes are both more likely to suffer from osteoporosis, and serum sclerostin levels are elevated in osteoporosis. Many studies have confirmed that sclerostin has been implicated in the pathogenesis of osteoporosis, so we speculate that sclerostin plays an important role in osteoporosis through the glucose metabolism pathway, which may promote the osteoporosis of morbidity in type 1 diabetes and type 2 diabetes. Based on this, we propose whether serum sclerostin can predict type 1 diabetes and type 2 diabetes-induced osteoporosis, and whether it can be a new target for the prevention and treatment of type 1 diabetes and type 2 diabetes-induced osteoporosis, providing new ideas for clinicians and researchers.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yaheng Luo
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Debin Huang
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Lele Peng
- Department of Endocrinology and Metabolism, Want Want Hospital, Changsha, Hunan, China
| |
Collapse
|
5
|
di Filippo L, Rosen CJ. Latest on Anabolic Agents for Osteoporosis Treatment. Endocrinol Metab Clin North Am 2024; 53:513-523. [PMID: 39448133 DOI: 10.1016/j.ecl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In the last decades, novel therapeutics with anabolic bone properties have been developed and are currently used in the management of osteoporosis particularly in patients with high-risk of fragility fractures. These drugs include PTH-Related Analogues, teriparatide and abaloparatide, and the anti-sclerostin agent romosozumab, this latter drug currently approved only in female patients. Their efficacies in preventing fragility fractures are widely demonstrated and their potential serious side effects were progressively downgraded, including risk of malignancies in teriparatide- and cardiovascular events in romosozumab-users, respectively. Further data are warranted about their efficacy in glucocorticoids-induces osteoporosis and fracture healings.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Clifford J Rosen
- Center for Clinical and Translational Research, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
6
|
Ramalho D, Rocha GM, Oliveira MJ. The Portuguese state of the art on osteoporosis and fracture risk: an
update on the treatment options. AKTUEL RHEUMATOL 2024; 49:385-394. [DOI: 10.1055/a-2158-0872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractOsteoporosis and fragility fractures are serious public health problems, which
greatly impact individual health and the economy of other health services.
Pharmacological treatment is still one of the main elements of clinical
intervention, combined with non-pharmacological measures, in preventing the
occurrence of fragility fractures. The emergence of promising new
pharmacological options in the treatment of osteoporosis seems to renew
expectations in the prevention of complications and a subsequent reduction in
morbidity and mortality, including symptomatic treatment, improved physical
function and a better quality of life. This review aims to provide updated
information on the pharmacological treatment of osteoporosis in the adult
population. A comprehensive PubMed search was performed to review the current
evidence on osteoporosis treatment. Of the 378 articles identified from the
initial queries, the final review included 80 articles. Currently, the following
pharmacological options are available: antiresorptive (bisphosphonates,
denosumab, postmenopausal hormone replacement therapy and selective oestrogen
receptor modulators), bone-forming agents (essentially, teriparatide and
abaloparatide) and the new dual-action therapy (romosozumab), recently approved
by the US Food and Drug Administration and the European Medicines Agency, but
which is not yet an option in Portugal. Therapeutic selection is essentially
based on assessment of cost-effectiveness, since current evidence does not
suggest any differences between the distinctive classes in reducing the risk of
fractures, but this analysis is limited by the scarcity of comparative
intraclass studies. Notwithstanding, romosozumab, as a dual effect therapy, is
promising in resolving the physiological limitations resulting from the merely
unilateral action of antiresorptive agents and bone-forming agents in the
inseparable relationship between bone formation and resorption. However, its
cardiovascular safety raises some concerns, and this topic is still being
debated. The underdiagnosis and the undertreatment of osteoporosis remain one of
the greatest challenges of the 21st century. Over the years, new drugs have
appeared that have tried to address these problems with a direct impact on the
health of populations, but a long way remains to be come in optimising their
effectiveness, safety and tolerability.
Collapse
Affiliation(s)
- Diogo Ramalho
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| | - Gustavo Melo Rocha
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| | - Maria João Oliveira
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| |
Collapse
|
7
|
Alcalde-Herraiz M, Xie J, Newby D, Prats C, Gill D, Gordillo-Marañón M, Prieto-Alhambra D, Català M, Prats-Uribe A. Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes. Nat Commun 2024; 15:9832. [PMID: 39537602 PMCID: PMC11561231 DOI: 10.1038/s41467-024-53623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Sclerostin inhibitors protect against osteoporotic fractures, but their cardiovascular safety remains unclear. We conducted a cis-Mendelian randomisation analysis to estimate the causal effect of sclerostin levels on cardiovascular risk factors. We meta-analysed three GWAS of sclerostin levels including 49,568 Europeans and selected 2 SNPs to be used as instruments. We included heel bone mineral density and hip fracture risk as positive control outcomes. Public GWAS and UK Biobank patient-level data were used for the study outcomes, which include cardiovascular events, risk factors, and biomarkers. Lower sclerostin levels were associated with higher bone mineral density and 85% reduction in hip fracture risk. However, genetically predicted lower sclerostin levels led to 25-85% excess coronary artery disease risk, 40% to 60% increased risk of type 2 diabetes, and worse cardiovascular biomarkers values, including higher triglycerides, and decreased HDL cholesterol levels. Results also suggest a potential (but borderline) association with increased risk of myocardial infarction. Our study provides genetic evidence of a causal relationship between reduced levels of sclerostin and improved bone health and fracture protection, but increased risk of cardiovascular events and risk factors.
Collapse
Affiliation(s)
- Marta Alcalde-Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, Spain
| | - JunQing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Danielle Newby
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Clara Prats
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, Spain
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Hospital, Imperial College London, London, UK
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Netherlands
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| | - Martí Català
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Albert Prats-Uribe
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Kobayashi T, Hara M, Shimanoe C, Morimoto T, Masaaki M, Ito K, Shimazaki T. Efficacy and safety of romosozumab: a meta-analysis of placebo-controlled trials. J Bone Miner Metab 2024; 42:492-502. [PMID: 38977437 DOI: 10.1007/s00774-024-01531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION We aimed to comprehensively compile placebo-controlled trials on the efficacy and safety of romosozumab (210 mg, subcutaneously, once monthly) in postmenopausal women and men with osteoporosis. MATERIALS AND METHODS PubMed, Google Scholar, and ClinicalTrials.gov were searched for relevant placebo-controlled trials (as of January 1, 2024). Percent change in bone mineral density (BMD), falls, fractures, and adverse events (AEs) after drug administration were collected. Risk ratios (RRs) and mean differences (MDs) with 95% confidence intervals (CIs) were calculated. RESULTS Six trials (7990 patients; follow-up period, 6-12 months) were included. Compared with placebo, romosozumab significantly increased lumbar spine BMD (MD = 12.69; 95% CI 11.10-14.29), total hip BMD (MD = 4.42; 95% CI 3.03-5.80), and femoral neck BMD (MD = 3.99; 95% CI 2.42-5.57) at 12 months. Romosozumab significantly decreased falls (RR = 0.80; 95% CI 0.68-0.93) and major osteoporotic fractures (RR = 0.37; 95% CI 0.25-0.54), but increased injection-site reactions (RR = 1.83; 95% CI 1.46-2.30) within 12 months. No significant differences were observed in other AEs (including cardiovascular AEs) within 12 months. CONCLUSION Romosozumab treatment resulted in a significant BMD gain, reduced falls and major osteoporotic fractures. It was generally well-tolerated, including the cardiovascular aspects. However, clinicians should consider the occurrence of minor AEs (e.g., injection-site reactions).
Collapse
Affiliation(s)
- Takaomi Kobayashi
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan.
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Clinical Research, Amagi Chuo Hospital, Fukuoka, Japan.
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Department of Pharmacy, Saga University Hospital, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Mawatari Masaaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Ito
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takafumi Shimazaki
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
10
|
Razi F, Ostovar A, Fahimfar N, M. Amoli M, Fana SE, Dimai HP, Obermayer-Pietsch B, Luegger B, Rivadeneira F, Nabipour I, Larijani B, Khashayar P. Protocol for preliminary, multicenteric validation of "PoCOsteo device": A point of care tool for proteomic and genomic study of osteoporosis. Biol Methods Protoc 2024; 9:bpae006. [PMID: 38559752 PMCID: PMC10978377 DOI: 10.1093/biomethods/bpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
One of the goals of the HORIZON 2020 project PoCOsteo was to develop a medical device, which would measure and/or quantify proteomic as well as genomic factors as present in whole blood samples collected through finger prick. After validating the tool in the clinical setting, the next step would be its clinical validation based on the existing guidelines. This article presents the protocol of a validation study to be carried out independently at two different centers (Division of Endocrinology and Diabetology at the Medical University of Graz as a clinic-based cohort, and the Endocrinology and Metabolism Research Institute at the Tehran University of Medical Sciences as a population-based cohort). It aims to assess the tool according to the Clinical & Laboratory Standards Institute guidelines, confirming if the proteomics and genomics measurements provided by the tool are accurate and reproducible compared with the existing state-of-the-art tests. This is the first time that such a detailed protocol for lab validation of a medical tool for proteomics and genomic measurement is designed based on the existing guidelines and thus could be used as a template for clinical validation of future point-of-care tools. Moreover, the multicentric cohort design will allow the study of a large number of diverse individuals, which will improve the validity and generalizability of the results for different settings.
Collapse
Affiliation(s)
- Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center (MDRC), Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Luegger
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | | | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Zwijnaarde, Gent, Belgium
| |
Collapse
|
11
|
Muniyasamy R, Manjubala I. Insights into the Mechanism of Osteoporosis and the Available Treatment Options. Curr Pharm Biotechnol 2024; 25:1538-1551. [PMID: 37936474 DOI: 10.2174/0113892010273783231027073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
Osteoporosis, one of the most prevalent bone illnesses, majorly affects postmenopausal women and men over 50 years of age. Osteoporosis is associated with an increased susceptibility to fragility fractures and can result in persistent pain and significant impairment in affected individuals. The primary method for diagnosing osteoporosis involves the assessment of bone mineral density (BMD) through the utilisation of dual energy x-ray absorptiometry (DEXA). The integration of a fracture risk assessment algorithm with bone mineral density (BMD) has led to significant progress in the diagnosis of osteoporosis. Given that osteoporosis is a chronic condition and multiple factors play an important role in maintaining bone mass, comprehending its underlying mechanism is crucial for developing more effective pharmaceutical interventions for the disease. The effective management of osteoporosis involves the utilisation of appropriate pharmacological agents in conjunction with suitable dietary interventions and lifestyle modifications. This review provides a comprehensive understanding of the types of osteoporosis and elucidates the currently available pharmacological treatment options and their related mechanism of action and usage.
Collapse
Affiliation(s)
- Rajeshwari Muniyasamy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Inderchand Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Jiang Z, Jin L, Jiang C, Yan Z, Cao Y. IL-1β contributes to the secretion of sclerostin by osteocytes and targeting sclerostin promotes spinal fusion at early stages. J Orthop Surg Res 2023; 18:162. [PMID: 36864451 PMCID: PMC9983224 DOI: 10.1186/s13018-023-03657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Despite extensive research, there is still a need for safe and effective agents to promote spinal fusion. Interleukin (IL)-1β is an important factor which influences the bone repair and remodelling. The purpose of our study was to determine the effect of IL-1β on sclerostin in osteocytes and to explore whether inhibiting the secretion of sclerostin from osteocytes can promote spinal fusion at early stages. METHODS Small-interfering RNA was used to suppress the secretion of sclerostin in Ocy454 cells. MC3T3-E1 cells were cocultured with Ocy454 cells. Osteogenic differentiation and mineralisation of MC3T3-E1 cells were evaluated in vitro. SOST knock-out rat generated using the CRISPR-Cas9 system and rat spinal fusion model was used in vivo. The degree of spinal fusion was assessed by manual palpation, radiographic analysis and histological analysis at 2 and 4 weeks. RESULTS We found that IL-1β level had a positive association with sclerostin level in vivo. IL-1β promoted the expression and secretion of sclerostin in Ocy454 cells in vitro. Inhibition of IL-1β-induced secretion of sclerostin from Ocy454 cells could promote the osteogenic differentiation and mineralisation of cocultured MC3T3-E1 cells in vitro. The extent of spinal graft fusion was greater in SOST-knockout rats than in wild-type rats at 2 and 4 weeks. CONCLUSIONS The results demonstrate that IL-1β contributes to a rise in the level of sclerostin at early stages of bone healing. Suppressing sclerostin may be an important therapeutic target capable of promoting spinal fusion at early stages.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Lixia Jin
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| | - Yuanwu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
13
|
Rath E, Bonelli M, Duftner C, Gruber J, Mandl P, Moazedi-Furst F, Pieringer H, Puchner R, Flick H, Salzer HJF, Weiss G, Winkler S, Skvara H, Moschen A, Hofer H, Feurstein J, Sautner J. [National consensus statement by the Austrian Societies for Rheumatology, Pulmonology, Infectiology, Dermatology and Gastroenterology regarding the management of latent tuberculosis and the associated utilization of biologic and targeted synthetic DMARDS (disease modifying antirheumatic drugs)]. Z Rheumatol 2023; 82:163-174. [PMID: 36342525 PMCID: PMC9981509 DOI: 10.1007/s00393-022-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
This nationwide Austrian consensus statement summarizes the recommendations on the management of latent tuberculosis by treatment with biologic and targeted synthetic DMARDs. The essential questions with respect to screening and preventive treatment were discussed by experts from the disciplines of rheumatology, pneumology, infectious diseases, dermatology and gastroenterology, based on the available data, and then a joint consensus was formed by agreement. This involved a differentiated discussion on the various forms of treatment, and clear recommendations were formulated.
Collapse
Affiliation(s)
- Eva Rath
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- 1. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
| | - Michael Bonelli
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Universitätsklinik für Innere Medizin III, Klinische Abteilung für Rheumatologie, Medizinische Universität Wien, Wien, Österreich
| | - Christina Duftner
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Universitätsklinik für Innere Medizin II, Department für Innere Medizin, Medizinische Universität Innsbruck/Tirol Kliniken, Innsbruck, Österreich
| | - Johann Gruber
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Universitätsklinik für Innere Medizin II, Department für Innere Medizin, Medizinische Universität Innsbruck/Tirol Kliniken, Innsbruck, Österreich
| | - Peter Mandl
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Universitätsklinik für Innere Medizin III, Klinische Abteilung für Rheumatologie, Medizinische Universität Wien, Wien, Österreich
| | - Florentine Moazedi-Furst
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Universitätsklinik für Innere Medizin, Klinische Abteilung für Rheumatologie und Immunologie, Medizinische Universität Graz, Graz, Österreich
| | - Herwig Pieringer
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Klinik Diakonissen Linz, Linz, Österreich
| | - Rudolf Puchner
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Ordination Wels, Wels, Österreich
| | - Holger Flick
- Österreichische Gesellschaft für Pulmologie (ÖGP), Wien, Österreich
- Österreichische Gesellschaft für Infektionskrankheiten und Tropenmedizin (ÖGIT), Kottingbrunn, Österreich
- Universitätsklinik für Innere Medizin, Klinische Abteilung für Pulmonologie, Medizinische Universität Graz, Graz, Österreich
| | - Helmut J F Salzer
- Österreichische Gesellschaft für Pulmologie (ÖGP), Wien, Österreich
- Klinik für Lungenheilkunde, Kepler Universitätsklinikum Linz, Linz, Österreich
| | - Günter Weiss
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- Österreichische Gesellschaft für Infektionskrankheiten und Tropenmedizin (ÖGIT), Kottingbrunn, Österreich
- Universitätsklinik für Innere Medizin II, Department für Innere Medizin, Medizinische Universität Innsbruck/Tirol Kliniken, Innsbruck, Österreich
| | - Stefan Winkler
- Österreichische Gesellschaft für Infektionskrankheiten und Tropenmedizin (ÖGIT), Kottingbrunn, Österreich
- Universitätsklinik für Innere Medizin I, Klinische Abteilung für Infektionen und Tropenmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Hans Skvara
- Österreichische Gesellschaft für Dermatologie und Venerologie (ÖGDV), Wien, Österreich
- Abteilung für Dermatologie und Venerologie, Landesklinikum Wiener Neustadt, Wien, Österreich
| | - Alexander Moschen
- Österreichische Gesellschaft für Gastroenterologie und Hepatologie (ÖGGH), Wien, Österreich
- Klinik für Innere Medizin mit Schwerpunkt Gastroenterologie/Hepatologie, Kepler Universitätsklinikum Linz, Linz, Österreich
| | - Harald Hofer
- Österreichische Gesellschaft für Gastroenterologie und Hepatologie (ÖGGH), Wien, Österreich
- Abteilung für Innere Medizin 1, Klinikum Wels-Grieskirchen, Wels, Österreich
| | - Julia Feurstein
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich
- 1. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
| | - Judith Sautner
- Österreichische Gesellschaft für Rheumatologie und Rehabilitation (ÖGR), Wien, Österreich.
- Universitätsklinik für Innere Medizin III, Klinische Abteilung für Rheumatologie, Medizinische Universität Wien, Wien, Österreich.
- 2. Medizinische Abteilung mit Schwerpunkt Rheumatologie, Karl Landsteiner Institut für klinische Rheumatologie, Landesklinikum Korneuburg-Stockerau, Landstr. 18, 2000, Stockerau, Österreich.
| |
Collapse
|
14
|
Hua Z, Dai S, Li S, Wang J, Peng H, Rong Y, Yu H, Liu M. Deciphering the protective effect of Buzhong Yiqi Decoction on osteoporotic fracture through network pharmacology and experimental validation. J Orthop Surg Res 2023; 18:86. [PMID: 36737821 PMCID: PMC9898002 DOI: 10.1186/s13018-023-03545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteoporotic fracture (OPF) is one of the most common skeletal diseases in an aging society. The Chinese medicine formula Buzhong Yiqi Decoction (BZYQD) is commonly used for treating OPF. However, the essential bioactive compounds and the underlying molecular mechanisms that promote fracture repair remain unclear. METHODS We used network pharmacology and experimental animal validation to address this issue. First, 147 bioactive BZYQD compounds and 32 target genes for treating OPF were screened and assessed. A BZYQD-bioactive compound-target gene-disease network was constructed using the Cytoscape software. Functional enrichment showed that the candidate target genes were enriched in oxidative stress- and inflammation-related biological processes and multiple pathways, including nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, an OPF rat model was established and treated with BZYQD. RESULTS The results revealed that BZYQD ameliorated OPF characteristics, including femoral microarchitecture, biomechanical properties, and histopathological changes, in a dose-dependent manner. Results of enzyme-linked immunosorbent assay showed that BZYQD reduced the serum's pro-inflammatory cytokines [Tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-1β, and IL-6] and improved oxidative stress-related factors [glutathione (GSH) and superoxide dismutase (SOD)]. BZYQD significantly decreased the protein expression of NF-κB in OPF rat femurs, suppressed NF-κB activation, and activated the nuclear factor-erythroid factor 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) and p38 MAPK as well ERK pathways. CONCLUSIONS Our results suggest that BZYQD could improve inflammation and oxidative stress during fracture repair by suppressing NF-κB and activating Nrf2/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Hua
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Shijie Dai
- grid.268505.c0000 0000 8744 8924College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang China
| | - Shaoshuo Li
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hongcheng Peng
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Yi Rong
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hao Yu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Mingming Liu
- Department of Orthopedics, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Haizhou District, Lianyungang, 222006, Jiangsu Province, China.
| |
Collapse
|
15
|
Qaseem A, Hicks LA, Etxeandia-Ikobaltzeta I, Shamliyan T, Cooney TG, Cross JT, Fitterman N, Lin JS, Maroto M, Obley AJ, Tice JA, Tufte JE. Pharmacologic Treatment of Primary Osteoporosis or Low Bone Mass to Prevent Fractures in Adults: A Living Clinical Guideline From the American College of Physicians. Ann Intern Med 2023; 176:224-238. [PMID: 36592456 PMCID: PMC10885682 DOI: 10.7326/m22-1034] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DESCRIPTION This guideline updates the 2017 American College of Physicians (ACP) recommendations on pharmacologic treatment of primary osteoporosis or low bone mass to prevent fractures in adults. METHODS The ACP Clinical Guidelines Committee based these recommendations on an updated systematic review of evidence and graded them using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. AUDIENCE AND PATIENT POPULATION The audience for this guideline includes all clinicians. The patient population includes adults with primary osteoporosis or low bone mass. RECOMMENDATION 1A ACP recommends that clinicians use bisphosphonates for initial pharmacologic treatment to reduce the risk of fractures in postmenopausal females diagnosed with primary osteoporosis (strong recommendation; high-certainty evidence). RECOMMENDATION 1B ACP suggests that clinicians use bisphosphonates for initial pharmacologic treatment to reduce the risk of fractures in males diagnosed with primary osteoporosis (conditional recommendation; low-certainty evidence). RECOMMENDATION 2A ACP suggests that clinicians use the RANK ligand inhibitor (denosumab) as a second-line pharmacologic treatment to reduce the risk of fractures in postmenopausal females diagnosed with primary osteoporosis who have contraindications to or experience adverse effects of bisphosphonates (conditional recommendation; moderate-certainty evidence). RECOMMENDATION 2B ACP suggests that clinicians use the RANK ligand inhibitor (denosumab) as a second-line pharmacologic treatment to reduce the risk of fractures in males diagnosed with primary osteoporosis who have contraindications to or experience adverse effects of bisphosphonates (conditional recommendation; low-certainty evidence). RECOMMENDATION 3 ACP suggests that clinicians use the sclerostin inhibitor (romosozumab, moderate-certainty evidence) or recombinant PTH (teriparatide, low-certainty evidence), followed by a bisphosphonate, to reduce the risk of fractures only in females with primary osteoporosis with very high risk of fracture (conditional recommendation). RECOMMENDATION 4 ACP suggests that clinicians take an individualized approach regarding whether to start pharmacologic treatment with a bisphosphonate in females over the age of 65 with low bone mass (osteopenia) to reduce the risk of fractures (conditional recommendation; low-certainty evidence).
Collapse
Affiliation(s)
- Amir Qaseem
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., I.E., T.S.)
| | - Lauri A Hicks
- Centers for Disease Control and Prevention, Atlanta, Georgia (L.A.H.)
| | | | - Tatyana Shamliyan
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., I.E., T.S.)
| | - Thomas G Cooney
- Oregon Health & Science University, Portland, Oregon (T.G.C.)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Suzuki T, Mizobuchi M, Yoshida S, Terado N, Aoki S, Sato N, Honda H. Romosozumab successfully regulated progressive osteoporosis in a patient with autosomal dominant polycystic kidney disease undergoing hemodialysis. Osteoporos Int 2022; 33:2649-2652. [PMID: 35980440 DOI: 10.1007/s00198-022-06534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Osteoporosis is a crucial complication in patients with chronic kidney disease (CKD), similar to that in the general population. Although romosozumab, a monoclonal antibody targeting sclerostin, has been administered for patients with CKD, its clinical effectiveness in these patients, especially in patients on hemodialysis (HD), remains to be studied. Herein, we report the case of a 42-year-old man on HD who developed severe osteoporosis. Serum calcium levels were extremely high, bone metabolic markers were abnormal, and the patient had pathological fractures. The bone biopsy indicated a bone metabolism disorder and high bone turnover. We administered romosozumab once a month as an intervention for bone alteration. Through the 10-month usage, bone metabolic markers improved, and the decrease in bone mineral density was ameliorated. We hypothesized that romosozumab could be a therapeutic option for osteoporosis in patients undergoing HD, especially in those with bone mineralization disorders.
Collapse
Affiliation(s)
- Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shunsuke Yoshida
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Narumi Terado
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shugo Aoki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nozomi Sato
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
17
|
Silva BC, Madeira M, d'Alva CB, Maeda SS, de Holanda NCP, Ohe MN, Szejnfeld V, Zerbini CAF, de Paula FJA, Bandeira F. Definition and management of very high fracture risk in women with postmenopausal osteoporosis: a position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Association of Bone Assessment and Metabolism (ABRASSO). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:591-603. [PMID: 36191263 PMCID: PMC10118822 DOI: 10.20945/2359-3997000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Several drugs are available for the treatment of osteoporosis in postmenopausal women. Over the last decades, most patients requiring pharmacological intervention were offered antiresorptive drugs as first-line therapy, while anabolic agents were considered a last resource for those with therapeutic failure. However, recent randomized trials in patients with severe osteoporosis have shown that anabolic agents reduce fractures to a greater extent than antiresorptive medications. Additionally, evidence indicates that increases in bone mineral density (BMD) are maximized when patients are treated with anabolic agents first, followed by antiresorptive therapy. This evidence is key, considering that greater increases in BMD during osteoporosis treatment are associated with a more pronounced reduction in fracture risk. Thus, international guidelines have recently proposed an individualized approach to osteoporosis treatment based on fracture risk stratification, in which the stratification risk has been refined to include a category of patients at very high risk of fracture who should be managed with anabolic agents as first-line therapy. In this document, the Brazilian Society of Endocrinology and Metabolism and the Brazilian Association of Bone Assessment and Metabolism propose the definition of very high risk of osteoporotic fracture in postmenopausal women, for whom anabolic agents should be considered as first-line therapy. This document also reviews the factors associated with increased fracture risk, trials comparing anabolic versus antiresorptive agents, efficacy of anabolic agents in patients who are treatment naïve versus those previously treated with antiresorptive agents, and safety of anabolic agents.
Collapse
Affiliation(s)
- Barbara C Silva
- Unidade de Endocrinologia, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brasil
- Unidade de Endocrinologia, Hospital Felício Rocho, Belo Horizonte, MG, Brasil
- Departamento de Medicina, Centro Universitário de Belo Horizonte (UNI-BH), Belo Horizonte, MG, Brasil,
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| | - Miguel Madeira
- Divisão de Endocrinologia e Metabolismo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| | - Catarina Brasil d'Alva
- Departamento de Medicina Clínica, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| | - Sergio Setsuo Maeda
- Unidade de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Member of the Associação Brasileira de Avaliação Óssea e Osteometabolismo (ABRASSO)
| | - Narriane Chaves Pereira de Holanda
- Divisão de Endocrinologia e Metabolismo, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| | - Monique Nakayama Ohe
- Unidade de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| | - Vera Szejnfeld
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Member of the Associação Brasileira de Avaliação Óssea e Osteometabolismo (ABRASSO)
| | - Cristiano A F Zerbini
- Centro Paulista de Investigação Clínica, São Paulo, SP, Brasil
- Member of the Associação Brasileira de Avaliação Óssea e Osteometabolismo (ABRASSO)
| | - Francisco José Albuquerque de Paula
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
- Member of the Associação Brasileira de Avaliação Óssea e Osteometabolismo (ABRASSO)
| | - Francisco Bandeira
- Divisão de Endocrinologia e Metabolismo, Faculdade de Medicina, Universidade de Pernambuco, Recife, PE, Brasil
- Member of the Sociedade Brasileira de Endocrinologia e Metabolismo (SBEM)
| |
Collapse
|
18
|
Rath E, Bonelli M, Duftner C, Gruber J, Mandl P, Moazedi-Furst F, Pieringer H, Puchner R, Flick H, Salzer HJF, Weiss G, Winkler S, Skvara H, Moschen A, Hofer H, Feurstein J, Sautner J. National consensus statement by the Austrian Societies for Rheumatology, Pulmonology, Infectiology, Dermatology and Gastroenterology regarding the management of latent tuberculosis and the associated utilization of biologic and targeted synthetic disease modifying antirheumatic drugs (DMARDs). Wien Klin Wochenschr 2022; 134:751-765. [PMID: 36036323 PMCID: PMC9684247 DOI: 10.1007/s00508-022-02062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
Abstract
This publication provides a thorough analysis of the most relevant topics concerning the management of latent tuberculosis when using biologic and targeted synthetic Disease Modifying Antirheumatic Drugs (DMARDs) by a multidisciplinary, select committee of Austrian physicians. The committee includes members of the Austrian Societies for Rheumatology and Rehabilitation, Pulmonology, Infectiology, Dermatology and Gastroenterology. Consensus was reached on issues regarding screening and treatment of latent tuberculosis and includes separate recommendations for each biologic and targeted synthetic DMARD.
Collapse
Affiliation(s)
- Eva Rath
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- 1. Medical Department, Hanusch Hospital, Vienna, Austria
| | - Michael Bonelli
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Department of Medicine III, rheumatology, Medical University of Vienna, Vienna, Austria
| | - Christina Duftner
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Department of Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Gruber
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Department of Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Mandl
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Department of Medicine III, rheumatology, Medical University of Vienna, Vienna, Austria
| | - Florentine Moazedi-Furst
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Herwig Pieringer
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Diakonissen Hospital, Linz, Austria
| | - Rudolf Puchner
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Private practice, Wels, Austria
| | - Holger Flick
- Austrian Society for Pulmonology (ÖGP), Vienna, Austria
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Helmut J F Salzer
- Austrian Society for Pulmonology (ÖGP), Vienna, Austria
- Department of Pulmonology, Kepler Medical University, Linz, Austria
| | - Günter Weiss
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- Austrian Society for Infectiology (ÖGIT), Kottingbrunn, Austria
- Department of Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Winkler
- Austrian Society for Infectiology (ÖGIT), Kottingbrunn, Austria
- Department of Infectiology and Tropical Diseases, Medical University of Vienna, Vienna, Austria
| | - Hans Skvara
- Austrian Society for Dermatology and Venerology (ÖGDV), Vienna, Austria
- Department of Dermatology, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Alexander Moschen
- Austrian Society for Gastroenterology and Hepatology (ÖGGH), Vienna, Austria
- Department of Gastroenterology and Hepatology, Kepler Medical University, Linz, Austria
| | - Harald Hofer
- Austrian Society for Gastroenterology and Hepatology (ÖGGH), Vienna, Austria
- Department of Medicine 1, Wels-Grieskirchen Clinics, Wels, Austria
| | - Julia Feurstein
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria
- 1. Medical Department, Hanusch Hospital, Vienna, Austria
| | - Judith Sautner
- Austrian Society for Rheumatology and Rehabilitation (ÖGR), Vienna, Austria.
- Department of Medicine II, Lower Austrian Centre for Rheumatology, Karl Landsteiner Institute for Clinical Rheumatology, State Hospital Stockerau, Landstr. 18, 2000, Stockerau, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Chen Z, Li M, Li S, Li Y, Wu J, Qiu K, Yu X, Huang L, Chen G. A pharmacovigilance analysis of FDA adverse event reporting system events for romosozumab. Expert Opin Drug Saf 2022; 22:339-342. [PMID: 36178002 DOI: 10.1080/14740338.2023.2130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Romosozumab is a novel drug for the treatment of osteoporosis. The adverse reactions of romosozumab still need to be explored. The FDA Adverse Event Reporting System (FAERS) provides an enormous dataset for adverse events (AEs) analysis. RESEARCH DESIGN AND METHODS AEs registered in FAERS between January 2019 and December 2020 were collected for this study. The reporting odds ratio (ROR) method was applied to analyze the AEs of romosozumab. The number of AEs ≥4 cases and ROR value 95% confidence interval (CI) lower limit >1 was considered statistically significant. RESULTS A total of 4,413,695 AEs were collected for this study. There were 1,948 AEs related with romosozumab reported in FAERS. There are 1851 AEs including 17 system classifications after filtered. Injection site pain (ROR = 6.89, CI = 5.60, 8.48), cardiac failure (ROR = 12.62, CI = 9.85, 16.17), renal impairment (ROR = 9.11, CI = 6.98, 11.89), pneumonia (ROR = 1.53, CI = 1.10, 2.21), blood alkaline phosphatase increased (ROR = 14.60, CI = 9.28, 22.97) were possible AEs after romosozumab application. CONCLUSIONS Our study provides an adverse reaction warning for the clinical application of romosozumab and provides a real-world disproportionality analysis data support for the possible AEs of romosozumab.
Collapse
Affiliation(s)
- Zepeng Chen
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuzhen Li
- Department of Pharmacy, Liwan District Caihong Community Health Service Center, Guangzhou, Guangdong, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junyan Wu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanghui Chen
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Riancho JA, Peris P, González-Macías J, Pérez-Castrillón JL. Executive summary clinical practice guideline of postmenopausal, glucocortcioid-induced and male osteoporosis (2022 update). Spanish Society for Bone and Mineral Metabolism Investigation (SEIOMM). Rev Clin Esp 2022; 222:432-439. [PMID: 35676194 DOI: 10.1016/j.rceng.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 10/18/2022]
Abstract
This updated version of the Spanish Society for Research in Osteoporosis and Mineral Metabolism (SEIOMM) osteoporosis guides incorporate the most relevant information published in the last 7 years, since the 2015 guides, with imaging studies, such as vertebral fracture assessment and bone trabecular score analysis. In addition, therapeutic advances include new anabolic agents, comparative studies of drug efficacy, and sequential and combined therapy. Therefore, therapeutic algorithms are also updated.
Collapse
Affiliation(s)
- J A Riancho
- Servicio de Medicina Interna, Hospital Universitario Marqués de Valdecilla, Departamento de Medicina y Psiquiatría, Universidad de Cantabria, IDIVAL, Santander, Spain.
| | - P Peris
- Servicio de Reumatología, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - J González-Macías
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, IDIVAL, Santander, Spain
| | - J L Pérez-Castrillón
- Servicio de Medicina Interna, Hospital Universitario Río Hortega, Departamento de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
21
|
Tominaga A, Wada K, Okazaki K, Nishi H, Terayama Y, Kato Y. Response to Letter. "Romosozumab and cardiovascular safety- should we learn lessons from Pioglitazone?". Osteoporos Int 2022; 33:1401-1402. [PMID: 35181822 DOI: 10.1007/s00198-022-06300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Ayako Tominaga
- Department of Orthopedic Surgery, Tokyo Women's Medical University, 8-1 Kawadacho Shinjuku-ku, Tokyo, Japan
| | - Keiji Wada
- Department of Orthopedic Surgery, Tokyo Women's Medical University, 8-1 Kawadacho Shinjuku-ku, Tokyo, Japan.
| | - Ken Okazaki
- Department of Orthopedic Surgery, Tokyo Women's Medical University, 8-1 Kawadacho Shinjuku-ku, Tokyo, Japan
| | - Hideharu Nishi
- Hasuda Hospital, 1662-1 Negane Hasudashi, Saitama, Japan
| | | | - Yoshiharu Kato
- Kita Shinagawa 3rd Hospital, 3-3-7 Kitashinagawa Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
22
|
McClung MR, Rothman MS, Lewiecki EM, Hanley DA, Harris ST, Miller PD, Kendler DL. The role of osteoanabolic agents in the management of patients with osteoporosis. Postgrad Med 2022; 134:541-551. [DOI: 10.1080/00325481.2022.2069582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Michael R. McClung
- Oregon Osteoporosis Center, Portland, OR; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Micol S. Rothman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - David A. Hanley
- Departments of Medicine, Community Health Sciences, and Oncology, Cumming School of Medicine and McCaig Institute for Bone and Joint Health, the University of Calgary, Calgary, Alberta, Canada
| | - Steven T. Harris
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - David L. Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Spasic M, Duffy MP, Jacobs CR. Fenoldopam Sensitizes Primary Cilia-Mediated Mechanosensing to Promote Osteogenic Intercellular Signaling and Whole Bone Adaptation. J Bone Miner Res 2022; 37:972-982. [PMID: 35230705 PMCID: PMC9098671 DOI: 10.1002/jbmr.4536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 11/05/2022]
Abstract
Bone cells actively respond to mechanical stimuli to direct bone formation, yet there is no current treatment strategy for conditions of low bone mass and osteoporosis designed to target the inherent mechanosensitivity of bone. Our group has previously identified the primary cilium as a critical mechanosensor within bone, and that pharmacologically targeting the primary cilium with fenoldopam can enhance osteocyte mechanosensitivity. Here, we demonstrate that potentiating osteocyte mechanosensing with fenoldopam in vitro promotes pro-osteogenic paracrine signaling to osteoblasts. Conversely, impairing primary cilia formation and the function of key ciliary mechanotransduction proteins attenuates this intercellular signaling cascade. We then utilize an in vivo model of load-induced bone formation to demonstrate that fenoldopam treatment sensitizes bones of both healthy and osteoporotic mice to mechanical stimulation. Furthermore, we show minimal adverse effects of this treatment and demonstrate that prolonged treatment biases trabecular bone adaptation. This work is the first to examine the efficacy of targeting primary cilia-mediated mechanosensing to enhance bone formation in osteoporotic animals. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Milos Spasic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Michael P Duffy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | |
Collapse
|
24
|
Natesan V, Kim SJ. Metabolic Bone Diseases and New Drug Developments. Biomol Ther (Seoul) 2022; 30:309-319. [PMID: 35342038 PMCID: PMC9252877 DOI: 10.4062/biomolther.2022.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Serum Sclerostin Level Is Negatively Associated with Bone Mineral Density in Hemodialysis Patients. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030385. [PMID: 35334561 PMCID: PMC8948918 DOI: 10.3390/medicina58030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Background and Objectives: Sclerostin and Dickkopf-1 (DKK1) modulate osteoblastogenesis, but their role in bone loss in hemodialysis (HD) patients is inconclusive. This study investigated relationships among lumbar bone mineral density (BMD), serum sclerostin, and DKK1 in HD patients. Materials and Methods: Blood samples were obtained from 75 HD patients. Dual-energy X-ray absorptiometry measured lumbar BMD of the lumbar vertebrae (L2−L4). Enzyme-linked immunosorbent assay revealed serum sclerostin and DKK1 concentrations. Results: There were 10 (13.3%), 20 (26.7%), and 45 (60%) patients defined as presenting with osteoporosis, osteopenia, or normal BMD, respectively. Age, alkaline phosphatase, urea reduction rate, fractional clearance index for urea, sclerostin level, and percentage of female patients are significantly negatively associated with the lumbar BMD and T-score, while the body mass index and waist circumference significantly positively associated with the lumbar BMD and T-score. Multivariate forward stepwise linear regression analysis indicated that serum sclerostin (β = −0.546, adjusted R2 change = 0.454; p < 0.001), age (β = −0.216, adjusted R2 change = 0.041; p = 0.007), and percentage of female HD patients (β = −0.288, adjusted R2 change = 0.072; p = 0.0018) were significantly negatively associated with lumbar BMD in HD patients. Conclusions: Advanced age, female gender, and serum sclerostin level, but not DKK1, were negatively associated with BMD in HD patients.
Collapse
|
26
|
Riancho J, Peris P, González-Macías J, Pérez-Castrillón J. Resumen ejecutivo de las guías de práctica clínica en la osteoporosis posmenopáusica, glucocorticoidea y del varón (actualización 2022). Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM). REVISTA CLÍNICA ESPAÑOLA 2022. [DOI: 10.1016/j.rce.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Singh S, Dutta S, Khasbage S, Kumar T, Sachin J, Sharma J, Varthya SB. A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos Int 2022; 33:1-12. [PMID: 34432115 PMCID: PMC9003152 DOI: 10.1007/s00198-021-06095-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
The study was conducted to illustrate the effect of Romosozumab in postmenopausal osteoporosis patients. Romosozumab decreased the incidence of vertebral, nonvertebral, and clinical fractures significantly. In addition, decreased incidence of falls and increased bone mineral density at lumbar spine, total hip, and femoral neck was observed. Romosozumab is a monoclonal antibody that acts against the sclerostin pathway leading to enhanced bone formation and reduced bone resorption in patients with osteoporosis. Electronic search was performed on Medline (via PubMed), The Cochrane Central Register of Controlled Trials, and clinicaltrials.gov, till May 2020, for RCTs evaluating the effectiveness of Romosozumab in postmenopausal osteoporosis. RCTs evaluating the effect of Romosozumab on fractures and bone mineral density in postmenopausal osteoporosis patients. Meta-analysis was performed by Cochrane review manager 5 (RevMan) version 5.3. Cochrane risk of bias 2.0 tool and GRADE pro-GDT were applied for methodological quality and overall evidence quality, respectively. One hundred seventy-nine studies were screened, and 10 eligible studies were included in the analysis, with a total of 6137 patients in romosozumab group and 5732 patients in control group. Romosozumab significantly reduced the incidence of vertebral fractures [OR = 0.43 (95%CI = 0.35-0.52), High-quality evidence], nonvertebral fractures [OR = 0.78 (95%CI = 0.66-0.92), High quality], and clinical fractures [OR = 0.70 (95%CI = 0.60-0.82), High quality] at 24 months. Significant reduction in incidence risk of falls [OR = 0.87 (95%CI = 0.78-0.96), High quality] was observed with romosozumab. Bone mineral density was significantly increased in the romosozumab treated groups at lumbar spine [MD = 12.66 (95%CI = 12.66-12.67), High quality], total hip [MD = 5.69 (95%CI = 5.68 - 5.69), Moderate quality], and femoral neck [MD = 5.18 (95%CI = 5.18-5.19), Moderate quality] at 12 months. The total adverse events [RR = 0.98(95%CI = 0.96-1.01), Moderate quality] and serious adverse events [RR = 0.98(95%CI = 0.88-1.08), Moderate quality] with romosozumab were comparable to the control group. The current analysis with evidence on efficacy and safety of Romosozumab, authors opine to recommend the use of Romosozumab treatment for post-menopausal osteoporosis.Systematic review registration: PROSPERO registration number: CRD42019112196.
Collapse
Affiliation(s)
- S Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India
| | - S Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India.
| | - S Khasbage
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, India
| | - T Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India
| | - J Sachin
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India
| | - J Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India
| | - S B Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Rajasthan, 342005, Jodhpur, India
| |
Collapse
|
28
|
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density. Drugs 2021; 81:1831-1858. [PMID: 34724173 PMCID: PMC8578161 DOI: 10.1007/s40265-021-01625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) and the United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both fracture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, and, even more importantly, to the individual's health. In this review, we therefore discuss the effects of both osteoporotic and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
Collapse
|
29
|
Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int J Mol Sci 2021; 22:9452. [PMID: 34502371 PMCID: PMC8431678 DOI: 10.3390/ijms22179452] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
An expanding body of research asserts that the gut microbiota has a role in bone metabolism and the pathogenesis of osteoporosis. This review considers the human gut microbiota composition and its role in osteoclastogenesis and the bone healing process, specifically in the case of osteoporosis. Although the natural physiologic processes of bone healing and the pathogenesis of osteoporosis and bone disease are now relatively well known, recent literature suggests that a healthy microbiome is tied to bone homeostasis. Nevertheless, the mechanism underlying this connection is still somewhat enigmatic. Based on the literature, a relationship between the microbiome, osteoblasts, osteoclasts, and receptor activator of nuclear factor-kappa-Β ligand (RANKL) is contemplated and explored in this review. Studies have proposed various mechanisms of gut microbiome interaction with osteoclastogenesis and bone health, including micro-RNA, insulin-like growth factor 1, and immune system mediation. However, alterations to the gut microbiome secondary to pharmaceutical and surgical interventions cannot be discounted and are discussed in the context of clinical therapeutic consideration. The literature on probiotics and their mechanisms of action is examined in the context of bone healing. The known and hypothesized interactions of common osteoporosis drugs and the human gut microbiome are examined. Since dysbiosis in the gut microbiota can function as a biomarker of bone metabolic activity, it may also be a pharmacological and nutraceutical (i.e., pre- and probiotics) therapeutic target to promote bone homeostasis.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Cody A. Kotelko
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Hannah Douglas
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Brandon Bealer
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Amanda E. Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
30
|
Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice. Int J Mol Sci 2021; 22:ijms22179111. [PMID: 34502021 PMCID: PMC8431516 DOI: 10.3390/ijms22179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost-/-) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost-/- mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost-/- chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost-/- BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost-/- mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.
Collapse
|
31
|
Tsourdi E, Yu EW, Jan de Beur SM, Drake MT. Vaccination for Coronavirus Disease 2019 (COVID-19) and Relationship to Osteoporosis Care: Current Evidence and Suggested Approaches. J Bone Miner Res 2021; 36:1042-1047. [PMID: 33831269 PMCID: PMC8249992 DOI: 10.1002/jbmr.4304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The development of coronavirus disease 2019 (COVID-19) vaccines has proceeded at an unprecedented pace, with numerous trials conducted simultaneously across the world as a result of massive technological and financial resource expenditures. With multiple vaccines having now received regulatory approval, public health efforts to promote widespread vaccine dissemination are currently underway. There has been particular emphasis placed on vaccination of older populations, the age group in which COVID-19 infection has been most lethal. However, such widespread vaccination approaches have necessarily raised important questions related to potential interactions with underlying diseases and concomitant treatments among persons to be vaccinated. Osteoporosis is a chronic condition marked by reduced bone strength and an associated increased risk for fracture that generally requires sustained medical intervention(s). Osteoporosis is neither associated with a higher risk of COVID-19 infection nor by more pronounced disease severity following infection, such that individuals with osteoporosis need not be more highly prioritized for COVID-19 vaccination. Osteoporosis therapies do not interfere with the efficacy or side effect profiles of COVID-19 vaccines and should not be stopped or indefinitely delayed because of vaccination. Depending on the specific drug profile within an anti-osteoporosis medication category, minor adjustments to the timing of drug administration may be considered with respect to the patient's COVID-19 vaccination schedule. Herein we provide practical recommendations for the care of patients requiring treatment for osteoporosis in the setting of COVID-19 vaccination. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Suzanne M Jan de Beur
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew T Drake
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Kong SH, Hwang BK, Yoon BH. The Impact of COVID-19 on the Optimal Management of Osteoporosis. J Bone Metab 2021; 28:115-122. [PMID: 34130363 PMCID: PMC8206610 DOI: 10.11005/jbm.2021.28.2.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis does not take a break while Coronavirus disease 2019 (COVID-19) stunned and overtook everyone’s lives. Medical resources were immediately shifted, self-isolation and telemedicine were expanded, ambulatory care services such as bone densitometry and osteoporosis-centered clinics came to a near halt. Progress with fracture prevention has been challenged because osteoporotic fracture with low energy injury is more prevalent even though restriction of people’s movement. Thus we must re-engage with chronic bone health concerns and fracture prevention. This review discusses challenges in management of osteoporosis during the COVID-19 pandemic and reinforces the need to implementing recommendations concerning the importance of bone fragility care with at least those patients who are already treated with antiosteoporotic drugs maintaining their adherence to treatments.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Kwon Hwang
- Department of Orthopedic Surgery, Ewha Womans University, College of Medicine, Mokdong Hospital, Seoul, Korea
| | - Byung-Ho Yoon
- Department of Orthopedic Surgery, Ewha Womans University, College of Medicine, Mokdong Hospital, Seoul, Korea
| |
Collapse
|
33
|
Cardiovascular Safety Profile of Romosozumab: A Pharmacovigilance Analysis of the US Food and Drug Administration Adverse Event Reporting System (FAERS). J Clin Med 2021; 10:jcm10081660. [PMID: 33924496 PMCID: PMC8070537 DOI: 10.3390/jcm10081660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Cardiovascular safety concerns for major cardiovascular events (MACE) were raised during the clinical trials of romosozumab. We aimed to evaluate the cardiovascular safety profile of romosozumab in a large pharmacovigilance database. Methods: All cases reported between January 2019 and December 2020 where romosozumab was reported were extracted from the Food and Drug Administration Adverse Event Reporting System (FAERS). The outcome of interest was MACE (myocardial infarction (MI), stroke, or cardiovascular death). A disproportionality analysis was conducted by estimating the reporting odds ratios (RORs) and 95% confidence intervals. Disproportionality analyses were stratified by sex and reporting region (US, Japan, other). Results: Of the 1995 eligible cases with romosozumab, the majority (N = 1188; 59.5%) originated from Japan. Overall, 206 suspected MACE reports were identified, of which the majority (n = 164; 13.8%) were from Japan, and 41 (5.2%) were from the United States (US). Among Japanese reports, patients were older and more frequently male than reports from the US. Similarly, cases with a reported MACE were older and had higher reports of cardioprotective drugs than those without cardiovascular events. Elevated reports for MACE (ROR 4.07, 95% CI: 2.39–6.93) was identified overall, which was primarily driven by the significant disproportionality measures in the Japanese reports. Conclusions: The current pharmacovigilance study identified a potential signal for elevated MACE, particularly in Japan. The results support the current safety warnings from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) to avoid use in high-risk patients.
Collapse
|
34
|
McClung MR. Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res 2021; 33:775-791. [PMID: 33594648 DOI: 10.1007/s40520-020-01708-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence confirms the superiority of osteoanabolic therapy compared to anti-remodeling drugs for rapid improvement in bone density and fracture risk reduction, providing strong justification for the use of these anabolic agents as the initial therapy in high-risk patients, to be followed by anti-remodeling therapy. This review will highlight the results of recent studies and define the current status of osteoanabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA.
- Mary MacKillop Center for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Du JS, Yen CH, Hsu CM, Hsiao HH. Management of Myeloma Bone Lesions. Int J Mol Sci 2021; 22:3389. [PMID: 33806209 PMCID: PMC8036461 DOI: 10.3390/ijms22073389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal plasma-cell proliferation. The survival and prognosis of this condition have been significantly improved by treatment with active anti-MM drugs such as bortezomib or lenalidomide. Further, the discovery of novel agents has recently paved the way for new areas of investigation. However, MM, including myeloma-related bone diseases, remains fatal. Bone disease or bone destruction in MM is a consequence of skeletal involvement with bone pain, spinal cord compression, and bone fracture resulting from osteolytic lesions. These consequences affect disease outcomes, including patients' quality of life and survival. Several studies have sought to better understand MM bone disease (MBD) through the classification of its molecular mechanisms, including osteoclast activation and osteoblast inhibition. Bisphosphonates and the receptor activator of the nuclear factor-kappa B (NF-κB) ligand (RANKL) inhibitor, denosumab, prevent skeletal-related events in MM. In addition, several other bone-targeting agents, including bone-anabolic drugs, are currently used in preclinical and early clinical evaluations. This review summarizes the current knowledge of the pathogenesis of MBD and discusses novel agents that appear very promising and will soon enter clinical development.
Collapse
Affiliation(s)
- Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
36
|
Osteoporosis Treatment with Anti-Sclerostin Antibodies-Mechanisms of Action and Clinical Application. J Clin Med 2021; 10:jcm10040787. [PMID: 33669283 PMCID: PMC7920044 DOI: 10.3390/jcm10040787] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is characterized by reduced bone mass and disruption of bone architecture, resulting in increased risk of fragility fractures and significant long-term disability. Although both anti-resorptive treatments and osteoanabolic drugs, such as parathyroid hormone analogues, are effective in fracture prevention, limitations exist due to lack of compliance or contraindications to these drugs. Thus, there is a need for novel potent therapies, especially for patients at high fracture risk. Romosozumab is a monoclonal antibody against sclerostin with a dual mode of action. It enhances bone formation and simultaneously suppresses bone resorption, resulting in a large anabolic window. In this opinion-based narrative review, we highlight the role of sclerostin as a critical regulator of bone mass and present human diseases of sclerostin deficiency as well as preclinical models of genetically modified sclerostin expression, which led to the development of anti-sclerostin antibodies. We review clinical studies of romosozumab in terms of bone mass accrual and anti-fracture activity in the setting of postmenopausal and male osteoporosis, present sequential treatment regimens, and discuss its safety profile and possible limitations in its use. Moreover, an outlook comprising future translational applications of anti-sclerostin antibodies in diseases other than osteoporosis is given, highlighting the clinical significance and future scopes of Wnt signaling in these settings.
Collapse
|
37
|
El-Gazzar A, Högler W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int J Mol Sci 2021; 22:ijms22020625. [PMID: 33435159 PMCID: PMC7826666 DOI: 10.3390/ijms22020625] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bone material strength is determined by several factors, such as bone mass, matrix composition, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments.
Collapse
Affiliation(s)
| | - Wolfgang Högler
- Correspondence: ; Tel.: +43-(0)5-7680-84-22001; Fax: +43-(0)5-7680-84-22004
| |
Collapse
|
38
|
Nealy KL, Harris KB. Romosozumab: A Novel Injectable Sclerostin Inhibitor With Anabolic and Antiresorptive Effects for Osteoporosis. Ann Pharmacother 2020; 55:677-686. [PMID: 32862655 DOI: 10.1177/1060028020952764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review the clinical pharmacology, efficacy, and safety of romosozumab, a humanized monoclonal antibody with a novel mechanism of action for monthly injection, and its place in the management of osteoporosis. DATA SOURCES PubMed, MEDLINE, and ClinicalTrials.gov searches (1966 to July 2020) were conducted using the keywords romosozumab and osteoporosis. STUDY SELECTION AND DATA EXTRACTION Published phase 2 and 3 clinical trials and 2 meta-analyses in patients with osteoporosis were included. DATA SYNTHESIS Romosozumab increased bone mineral density (BMD) at the lumbar spine (12.1%-13.3%), femoral neck (2.2%-5.9%), and total hip (2.5%-6.9%) in patients with osteoporosis. After 12 months, romosozumab provided greater BMD gains at the lumbar spine and hip than teriparatide. However, teriparatide is likely to further increase BMD if continued for up to 24 months. In postmenopausal women at a high fracture risk, 1 year of romosozumab followed by 1 year of alendronate resulted in lower vertebral, nonvertebral, clinical, and hip fractures than alendronate alone for 2 years. Although absolute event rates were low, serious cardiovascular and cerebrovascular events were numerically higher in 2 clinical trials when compared with alendronate (2.5% vs 1.9%, respectively) and placebo (4.9% vs 2.5%, respectively). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review discusses the place in therapy for romosozumab in osteoporosis management as a novel agent. CONCLUSIONS Romosozumab offers an alternative for patients with a high risk of osteoporotic fractures. Clinicians should avoid romosozumab in patients with a history of myocardial infarction or stroke in the past 12 months.
Collapse
Affiliation(s)
- Kimberly Lovin Nealy
- Wingate University School of Pharmacy, Wingate, NC, USA.,Novant Health Senior Care, Matthews, NC, USA
| | - Kira B Harris
- Novant Health Family Medicine Residency Program, Cornelius, NC, USA
| |
Collapse
|
39
|
The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. Int J Mol Sci 2020; 21:ijms21144967. [PMID: 32674405 PMCID: PMC7404398 DOI: 10.3390/ijms21144967] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.
Collapse
|