1
|
Wu S, Zhou XC, Li T, Sun JY, Chen LH, Wei ZC, Wang KZ, Hong SW, Xu HN, Lv ZZ, Lv LJ. Assessing the Genetic Causal Effects Between Blood Metabolites and Spinal Pain: A Bidirectional Two-Sample Mendelian Randomization Study. J Pain Res 2024; 17:3897-3918. [PMID: 39583190 PMCID: PMC11585999 DOI: 10.2147/jpr.s487156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background Previous metabolomics studies have indicated a close association between blood metabolites and pain. However, the causal relationship between blood metabolites and spinal pain (SP) remains unclear. This study employs a bidirectional two-sample Mendelian randomization (MR) analysis to evaluate the causal relationship between 452 blood metabolites and SP. Methods We used bidirectional two-sample MR analysis to assess the causal relationship between blood metabolites and SP, including neck pain (NP), thoracic spine pain (TSP), low back pain (LBP), and back pain (BP). Genome-wide association studies (GWAS) data for 452 metabolites (7,824 participants) were used as exposure variables. Summary data for NP were obtained from the UK Biobank, for TSP from the FinnGen Biobank, and for LBP from both the UK Biobank and the FinnGen Biobank. Summary data for BP were obtained from the UK Biobank. Inverse-variance weighting (IVW) was used to estimate the causal relationships between metabolites and SP, complemented by various sensitivity analyses to account for pleiotropy and heterogeneity, ensuring robust results. Results The IVW analysis identified 155 metabolites associated with SP risk and 142 metabolites influenced by SP. No significant heterogeneity or horizontal pleiotropy was observed through other analytical methods. Conclusion This study demonstrates potential causal effects between blood metabolites and SP, providing new insights into the pathogenesis of SP. These findings lay a theoretical foundation for preventing and treating SP through targeted interventions on specific blood metabolites, potentially elucidating underlying biological mechanisms.
Collapse
Affiliation(s)
- Shuang Wu
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xing-chen Zhou
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Tao Li
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jia-yu Sun
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Long-hao Chen
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zi-cheng Wei
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Kai-zheng Wang
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuang-wei Hong
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hui-nan Xu
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhi-zhen Lv
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li-jiang Lv
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Li L, Ding S, Wang W, Yang L, Wilson G, Sa Y, Zhang Y, Chen J, Ma X. Serum metabolomics reveals the metabolic profile and potential biomarkers of ankylosing spondylitis. Mol Omics 2024. [PMID: 38984672 DOI: 10.1039/d4mo00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that significantly impairs physical function in young individuals. However, the identification of radiographic changes in AS is frequently delayed, and the diagnostic efficacy of biomarkers like HLA-B27 remains moderately effective, with unsatisfactory sensitivity and specificity. In contrast to existing literature, our current experiment utilized a larger sample size and employed both untargeted and targeted UHPLC-QTOF-MS/MS based metabolomics to identify the metabolite profile and potential biomarkers of AS. The results indicated a notable divergence between the two groups, and a total of 170 different metabolites were identified, which were associated with the 6 primary metabolic pathways exhibiting a correlation with AS. Among these, 26 metabolites exhibited high sensitivity and specificity with area under curve (AUC) values greater than 0.8. Subsequent targeted quantitative analysis discovered 3 metabolites, namely 3-amino-2-piperidone, hypoxanthine and octadecylamine, exhibiting excellent distinguishing ability based on the results of the ROC curve and the Random Forest model, thus qualifying as potential biomarkers for AS. Summarily, our untargeted and targeted metabolomics investigation offers novel and precise insights into potential biomarkers for AS, potentially enhancing diagnostic capabilities and furthering the comprehension of the condition's pathophysiology.
Collapse
Affiliation(s)
- Liuyan Li
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Lingling Yang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou 350122, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
3
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
4
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Lai Y, Tang W, Luo X, Zheng H, Zhang Y, Wang M, Yu G, Yang M. Gut microbiome and metabolome to discover pathogenic bacteria and probiotics in ankylosing spondylitis. Front Immunol 2024; 15:1369116. [PMID: 38711505 PMCID: PMC11070502 DOI: 10.3389/fimmu.2024.1369116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS. Methods To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites. Results A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored. Conclusion In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.
Collapse
Affiliation(s)
- Yupeng Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huihui Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanpeng Zhang
- Department of Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Meiying Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of the kynurenine pathway of tryptophan metabolism in rheumatic diseases. Front Immunol 2023; 14:1257159. [PMID: 37936702 PMCID: PMC10626995 DOI: 10.3389/fimmu.2023.1257159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
There is an increasing interest in the pathophysiological role of the kynurenine pathway of tryptophan metabolism in the regulation of immune function and inflammation. We sought to address the link between this pathway and the presence rheumatic diseases (RD) by conducting a systematic review and meta-analysis of studies reporting the plasma or serum concentrations of tryptophan, kynurenine, and other relevant metabolites in RD patients and healthy controls. We searched electronic databases for relevant articles published between inception and the 30th of June 2023. Risk of bias and certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and the Grades of Recommendation, Assessment, Development and Evaluation Working Group system. In 24 studies selected for analysis, compared to controls, RD patients had significantly lower tryptophan (standard mean difference, SMD= -0.71, 95% CI -1.03 to -0.39, p<0.001; I2 = 93.6%, p<0.001; low certainty of evidence), and higher kynurenine (SMD=0.69, 95% CI 0.35 to 1.02, p<0.001; I2 = 93.2%, p<0.001; low certainty), kynurenine to tryptophan ratios (SMD=0.88, 95% CI 0.55 to 1.21, p<0.001; I2 = 92.9%, p<0.001; moderate certainty), 3-hydroxykynurenine (SMD=0.74, 95% CI 0.30 to 1.18, p=0.001; I2 = 87.7%, p<0.001; extremely low certainty), and quinolinic acid concentrations (SMD=0.71, 95% CI 0.31 to 1.11, p<0.001; I2 = 88.1%, p<0.001; extremely low certainty). By contrast, there were non-significant between-group differences in kynurenic acid, 3-hydroxyanthranilic acid, kynurenic acid to kynurenine ratio, or quinolinic acid to kynurenine acid ratio. In meta-regression, the SMD of tryptophan, kynurenine, and kynurenine to tryptophan ratio were not associated with age, publication year, sample size, RD duration, C-reactive protein, or use of anti-rheumatic drugs and corticosteroids. In subgroup analysis, the SMD of tryptophan, kynurenine, and kynurenine to tryptophan ratio was significant across different types of RD, barring rheumatoid arthritis. Therefore, we have observed significant alterations in tryptophan, kynurenine, 3-hydroxykynurenine, and quinolinic acid concentrations in RD patients. Further research is warranted to determine whether these biomarkers can be useful for diagnosis and management in this patient group. (PROSPERO registration number: CRD CRD42023443718). Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD CRD42023443718.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Jiang Y, Liu Q, Kong X, Zhao M, Liu Y, Gao P, Deng G, Cao Y, Ma L. Role of HLA class I and II alleles in susceptibility to ankylosing spondylitis in Chinese Han. J Clin Lab Anal 2023; 37:e24964. [PMID: 37747092 PMCID: PMC10623521 DOI: 10.1002/jcla.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE The objective of the study was to clarify the associations of HLA class I and II alleles with ankylosing spondylitis (AS) among Chinese Han. METHODS We performed HLA genotyping and Sanger sequencing for 68 HLA-B*27(-), 62 HLA-B*27(+) AS patients, and 70 controls. Case-control analyses and separate analyses of HLA-B*27(-) patients were performed. One-way ANOVA and Kruskal-Wallis multiple comparisons test were used to analyze the effects of HLA-A\B\C\DRB1\DQB1 alleles on clinical characteristics of HLA-B*27(-) and HLA-B*27(+) patients. RESULTS In the HLA-B*27(+) group, positive associations were seen with A*11:02, B*27:04, B*27:05, C*02:02, C*12:02, and DRB1*04:01 and negative associations were seen with A*33:03, B*07:02, B*57:01, and C*07:02. The age at onset was greater in HLA-B*27(-) patients than in HLA-B*27(+) patients (30.03 ± 15.15 vs. 23.08 ± 7.79 years). In the HLA-B*27(-) group, those with A*01:01, B*13:01, B*13:02, C*01:02, C*04:01, DQB1*02:01, DQB1*06:01, and DRB1*03:01 had an earlier onset than those without these alleles, while patients carrying B*40:02, C*07:02, C*12:02, C*15:02, DQB1*05:02, and DQB1*05:03 had a delayed onset. In the HLA-B*27(-) group, A*32:01(+), C*08:01(+), and DRB1*04:05(-) women were likely to develop AS. In the HLA-B*27(+) group, DQB1*03:02(+) women may be more likely to develop AS. DRB1*12:02 and HLA-B*27 interacted with the distribution of AS-affected sites. In the HLA-B*27(+) group, DRB1*12:02(+) patients were likely to have peripheral joint involvement. CONCLUSION HLA class I and II alleles other than HLA-B*27 contribute to AS predisposition and characteristics among Chinese Han patients.
Collapse
Affiliation(s)
- Yongwei Jiang
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Qian Liu
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Xiaomu Kong
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Meimei Zhao
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Yi Liu
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Peng Gao
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Guoxiong Deng
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| | - Liang Ma
- Clinical Laboratory, China‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
8
|
Li H, Wang L, Zhu J, Xiao J, Yang H, Hai H, Hu J, Li L, Shi Y, Yu M, Shuai P, Liu Y, Ju X, Wu G, Zhou Y, Deng B, Gong B. Diagnostic serum biomarkers associated with ankylosing spondylitis. Clin Exp Med 2023; 23:1729-1739. [PMID: 36459277 DOI: 10.1007/s10238-022-00958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that mostly affects the axial skeleton. This study aimed to investigate reliable diagnostic serum biomarkers for AS. Serum samples were collected from 20 AS patients and 20 healthy controls (HCs) and analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differential metabolites between the AS patients and HCs were profiled using univariate and multivariate statistical analyses. Pathway analysis and a heat map were also conducted. Random forest (RF) analysis and the least absolute shrinkage and selection operator (LASSO) were used to establish predictive and diagnostic models. After controlling the variable importance in the projection (VIP) value > 1 and false discovery rate (FDR) < 0.05, a total of 61 differential metabolites were identified from 995 metabolites, which exhibited significant differences in the pathway analysis and heat map between the AS patients and HCs. RF as a predictive model also identified differential metabolites with 95% predictive accuracy and a high area under the curve (AUC) of 1. A diagnostic model comprising nine metabolites (cysteinylglycine disulfide, choline, N6, N6, N6-trimethyllysine, histidine, sphingosine, fibrinopeptide A, glycerol 3-phosphate, 1-linoleoyl-GPA (18:2), and fibrinopeptide A (3-16)) was generated using LASSO regression, capable of distinguishing HCs from AS with a high AUC of 1. Our results indicated that the UPLC-MS/MS analysis method is a powerful tool for identifying AS metabolite profiles. We developed a nine-metabolites-based model serving as a diagnostic tool to separate AS patients from HCs, and the identified diagnostic biomarkers appeared to have a diagnostic value for AS.
Collapse
Affiliation(s)
- Huan Li
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liang Wang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialing Xiao
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huining Yang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huanyue Hai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiarui Hu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Shi
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
| | - Ping Shuai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xueming Ju
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yu Zhou
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| | - Bo Gong
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
9
|
Wu Y, Zhao M, Gong N, Zhang F, Chen W, Liu Y. Immunometabolomics provides a new perspective for studying systemic lupus erythematosus. Int Immunopharmacol 2023; 118:109946. [PMID: 36931174 DOI: 10.1016/j.intimp.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by clinical heterogeneity, unpredictable progression, and flare ups. Due to the heterogeneous nature of lupus, it has been challenging to identify sensitive and specific biomarkers for its diagnosis and monitoring. Despite the fact that the mechanism of SLE remains unknown, impressive progress has been made over the last decade towards understanding how different immune cells contribute to its pathogenesis. Research suggests that cellular metabolic programs could affect the immune response by regulating the activation, proliferation, and differentiation of innate and adaptive immune cells. Many studies have shown that the dysregulation of the immune system is associated with changes to metabolite profiles. The study of metabolite profiling may provide a means for mechanism exploration and novel biomarker discovery for disease diagnostic, classification, and monitoring. Here we review the latest advancements in understanding the role of immunometabolism in SLE, as well as the systemic metabolite profiling of this disease along with possible clinical application.
Collapse
Affiliation(s)
- Yuxian Wu
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Mengpei Zhao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Na Gong
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Gong H, Rahman SU, Zhou K, Lin Z, Mi R, Huang Y, Zhang Y, Zhang Y, Jia H, Tang W, Xia C, Pandey K, Chen Z. Temporal metabolic profiling of erythrocytes in mice infected with Babesia microti. Microb Pathog 2023; 175:105954. [PMID: 36574865 DOI: 10.1016/j.micpath.2022.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Babesiosis is an emerging zoonosis worldwide that is caused by tick-borne apicomplexans, Babesia spp., which threatens the health of domesticated and wild mammals and even humans. Although it has done serious harm to animal husbandry and public health, the study of Babesia is still progressing slowly. Until now, no effective anti-Babesia vaccines have been available, and administration of combined drugs tends to produce side effects. Therefore, non-targeted metabolomics was employed in the present study to examine the temporal dynamic changes in the metabolic profile of the infected erythrocytes. The goal was to obtain new insight into pathogenesis of Babesia and to explore vaccine candidates or novel drug targets. METHODS C57BL/6 mice were infected with B. microti and erythrocytes at different time points (0, 3, 6 , 9, 12, and 22-days post-infection) were subjected to parasitemia surveillance and then metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to clearly separate and identify dysregulated metabolites in Babesia-infected mice. The analyses included principal components analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). The time-series trends of the impacted molecules were analyzed using the R package Mfuzz and the fuzzy clustering principle. The temporal profiling of amino acids, lipids, and nucleotides in blood cells infected with B. microti were also investigated. RESULTS B. microti infection resulted in a fast increase of parasitemia and serious alteration of the mouse metabolites. Through LC-MS metabolomics analysis, 10,289 substance peaks were detected and annotated to 3,705 components during the analysis period. There were 1,166 dysregulated metabolites, which were classified into 8 clusters according to the temporal trends. Consistent with the trend of parasitemia, the numbers of differential metabolites reached a peak of 525 at 6-days post-infection (dpi). Moreover, the central carbon metabolism in cancer demonstrated the most serious change during the infection process except for that observed at 6 dpi. Sabotage occurred in components involved in the TCA cycle, amino acids, lipids, and nucleotide metabolism. CONCLUSION Our findings revealed a great alteration in the metabolites of Babesia-infected mice and shed new light on the pathogenesis of B. microti at the metabolic level. The results might lead to novel information about the mechanisms of pathopoiesis, babesisosis, and anti-parasite drug/vaccine development in the future.
Collapse
Affiliation(s)
- Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Keke Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibing Lin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yehua Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Tang
- Institute of Animai Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Chenyang Xia
- Institute of Animai Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Kishor Pandey
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
11
|
Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis. Front Immunol 2022; 13:1010572. [PMID: 36311749 PMCID: PMC9608452 DOI: 10.3389/fimmu.2022.1010572] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS), a chronic condition that commonly influences the spine and sacroiliac joints, usually progresses to stiffness and progressive functional limitation. Its fundamental etiology and pathogenesis are likely multifactorial and remain elusive. As environmental factors, gut microbiota performs critical functions in the pathogenesis of AS through various mechanisms, including interacting with genes, enhancing intestinal permeability, activating the gut mucosa immune system, and affecting the intestinal microbiota metabolites. This review provides an overview of recent advances in investigating gut microbiota in AS pathogenesis and discusses potential methods for future therapeutic intervention.
Collapse
Affiliation(s)
- Zi-Yi Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Duo Yuan
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Cen S, Cai M, Wang Y, Lu X, Chen Z, Chen H, Fang Y, Wu C, Qiu S, Liu Z. Aberrant lncRNA–mRNA expression profile and function networks during the adipogenesis of mesenchymal stem cells from patients with ankylosing spondylitis. Front Genet 2022; 13:991875. [PMID: 36246583 PMCID: PMC9563993 DOI: 10.3389/fgene.2022.991875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We have already demonstrated that mesenchymal stem cells from patients with ankylosing spondylitis (ASMSCs) exhibited greater adipogenic differentiation potential than those from healthy donors (HDMSCs). Here, we further investigated the expression profile of long noncoding RNA (lncRNA) and mRNA, aiming to explore the underlying mechanism of abnormal adipogenic differentiation in ASMSCs.Methods: HDMSCs and ASMSCs were separately isolated and induced with adipogenic differentiation medium for 10 days. Thereafter, lncRNAs and mRNAs that were differentially expressed (DE) between HDMSCs and ASMSCs were identified via high-throughput sequencing and confirmed by quantitative real-time PCR (qRT–PCR) assays. Then, the DE genes were annotated and enriched by GO analysis. In addition, protein interaction network was constructed to evaluate the interactions between DE mRNAs and to find hub nodes and study cliques. Besides, co-expression network analysis was carried out to assess the co-expressions between DE mRNA and DE lncRNAs, and competing endogenous RNA (ceRNA) network analysis were conducted to predict the relationships among lncRNAs, mRNAs and miRNAs. The signaling pathways based on the DE genes and the predicted DE genes were enriched by KEGG analysis.Results: A total of 263 DE lncRNAs and 1376 DE mRNAs were found during adipogenesis in ASMSCs. qRT–PCR indicated that the expression of the top 20 mRNAs and the top 10 lncRNAs was consistent with the high-throughput sequencing data. Several lncRNAs (NR_125386.1, NR_046473.1 and NR_038937.1) and their target genes (SPN and OR1AIP2), together with the significantly co-expressed pairs of DE lncRNAs and DE mRNAs (SLC38A5-ENST00000429588.1, TMEM61-ENST00000400755.3 and C5orf46-ENST00000512300.1), were closely related to the enhanced adipogenesis of ASMSCs by modulating the PPAR signaling pathway.Conclusion: Our study analyzed the expression profiles of DE lncRNAs and DE mRNAs during adipogenesis in ASMSCs and HDMSCs. Several DE lncRNAs, DE mRNAs and signaling pathways that probably participate in the aberrant adipogenesis of ASMSCs were selected for future study. These results will likely provide potential targets for our intervention on fat metaplasia and subsequent new bone formation in patients with AS in the future.
Collapse
Affiliation(s)
- Shuizhong Cen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxi Cai
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wang
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuyi Lu
- Department of Dermatology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhipeng Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haobo Chen
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Yingdong Fang
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Changping Wu
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Sujun Qiu, ; Zhenhua Liu,
| | - Zhenhua Liu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Sujun Qiu, ; Zhenhua Liu,
| |
Collapse
|
13
|
Gill T, Stauffer P, Asquith M, Laderas T, Martin TM, Davin S, Schleisman M, Ramirez C, Ogle K, Lindquist I, Nguyen J, Planck SR, Shaut C, Diamond S, Rosenbaum JT, Karstens L. Axial spondyloarthritis patients have altered mucosal IgA response to oral and fecal microbiota. Front Immunol 2022; 13:965634. [PMID: 36248884 PMCID: PMC9556278 DOI: 10.3389/fimmu.2022.965634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is an inflammatory arthritis involving the spine and the sacroiliac joint with extra-articular manifestations in the eye, gut, and skin. The intestinal microbiota has been implicated as a central environmental component in the pathogenesis of various types of spondyloarthritis including axSpA. Additionally, alterations in the oral microbiota have been shown in various rheumatological conditions, such as rheumatoid arthritis (RA). Therefore, the aim of this study was to investigate whether axSpA patients have an altered immunoglobulin A (IgA) response in the gut and oral microbial communities. We performed 16S rRNA gene (16S) sequencing on IgA positive (IgA+) and IgA negative (IgA-) fractions (IgA-SEQ) from feces (n=17 axSpA; n=14 healthy) and saliva (n=14 axSpA; n=12 healthy), as well as on IgA-unsorted fecal and salivary samples. PICRUSt2 was used to predict microbial metabolic potential in axSpA patients and healthy controls (HCs). IgA-SEQ analyses revealed enrichment of several microbes in the fecal (Akkermansia, Ruminococcaceae, Lachnospira) and salivary (Prevotellaceae, Actinobacillus) microbiome in axSpA patients as compared with HCs. Fecal microbiome from axSpA patients showed a tendency towards increased alpha diversity in IgA+ fraction and decreased diversity in IgA- fraction in comparison with HCs, while the salivary microbiome exhibits a significant decrease in alpha diversity in both IgA+ and IgA- fractions. Increased IgA coating of Clostridiales Family XIII in feces correlated with disease severity. Inferred metagenomic analysis suggests perturbation of metabolites and metabolic pathways for inflammation (oxidative stress, amino acid degradation) and metabolism (propanoate and butanoate) in axSpA patients. Analyses of fecal and salivary microbes from axSpA patients reveal distinct populations of immunoreactive microbes compared to HCs using the IgA-SEQ approach. These bacteria were not identified by comparing their relative abundance alone. Predictive metagenomic analysis revealed perturbation of metabolites/metabolic pathways in axSpA patients. Future studies on these immunoreactive microbes may lead to better understanding of the functional role of IgA in maintaining microbial structure and human health.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Tejpal Gill,
| | - Patrick Stauffer
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Mark Asquith
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ted Laderas
- Division of Bioinformatics and Computational Biomedicine, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Tammy M. Martin
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Sean Davin
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Schleisman
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Claire Ramirez
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kimberly Ogle
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ingrid Lindquist
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Justine Nguyen
- Division of Bioinformatics and Computational Biomedicine, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Stephen R. Planck
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Carley Shaut
- Laboratory of Immunogenetics, Oregon Health & Science University, Portland, OR, United States
| | - Sarah Diamond
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - James T. Rosenbaum
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
- Casey Eye Institute/Department of Ophthalmology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
- Department of Cell Biology, Oregon Health & Science University, Portland, OR, United States
- Legacy Devers Eye Institute, Portland, OR, United States
| | - Lisa Karstens
- Division of Bioinformatics and Computational Biomedicine, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
- Division of Urogynecology, Department of Obstetrics and Gynecology Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Huang T, Pu Y, Wang X, Li Y, Yang H, Luo Y, Liu Y. Metabolomic analysis in spondyloarthritis: A systematic review. Front Microbiol 2022; 13:965709. [PMID: 36118235 PMCID: PMC9479008 DOI: 10.3389/fmicb.2022.965709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of rheumatic diseases that cause joint inflammation. Accumulating studies have focused on the metabolomic profiling of SpA in recent years. We conducted a systematic review to provide a collective summary of previous findings on metabolomic profiling associated with SpA. We systematically searched PubMed, Medline, Embase and Web of Science for studies on comparisons of the metabolomic analysis of SpA patients and non-SpA controls. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included articles. From 482 records identified, 31 studies were included in the analysis. A number of metabolites were differentially distributed between SpA and non-SpA cases. SpA patients showed higher levels of glucose, succinic acid, malic acid and lactate in carbohydrate metabolism, higher glycerol levels and lower fatty acid (especially unsaturated fatty acid) levels in lipid metabolism, and lower levels of tryptophan and glutamine in amino acid metabolism than healthy controls. Both conventional and biological therapy of SpA can insufficiently reverse the aberrant metabolism state toward that of the controls. However, the differences in the results of metabolic profiling between patients with SpA and other inflammatory diseases as well as among patients with several subtypes of SpA are inconsistent across studies. Studies on metabolomics have provided insights into etiological factors and biomarkers for SpA. Supplementation with the metabolites that exhibit decreased levels, such as short-chain fatty acids (SCFAs), has good treatment prospects for modulating immunity. Further studies are needed to elucidate the role of disordered metabolic molecules in the pathogenesis of SpA.
Collapse
Affiliation(s)
- Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| |
Collapse
|
15
|
Lv M, Liang Q, Wan X, Wang Z, Qian Y, Xiang J, Luo Z, Ni T, Jiang W, Wang W, Wang H, Liu Y. Metabolomics and molecular docking-directed antiarthritic study of the ethyl acetate extract from Celastrus orbiculatus Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115369. [PMID: 35562091 DOI: 10.1016/j.jep.2022.115369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb., an important folk medicine, has long been used for the treatment of rheumatoid arthritis and its ethyl acetate extract (COE) has been reported to possess anticancer, antiinflammation and antiarthritic effects. However, the therapeutic effect and mechanism of COE treatment in rheumatoid arthritis has been rarely studied especially from the perspective of metabolomics. AIM OF STUDY To reveal the therapeutic effects of COE on adjuvant-induced arthritis (AIA) rats through histopathological analysis, non-targeted metabolomics, and molecular docking study. MATERIALS AND METHODS Forty-three Wistar rats were randomly divided into normal group, AIA model group, methotrexate group, and COE groups (80 mg/kg, 160 mg/kg and 320 mg/kg of ethyl acetate extract). Paw swelling and arthritis score were monitored through the experiment. Serum levels of tumor necrosis factor α (TNF-α) and nitric oxide were determined and histopathological evaluation was performed. Furthermore, Ultra-high performance liquid chromatography-linear trap quadrupole-Orbitrap-based metabolomics was employed to characterize metabolic changes of AIA rats after COE treatment and molecular docking was performed to predict the potential phytochemicals of COE against TNF-α. RESULTS COE at three dosages could significantly relieve paw swelling and reduce arthritis scores of AIA rat. Histopathological analysis revealed remarkable decrease in synovial inflammation and bone erosion after COE treatment, especially at middle and high dosage. Additionally, COE down-regulated serum levels of TNF-α and nitric oxide. Serum metabolomics showed that 22 potential biomarkers for the COE treatment of AIA rats were identified, which were closely related to fatty acid metabolism, glycerophospholipid catabolism, and tryptophan metabolism. The molecular docking models predicted that olean-type triterpenes in COE may contribute most to therapeutic effects of rheumatoid arthritis through targeting TNF-α. CONCLUSIONS COE could significantly relieve the arthritic symptoms in AIA rats and the ultra-high performance liquid chromatography-mass spectrometry based metabolomics proved to be an efficient method to characterize subtle metabolic changes of AIA rats after COE treatment.
Collapse
Affiliation(s)
- Mengying Lv
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Qiaoling Liang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xiayun Wan
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yayun Qian
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Zhaoyong Luo
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Tengyang Ni
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Wei Jiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Weimin Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yanqing Liu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
16
|
Doğan HO, Şenol O, Karadağ A, Yıldız SN. Metabolomic profiling in ankylosing spondylitis using time-of-flight mass spectrometry. Clin Nutr ESPEN 2022; 50:124-132. [PMID: 35871913 DOI: 10.1016/j.clnesp.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Ankylosing spondylitis (AS) is an inflammatory disease associated with destructive changes in the skeleton and joints. The exact molecular mechanism of the disease has not been fully elucidated. This study aimed to determine metabolic differences between active AS patients and healthy controls to understand the molecular mechanism of AS. PATIENTS AND METHODS The study included 38 subjects, comprising 18 patients with active AS and 20 healthy controls. Metabolic profiling of the plasma was performed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS). Data acquisition, classification, and identification were achieved with the METLIN (https://metlin.scripps.edu/) database and XCMS (https://xcmsonline.scripps.edu). RESULTS Significant alterations were identified in the unsaturated fatty acids (FA), linoleic acid, alpha-linolenic acid, FA degradation, and FA biosynthesis pathways. Down -regulations were observed in phosphatidylcholine (PC) (16:0/0:0), beta-d-Fructose, stearic acid, trimipramine N-Oxide and muconic acid, and up-regulation were detected in PC (18:2/0:0), 3-Methylindole, palmitic acid (PA), alpha-Tocotrienol, and beta-d-glucopyranoside in active AS patients compared to the healthy control subjects. CONCLUSION Pathway analysis revealed that dysregulation in FA metabolism is associated with AS, and therefore, modulation of diet according to PA and PC may be potential therapeutic targets.
Collapse
Affiliation(s)
- Halef Okan Doğan
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey.
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Ahmet Karadağ
- Department of Pyhsical Medicine and Rehabilitation, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Seyma Nur Yıldız
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
17
|
Serine, N-acetylaspartate differentiate adolescents with juvenile idiopathic arthritis compared with healthy controls: a metabolomics cross-sectional study. Pediatr Rheumatol Online J 2022; 20:12. [PMID: 35144633 PMCID: PMC8832851 DOI: 10.1186/s12969-022-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In comparison with the general population, adolescents with juvenile idiopathic arthritis (JIA) are at higher risk for morbidity and mortality. However, limited evidence is available about this condition's underlying metabolic profile in adolescents with JIA relative to healthy controls. In this untargeted, cross-sectional metabolomics study, we explore the plasma metabolites in this population. METHODS A sample of 20 adolescents with JIA and 20 controls aged 13-17 years were recruited to complete surveys, provide medical histories and biospecimens, and undergo assessments. Fasting morning plasma samples were processed with liquid chromatography-mass spectrometry. Data were centered, scaled, and analyzed using generalized linear models accounting for age, sex, and medications (p-values adjusted for multiple comparisons using the Holm method). Spearman's correlations were used to evaluate relationships among metabolites, time since diagnosis, and disease severity. RESULTS Of 72 metabolites identified in the samples, 55 were common to both groups. After adjustments, 6 metabolites remained significantly different between groups. Alpha-glucose, alpha-ketoglutarate, serine, and N-acetylaspartate were significantly lower in the JIA group than in controls; glycine and cystine were higher. Seven additional metabolites were detected only in the JIA group; 10 additional metabolites were detected only in the control group. Metabolites were unrelated to disease severity or time since diagnosis. CONCLUSIONS The metabolic signature of adolescents with JIA relative to controls reflects a disruption in oxidative stress; neurological health; and amino acid, caffeine, and energy metabolism pathways. Serine and N-acetylaspartate were promising potential biomarkers, and their metabolic pathways are linked to both JIA and cardiovascular disease risk. The pathways may be a source of new diagnostic, treatment, or prevention options. This study's findings contribute new knowledge for systems biology and precision health approaches to JIA research. Further research is warranted to confirm these findings in a larger sample.
Collapse
|
18
|
Metabolomics: An Emerging Approach to Understand Pathogenesis and to Assess Diagnosis and Response to Treatment in Spondyloarthritis. Cells 2022; 11:cells11030549. [PMID: 35159358 PMCID: PMC8834108 DOI: 10.3390/cells11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of rheumatic diseases whose pathogenesis relies on a complex interplay between genetic and environmental factors. Over the last several years, the importance of the alteration of the gut microbiota, known as dysbiosis, and the interaction of bacterial products with host immunity have been highlighted as intriguing key players in SpA development. The recent advent of the so called “-omics” sciences, that include metabolomics, opened the way to a new approach to SpA through a deeper characterisation of the pathogenetic mechanisms behind the disease. In addition, metabolomics can reveal potential new biomarkers to diagnose and monitor SpA patients. The aim of this review is to highlight the most recent advances concerning the application of metabolomics to SpA, in particular focusing attention on Ankylosing Spondylitis and Psoriatic Arthritis.
Collapse
|
19
|
Liu Y, Liu S, Zhi Q, Zhuang P, Zhang R, Zhang Z, Zhang K, Sun Y. Arginine-induced metabolomic perturbation in Streptococcus mutans. J Oral Microbiol 2022; 14:2015166. [PMID: 35024088 PMCID: PMC8745357 DOI: 10.1080/20002297.2021.2015166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus mutans is a major pathogen responsible for dental caries. Arginine is a promising potential caries preventive agent which can inhibit the growth of S. mutans. However, the mechanism whereby arginine inhibits S. mutans growth remains unclear. Aim To assess the impact of arginine-induced metabolomic perturbations on S. mutans under biofilm conditions. Methods We identified 5,933 and 7,413 ions in positive (ESI+) and negative (ESI-) electrospray ion modes, respectively, with a total of 11.05% and 11.58% differential ions subsequently detected in two respective modes. Further analyses of these metabolites led to identification of 8 and 22 metabolic pathways that were affected by arginine treatment in ESI+ and ESI- modes., Results Once or twice daily treatments of S. mutans biofilms with arginine resulted in reductions in biofilm biomass. Significant reductions in EPS production were observed following twice daily arginine treatments. Identified metabolites that were significantly differentially abundant following arginine treatment were associated with glycolysis metabolism, amino sugar and nucleotide sugar metabolism, and peptidoglycan synthesis. Conclusions Arginine can reduce S. mutans biofilm growth and acid production by inhibiting glycolysis, amino sugar and nucleotide sugar metabolism, and peptidoglycan synthesis.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qinghui Zhi
- Department of Preventive Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peilin Zhuang
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongxiu Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhenzhen Zhang
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| |
Collapse
|
20
|
Liu X, Jin F, Wang C, Zhao S, Han S, Jiang P, Cui C. Targeted metabolomics analysis of serum amino acid profiles in patients with Moyamoya disease. Amino Acids 2021; 54:137-146. [PMID: 34800175 DOI: 10.1007/s00726-021-03100-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
Amino acids are one of the main metabolites in the body, and provide energy for the body and brain. The purpose of this study is to provide a profile of amino acid changes in the serum of patients with Moyamoya disease (MMD) and identify potential disease biomarkers. In this paper, we quantitatively determined the serum amino acid metabolic profiles of 43 MMD patients and 42 healthy controls (HCs). T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis were used to identify candidate markers. Thirty-nine amino acids were quantified, and 12 amino acid levels differed significantly between the MMD patients and HCs. Moreover, based on ROC curve analysis, four amino acid (L-methionine, L-glutamic acid, β-alanine and o-phosphoserine) biomarkers showed high sensitivity and specificity (AUC > 0.90), and showed the best sensitivity and specificity in MetaboAnalyst 5.0 using binary logistic regression analysis. We have provided serum amino acid metabolic profiles of MMD patients, and identified four potential biomarkers which may both provide clinicians with an objective diagnostic method for early detection of MMD and further our understanding of MMD pathogenesis.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen, China
| | - Feng Jin
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Changshui Wang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shiyuan Zhao
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shasha Han
- Jining Life Science Center, Jining, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, China.
| | - Changmeng Cui
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.
| |
Collapse
|
21
|
Intestinal Microbial Metabolites in Ankylosing Spondylitis. J Clin Med 2021; 10:jcm10153354. [PMID: 34362137 PMCID: PMC8347740 DOI: 10.3390/jcm10153354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammation of axial joints and the pelvis. It is known that intestinal dysbiosis may exert direct pathogenic effects on gut homeostasis and may act as a triggering factor for the host innate immune system to activate and cause inflammation in extraintestinal sites in the so-called "gut-joint axis", contributing to AS pathogenesis. However, although the intestinal microbiota's influence on the clinical manifestation of AS is widely accepted, the mechanisms mediating the cross-talk between the intestinal lumen and the immune system are still not completely defined. Recent evidence suggests that the metabolism of microbial species may be a source of metabolites and small molecules participating in the complex network existing between bacteria and host cells. These findings may give inputs for further research of novel pharmacological targets and pave the way to applying dietary interventions to prevent the onset and ameliorate the clinical presentation of the disease. In this review, we discuss the role of some of the biological mediators of microbial origin, with a particular focus on short-chain fatty acids, tryptophan and vitamin B derivatives, and their role in barrier integrity and type 3 immunity in the context of AS.
Collapse
|
22
|
He Z, Liu Z, Gong L. Biomarker identification and pathway analysis of rheumatoid arthritis based on metabolomics in combination with ingenuity pathway analysis. Proteomics 2021; 21:e2100037. [PMID: 33969925 DOI: 10.1002/pmic.202100037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease worldwide, but understanding its pathogenesis is still limited. In this study, plasma untargeted metabolomics of a discovery cohort and targeted analysis of a verification cohort were performed by gas chromatograph mass spectrometry (GC/MS). Univariate and multivariate statistical analysis were utilized to reveal differential metabolites, followed by the construction of biomarker panel through random forest (RF) algorithm. The pathways involved in RA were enriched by differential metabolites using Ingenuity Pathway Analysis (IPA) suite. Untargeted metabolomics revealed eighteen significantly altered metabolites in RA. Among these metabolites, a three-metabolite marker panel consisting of L-cysteine, citric acid and L-glutamine was constructed, using random forest algorithm that could predict RA with high accuracy, sensitivity and specificity based on a multivariate exploratory receiver operator characteristic (ROC) curve analysis. The panel was further validated by support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA) algorithms, and also verified with targeted metabolomics using a verification cohort. Additionally, the dysregulated taurine biosynthesis pathway in RA was revealed by an integrated analysis of metabolomics and transcriptomics. Our findings in this study not only provided a mechanism underlying RA pathogenesis, but also offered alternative therapeutic targets for RA.
Collapse
Affiliation(s)
- Zhuoru He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
23
|
He X, Cao H, Li X, Li Y, Yu Y. MG@PD@TiO 2 nanocomposite based magnetic solid phase extraction coupled with LC-MS/MS for determination of lysophosphatidylcholines biomarkers of plasma in psoriasis patients. J Pharm Biomed Anal 2021; 201:114101. [PMID: 33984829 DOI: 10.1016/j.jpba.2021.114101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Lysophosphatidylcholine (LPC) was commonly known as a class of significant differential metabolites of high relevance with many diseases including psoriasis, of which the accurate determination is of great importance to diagnosis or prediction to many diseases. However, it is challenging and complicated because of the enormous biological sample complexity and impurities interference. In this study, we synthesized a magnetic nanocomposite MG@PD@TiO2 and took advantage of the interactions of Lewis acid-base between the phosphate groups in LPCs and Ti ions on MG@PD@TiO2 nanomaterials for selective separation and enrichment of LPCs from complex biological matrix. The solid-phase extraction sample pretreatment process by means of MG@PD@TiO2 nanomaterials coupled with LC-MS/MS method was then applied to actual determination of six typical LPCs (LPC 10:0, 14:0, 16:0, 18:0, 18:1, 22:0) in human plasma. The extraction conditions were scientifically optimized by single-factor test (adsorbent amount, adsorption and desorption time, elution solvent type, eluant volume). Under the optimal conditions, the detection limits (LOD, S/N = 3) and quantification limits (LOQ, S/N = 10) were 1 and 5 ng/mL for LPC 10:0 and LPC 14:0, 0.02 and 0.1 ng/mL for LPC 16:0 and LPC 18:1, 0.05 and 0.2 ng/mL LPC 18:0 and LPC 22:0, respectively. The intra- and inter-day precisions were 3.82-12.60 % (n = 6) and 3.29-13.50 % (n = 6) respectively, the recoveries were in the range of 91.92-113.69 % and the stability of the analytes in the matrix performed well with RSDs≤15.51 %. Finally, the developed method was successfully applied to the accurate determination of six LPCs biomarkers of plasma in patients with psoriasis (n = 10) and control groups (n = 10).
Collapse
Affiliation(s)
- Xinying He
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China
| | - Han Cao
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, Pudong, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| | - Yunqiu Yu
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China.
| |
Collapse
|
24
|
Berlinberg AJ, Regner EH, Stahly A, Brar A, Reisz JA, Gerich ME, Fennimore BP, Scott FI, Freeman AE, Kuhn KA. Multi 'Omics Analysis of Intestinal Tissue in Ankylosing Spondylitis Identifies Alterations in the Tryptophan Metabolism Pathway. Front Immunol 2021; 12:587119. [PMID: 33746944 PMCID: PMC7966505 DOI: 10.3389/fimmu.2021.587119] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal microbial dysbiosis, intestinal inflammation, and Th17 immunity are all linked to the pathophysiology of spondyloarthritis (SpA); however, the mechanisms linking them remain unknown. One potential hypothesis suggests that the dysbiotic gut microbiome as a whole produces metabolites that influence human immune cells. To identify potential disease-relevant, microbiome-produced metabolites, we performed metabolomics screening and shotgun metagenomics on paired colon biopsies and fecal samples, respectively, from subjects with axial SpA (axSpA, N=21), Crohn's disease (CD, N=27), and Crohn's-axSpA overlap (CD-axSpA, N=12), as well as controls (HC, N=24). Using LC-MS based metabolomics of 4 non-inflamed pinch biopsies of the distal colon from subjects, we identified significant alterations in tryptophan pathway metabolites, including an expansion of indole-3-acetate (IAA) in axSpA and CD-axSpA compared to HC and CD and indole-3-acetaldehyde (I3Ald) in axSpA and CD-axSpA but not CD compared to HC, suggesting possible specificity to the development of axSpA. We then performed shotgun metagenomics of fecal samples to characterize gut microbial dysbiosis across these disease states. In spite of no significant differences in alpha-diversity among the 4 groups, our results confirmed differences in gene abundances of numerous enzymes involved in tryptophan metabolism. Specifically, gene abundance of indolepyruvate decarboxylase, which generates IAA and I3Ald, was significantly elevated in individuals with axSpA while gene abundances in HC demonstrated a propensity towards tryptophan synthesis. Such genetic changes were not observed in CD, again suggesting disease specificity for axSpA. Given the emerging role of tryptophan and its metabolites in immune function, altogether these data indicate that tryptophan metabolism into I3Ald and then IAA is one mechanism by which the gut microbiome potentially influences the development of axSpA.
Collapse
Affiliation(s)
- Adam J. Berlinberg
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Emilie H. Regner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Ana Brar
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Blair P. Fennimore
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Frank I. Scott
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Alison E. Freeman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
25
|
Ou J, Xiao M, Huang Y, Tu L, Chen Z, Cao S, Wei Q, Gu J. Serum Metabolomics Signatures Associated With Ankylosing Spondylitis and TNF Inhibitor Therapy. Front Immunol 2021; 12:630791. [PMID: 33679777 PMCID: PMC7933516 DOI: 10.3389/fimmu.2021.630791] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Ankylosing spondylitis (AS) is a type of spondyloarthropathies, the diagnosis of which is often delayed. The lack of early diagnosis tools often delays the institution of appropriate therapy. This study aimed to investigate the systemic metabolic shifts associated with AS and TNF inhibitors treatment. Additionally, we aimed to define reliable serum biomarkers for the diagnosis. We employed an untargeted technique, ultra-performance liquid chromatography-mass spectroscopy (LC-MS), to analyze the serum metabolome of 32 AS individuals before and after 24-week TNF inhibitors treatment, as well as 40 health controls (HCs). Multivariate and univariate statistical analyses were used to profile the differential metabolites associated with AS and TNF inhibitors. A diagnostic panel was established with the least absolute shrinkage and selection operator (LASSO). The pathway analysis was also conducted. A total of 55 significantly differential metabolites were detected. We generated a diagnostic panel comprising five metabolites (L-glutamate, arachidonic acid, L-phenylalanine, PC (18:1(9Z)/18:1(9Z)), 1-palmitoylglycerol), capable of distinguishing HCs from AS with a high AUC of 0.998, (95%CI: 0.992-1.000). TNF inhibitors treatment could restore the equilibrium of 21 metabolites. The most involved pathways in AS were amino acid biosynthesis, glycolysis, glutaminolysis, fatty acids biosynthesis and choline metabolism. This study characterized the serum metabolomics signatures of AS and TNF inhibitor therapy. We developed a five-metabolites-based panel serving as a diagnostic tool to separate patients from HCs. This serum metabolomics study yielded new knowledge about the AS pathogenesis and the systemic effects of TNF inhibitors.
Collapse
Affiliation(s)
- Jiayong Ou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Xiao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yefei Huang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liudan Tu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zena Chen
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangyan Cao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, Hojo N, Ogawa T, Kobayashi W, Tsutsui Y, Yamamoto S, Maruya M, Narushima S, Suzuki K, Sugiya H, Murakami K, Hashimoto M, Ueno H, Kobayashi T, Ito K, Hirano T, Shiroguchi K, Matsuda F, Suematsu M, Honjo T, Fagarasan S. B cell-derived GABA elicits IL-10 + macrophages to limit anti-tumour immunity. Nature 2021; 599:471-476. [PMID: 34732892 PMCID: PMC8599023 DOI: 10.1038/s41586-021-04082-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 01/16/2023]
Abstract
Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.
Collapse
Affiliation(s)
- Baihao Zhang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Alexis Vogelzang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Michio Miyajima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yuki Sugiura
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Yibo Wu
- grid.7597.c0000000094465255YCI Laboratory for Next-Generation Proteomics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Kenji Chamoto
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Nakano
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryusuke Hatae
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rosemary J. Menzies
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sonomura
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nozomi Hojo
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Taisaku Ogawa
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Wakana Kobayashi
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yumi Tsutsui
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Sachiko Yamamoto
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mikako Maruya
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Seiko Narushima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Keiichiro Suzuki
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Hiroshi Sugiya
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kosaku Murakami
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- grid.258799.80000 0004 0372 2033Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Ito
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Hirano
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuyuki Shiroguchi
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Fumihiko Matsuda
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Suematsu
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Tasuku Honjo
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan. .,Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|