1
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
2
|
Shaik MI, Kadir ANA, Sarbon NM. Physicochemical and thermal properties of pepsin- and acid-soluble collagen isolated from the body wall of sea cucumbers (Stichopus hermanni). J Food Sci 2024; 89:320-329. [PMID: 38051010 DOI: 10.1111/1750-3841.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Asmaa Nuha Abdul Kadir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Guan Y, He J, Chen J, Li Y, Zhang X, Zheng Y, Jia L. Valorization of Fish Processing By-Products: Microstructural, Rheological, Functional, and Properties of Silver Carp Skin Type I Collagen. Foods 2022; 11:2985. [PMID: 36230061 PMCID: PMC9562877 DOI: 10.3390/foods11192985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to develop aquatic collagen production from fish processing by-product skin as a possible alternative to terrestrial sources. Silver carp skin collagen (SCSC) was isolated and identified as type I collagen, and LC-MS/MS analysis confirmed the SCSC as Hypophthalmichthys molitrix type I collagen, where the yield of SCSC was 40.35 ± 0.63% (dry basis weight). The thermal denaturation temperature (Td) value of SCSC was 30.37 °C, which was superior to the collagen of deep-sea fish and freshwater fish. Notably, SCSC had higher thermal stability than human placental collagen, and the rheological experiments showed that the SCSC was a shear-thinning pseudoplastic fluid. Moreover, SCSC was functionally superior to some other collagens from terrestrial sources, such as sheep, chicken cartilage, and pig skin collagen. Additionally, SCSC could provide a suitable environment for MC3T3-E1 cell growth and maintain normal cellular morphology. These results indicated that SCSC could be used for further applications in food, cosmetics, and biomedical fields.
Collapse
Affiliation(s)
- Yongxin Guan
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xingkun Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yan Zheng
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Linyan Jia
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| |
Collapse
|
4
|
Cao J, Xiong N, Zhang Y, Dai Y, Wang Y, Lu L, Jiang L. Using RSM for Optimum of Optimum Production of Peptides from Edible Bird’s Nest By-Product and Characterization of Its Antioxidant’s Properties. Foods 2022; 11:foods11060859. [PMID: 35327281 PMCID: PMC8956092 DOI: 10.3390/foods11060859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, the neutrase hydrolysis conditions of edible bird’s nest (EBN) by-products were optimized by response surface methodology (RSM). Antioxidant peptides were then isolated from the EBN by-products by ultrafiltration and chromatography taking the DPPH radical scavenging ability as an indicator. The antioxidant activity of the purified peptides was estimated by radical scavenging ability and sodium nitroprusside (SNP)-induced damage model in PC12 cells. When the enzyme concentration was10 kU/g-hydrolysis temperature was 45 °C, and hydrolysis time was 10.30 h, the degree of hydrolysis (DH) of EBN by-product hydrolysate (EBNH) was the highest. The purified peptide exerted strong scavenging ability with EC50 values of 0.51, 1.31, and 0.65 mg/mL for DDPH, ABTS, and O2− radicals, respectively. In addition, the purified peptides could significantly reduce the SNP-induced oxidative damage of PC12 cells, and twelve peptides that were rich in leucine (Leu), valine (Val), and lysine (Lys) were identified by LC-MS/MS. These results suggested that EBN by-products have potential as new materials for natural antioxidant peptides.
Collapse
Affiliation(s)
- Jie Cao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Ning Xiong
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Yuwei Dai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Yuye Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Lingyu Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Lin Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
- Correspondence:
| |
Collapse
|
5
|
Shaik MI, Chong JY, Sarbon NM. Effect of ultrasound-assisted extraction on the extractability and physicochemical properties of acid and pepsin soluble collagen derived from Sharpnose stingray (Dasyatis zugei) skin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Yuan L, Chu Q, Wu X, Yang B, Zhang W, Jin W, Gao R. Anti-inflammatory and Antioxidant Activity of Peptides From Ethanol-Soluble Hydrolysates of Sturgeon ( Acipenser schrenckii) Cartilage. Front Nutr 2021; 8:689648. [PMID: 34179062 PMCID: PMC8225940 DOI: 10.3389/fnut.2021.689648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Research has shown that cartilage containing chondroitin sulfate and protein presents versatile bioactivities. Chondroitin sulfate in cartilage is beneficial to activate the immune system while the protein/peptide has not been fully understood. The current study investigated the antioxidant and anti-inflammatory properties of ethanol-soluble hydrolysates of sturgeon cartilage (ESCH) prepared through hot-pressure, enzymatic hydrolysis and ethanol extraction. UV spectrum, IR and agarose gel electrophoresis results suggested the successful exclusion of chondroitin sulfate from peptides. Nitric oxide (NO) floods in cells activated by inflammation. It was inhibited when administrated with ESCH. To further explain the observed anti-inflammatory activity, ESCH was separated with Sephadex G-15 into 3 components, among which F3 showed a higher NO inhibition rate and significantly reduced the production of the proinflammatory cytokine IL-6. In addition, the yield of IL-10 increased. Western blotting suggested that F3 downregulated the NO content and IL-6 level by suppressing Mitogen-activated protein kinases (MAPK) channels. Moreover, both ESCH and F3 showed DPPH and ABTS free radical scavenging abilities which was possibly related to the anti-inflammatory property. These results indicated that ESCH behaved anti-inflammatory and antioxidant activities. Cartilage may be a good source to produce anti-inflammatory peptides.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Chu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyun Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wengang Jin
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
7
|
Seixas MJ, Martins E, Reis RL, Silva TH. Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Mar Drugs 2020; 18:E617. [PMID: 33291538 PMCID: PMC7761862 DOI: 10.3390/md18120617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
With the worldwide increase of fisheries, fish wastes have had a similar increase, alternatively they can be seen as a source of novel substances for the improvement of society's wellbeing. Elasmobranchs are a subclass fished in high amounts, with some species being mainly bycatch. They possess an endoskeleton composed mainly by cartilage, from which chondroitin sulfate is currently obtained. Their use as a viable source for extraction of type II collagen has been hypothesized with the envisaging of a biomedical application, namely in biomaterials production. In the present work, raw cartilage from shark (Prionace glauca) and ray (Zeachara chilensis and Bathyraja brachyurops) was obtained from a fish processing company and submitted to acidic and enzymatic extractions, to produce acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). From all the extractions, P. glauca PSC had the highest yield (3.5%), followed by ray ASC (0.92%), ray PSC (0.50%), and P. glauca ASC (0.15%). All the extracts showed similar properties, with the SDS-PAGE profiles being compatible with the presence of both type I and type II collagens. Moreover, the collagen extracts exhibited the competence to maintain their conformation at human basal temperature, presenting a denaturation temperature higher than 37 °C. Hydrogels were produced using P. glauca PSC combined with shark chondroitin sulfate, with the objective of mimicking the human cartilage extracellular matrix. These hydrogels were cohesive and structurally-stable at 37 °C, with rheological measurements exhibiting a conformation of an elastic solid when submitted to shear strain with a frequency up to 4 Hz. This work revealed a sustainable strategy for the valorization of fisheries' by-products, within the concept of a circular economy, consisting of the use of P. glauca, Z. chilensis, and B. brachyurops cartilage for the extraction of collagen, which would be further employed in the development of hydrogels as a proof of concept of its biotechnological potential, ultimately envisaging its use in marine biomaterials to regenerate damaged cartilaginous tissues.
Collapse
Affiliation(s)
- Manuel J. Seixas
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (M.J.S.); or (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Eva Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (M.J.S.); or (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (M.J.S.); or (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (M.J.S.); or (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
8
|
Li J, Li Y, Li Y, Yang Z, Jin H. Physicochemical Properties of Collagen from Acaudina Molpadioides and Its Protective Effects against H 2O 2-Induced Injury in RAW264.7 Cells. Mar Drugs 2020; 18:md18070370. [PMID: 32708463 PMCID: PMC7403972 DOI: 10.3390/md18070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Collagen is a promising biomaterial used in the beauty and biomedical industries. In this study, the physicochemical characterization, antioxidant activities, and protective effects against H2O2-induced injury of collagen isolated from Acaudina molpadioides were investigated. The amino acid composition analysis showed that the collagen was rich in glycine (Gly), alanine (Ala), and glutamic acid (Glu), but poor in tyrosine (Tyr) and phenylalanine (Phe). Zeta potential analysis revealed that the isoelectric point (pI) of collagen from Acaudina molpadioides was about 4.25. It possessed moderate scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals in a dose-dependent manner. In addition, the collagen was able to effectively improve cell viability and morphology, inhibit the production of Malondialdehyde (MDA), and increase the activities of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSH-Px) in cultured RAW264.7 cells, resulting in a protective effect against H2O2-induced injury. Overall, the results showed that collagen extracted from A. molpadioides has promising prospects in the beauty and cosmetics industries.
Collapse
Affiliation(s)
| | | | | | | | - Huoxi Jin
- Correspondence: ; Tel.: +86-187-6808-2687
| |
Collapse
|
9
|
Luo J, Yang X, Cao Y, Li G, Meng Y, Li C. Structural characterization and in vitro immunogenicity evaluation of amphibian-derived collagen type II from the cartilage of Chinese Giant Salamander ( Andrias davidianus). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1941-1960. [PMID: 32584658 DOI: 10.1080/09205063.2020.1786882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Collagen type II (CT-II) has unique biological activities and functions, yet the knowledge on amphibian-derived CT-II is rare. Herein, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were successfully isolated and characterized from the cartilage of Chinese Giant Salamander (CGS). The in vitro immunogenicity of collagen was then evaluated and compared with that of the standard bovine CT-II (SCT-II) by T-lymphocyte cell proliferation activity. Results demonstrated that ASC and PSC were predominantly CT-II along with minor collagen type I and maintained intact triple-helical structure of nature collagen. Compared with SCT-II, higher glycine content (337.80 and 339.93 residues/1000 residues) and lower degree of proline hydroxylation (51.81% and 52.52%) were observed in ASC and PSC. Additionally, PSC showed comparable T d (63 °C) and higher T m (109 °C) than SCT-II (64 °C and 103 °C, respectively), indicating its high thermal and structural stability. SEM revealed that the lyophilized ASC and PSC had interconnected porous network structures of collagen-based materials. Moreover, different from SCT-II, both ASC and PSC presented no immunogenicity because they did not cause obvious proliferation of murine T-lymphocyte regardless of the induced concentration of collagen increased from 8 to 417 μg/mL. These data suggested that the amphibian-derived CGS cartilage collagens avoid the immunogenic risk of terrestrial animal collagen, and show high thermal stability and potential advantage in biomedical application.
Collapse
Affiliation(s)
- Jianlin Luo
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Xiaojing Yang
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yu Cao
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Guoyong Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yonglu Meng
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Can Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| |
Collapse
|
10
|
Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker ( Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H 2O 2-Damaged HepG2 Cells. Mar Drugs 2020; 18:md18030156. [PMID: 32168851 PMCID: PMC7142964 DOI: 10.3390/md18030156] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1–RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.
Collapse
|
11
|
Pan XY, Wang YM, Li L, Chi CF, Wang B. Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray ( Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Mar Drugs 2019; 17:E263. [PMID: 31058809 PMCID: PMC6562685 DOI: 10.3390/md17050263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
In the work, water-soluble proteins of red stingray (Dasyatis akajei) cartilages were extracted by guanidine hydrochloride and hydrolyzed using trypsin. Subsequently, four antioxidant peptides (RSHP-A, RSHP-B, RSHP-C, and RSHP-D) were isolated from the water-soluble protein hydrolysate while using ultrafiltration and chromatographic techniques, and the amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were identified as Val-Pro-Arg (VPR), Ile-Glu-Pro-His (IEPH), Leu-Glu-Glu--Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ), with molecular weights of 370.46 Da, 494.55 Da, 647.64 Da, and 646.66 Da, respectively. VPR, IEPH, LEEEE, and IEEEQ exhibited good scavenging activities on the DPPH radical (EC50 values of 4.61, 1.90, 3.69, and 4.01 mg/mL, respectively), hydroxyl radical (EC50 values of 0.77, 0.46, 0.70, and 1.30 mg/mL, respectively), superoxide anion radical (EC50 values of 0.08, 0.17, 0.15, and 0.16 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.15, 0.11, 0.19, and 0.18 mg/mL, respectively). Among the four isolated antioxidant peptides, IEPH showed the strongest reducing power and lipid peroxidation inhibition activity, but LEEEE showed the highest Fe2+-chelating ability. The present results suggested that VPR, IEPH, LEEEE, and IEEEQ might have the possibility of being an antioxidant additive that is used in functional food and pharmaceuticals.
Collapse
Affiliation(s)
- Xiao-Yang Pan
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Li Li
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
12
|
Isolation and Characterisation of Major and Minor Collagens from Hyaline Cartilage of Hoki ( Macruronus novaezelandiae). Mar Drugs 2019; 17:md17040223. [PMID: 31013845 PMCID: PMC6521242 DOI: 10.3390/md17040223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
The composition and properties of collagen in teleost (bony fish) cartilage have never been studied. In this study, we aimed to identify and characterise all collagen species in the nasal cartilage of hoki (Macruronus novaezelandiae). Four native collagen species were extracted using two techniques, and isolated with differential salt precipitation. We were able to assign the identity of three of these collagen species on the basis of solubility, SDS-PAGE and amino acid analyses. We found that hoki cartilage contains the major collagen, type II, and the minor collagens, type IX and type XI, which are homologous to those found in mammal and chicken cartilage. Using these extraction protocols, we also isolated a full-length type IX collagen from cartilage for the first time. In addition, we detected a 90 kDa, highly glycosylated collagen that has not been identified in any other species. For each isolate, structural and biochemical characterisations were performed using circular dichroism and Fourier transform infrared spectroscopy analyses, and the thermal denaturation properties were determined. Our results showed that the properties of hoki cartilage-derived collagens are similar to those of collagens in mammalian cartilage, indicating that teleost cartilage could provide biological ingredients for the development of biomaterials to treat cartilage-related illnesses.
Collapse
|
13
|
Luo QB, Chi CF, Yang F, Zhao YQ, Wang B. Physicochemical properties of acid- and pepsin-soluble collagens from the cartilage of Siberian sturgeon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31427-31438. [PMID: 30196466 DOI: 10.1007/s11356-018-3147-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
To look for the collagen alternatives of mammalian cartilages from aquatics and their by-products, acid-soluble collagen (ASC-SC) and pepsin-soluble collagen (PSC-SC) were extracted from cartilages of Siberian sturgeon (Acipenser baerii) with yields of 27.13 ± 1.15 and 14.69 ± 0.85% on dry weight basis. ASC-SC and PSC-SC had glycine as the major amino acid with the contents of 326.8 and 327.5 residues 1000 residues-1, and their contents of proline and hydroxyproline were 205.9 and 208.0 residues 1000 residues-1. ASC-SC and PSC-SC comprised type I collagen ([α1(I)]2α2(I)) and type II collagen ([α1(II)]3) on the literatures and results of amino acid composition, SDS-PAGE pattern, UV, and FTIR spectra. Meanwhile, FTIR spectra data indicated that there were more hydrogen bonds in ASC-SC and more intermolecular crosslinks in PSC-SC. The maximum transition temperature (Tmax) of the ASC (28.3 °C) and PSC (30.5 °C) was lower than those of collagens from mammalian cartilages (> 37 °C). ASC-SC and PSC-SC showed high solubility in the acidic pH ranges and the solubility decreased in the presence of NaCl at concentrations above 3%. Zeta potential studies indicated that both ASC-SC and PSC-SC exhibited a net zero charge at pH 6.30 and 6.32. SEM results indicated that ASC-SC and PSC-SC presented irregular dense sheet-like film linked by random-coiled filaments. Therefore, collagens from Siberian sturgeon cartilages might be the suitable alternatives of the collagens of mammal cartilages as functional ingredient to treat some diseases.
Collapse
Affiliation(s)
- Qian-Bin Luo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Fan Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
14
|
Li LY, Zhao YQ, He Y, Chi CF, Wang B. Physicochemical and Antioxidant Properties of Acid- and Pepsin-Soluble Collagens from the Scales of Miiuy Croaker ( Miichthys Miiuy). Mar Drugs 2018; 16:E394. [PMID: 30347803 PMCID: PMC6213086 DOI: 10.3390/md16100394] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
In this report, acid-soluble collagen (ASC-MC) and pepsin-soluble collagen (PSC-MC) were extracted from the scales of miiuy croaker (Miichthys miiuy) with yields of 0.64 ± 0.07% and 3.87 ± 0.15% of dry weight basis, respectively. ASC-MC and PSC-MC had glycine as the major amino acid with the contents of 341.8 ± 4.2 and 344.5 ± 3.2 residues/1000 residues, respectively. ASC-MC and PSC-MC had lower denaturation temperatures (32.2 °C and 29.0 °C for ASC-MC and PSC-MC, respectively) compared to mammalian collagen due to their low imino acid content (197.6 and 195.2 residues/1000 residues for ASC-MC and PSC-MC, respectively). ASC-MC and PSC-MC were mainly composed of type I collagen on the literatures and results of amino acid composition, SDS-PAGE pattern, ultraviolet (UV) and Fourier-transform infrared spectroscopy (FTIR) spectra. The maximum solubility of ASC-MC and PSC-MC was appeared at pH 1⁻3 and a sharp decrease in solubility was observed when the NaCl concentration was above 2%. Zeta potential studies indicated that ASC-MC and PSC-MC exhibited a net zero charge at pH 6.66 and 6.81, respectively. Furthermore, the scavenging capabilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical, superoxide anion radical and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical of ASC-MC and PSC-MC were positively correlated with their tested concentration ranged from 0 to 5 mg/mL and PSC-MC showed significantly higher activity than that of ASC-MC at most tested concentrations (p < 0.05). In addition, the scavenging capability of PSC-MC on hydroxyl radical and superoxide anion radical was higher than those of DPPH radical and ABTS radical, which suggested that ASC-SC and PSC-SC might be served as hydroxyl radical and superoxide anion radical scavenger in cosmeceutical products for protecting skins from photoaging and ultraviolet damage.
Collapse
Affiliation(s)
- Long-Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
15
|
Zhao WH, Chi CF, Zhao YQ, Wang B. Preparation, Physicochemical and Antioxidant Properties of Acid- and Pepsin-Soluble Collagens from the Swim Bladders of Miiuy Croaker ( Miichthys miiuy). Mar Drugs 2018; 16:E161. [PMID: 29757239 PMCID: PMC5983292 DOI: 10.3390/md16050161] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most useful biomaterials and widely applied in functional food and cosmetics. However, some consumers have paid close attention to the safety of mammalian collagens because of the outbreaks of bovine spongiform encephalopathy (BSE), foot-and-mouth disease (FMD), and other prion diseases. Therefore, there is a strong demand for developing alternative sources of collagen, with one promising source being from the process by-products of commercial fisheries. In this report, acid-soluble collagen (ASC-SB) and pepsin-soluble collagen (PSC-SB) from swim bladders of miiuy croaker (Miichthys miiuy) were isolated with yields of 1.33 ± 0.11% and 8.37 ± 0.24% of dry swim bladder weight. Glycine was the major amino acid present, with a content of 320.5 (ASC-SB) and 333.6 residues/1000 residues (PSC-SB). ASC-SB and PSC-SB had much lower denaturation temperatures compared to mammalian collagen, a consequence of low imino acid contents (196.7 and 199.5 residues/1000 residues for ASC-SB and PSC-SB, respectively). The data of amino acid composition, SDS-PAGE pattern, UV and FTIR spectra confirmed that ASC-SB and PSC-SB were mainly composed of type I collagen. FTIR spectra data indicated there were more hydrogen bonding and intermolecular crosslinks in ASC-SB. These collagens showed high solubility in the acidic pH ranges and low NaCl concentrations (less than 2%). The Zeta potential values of ASC-SB and PSC-SB were 6.74 and 6.85, respectively. ASC-SB and PSC-SB presented irregular, dense, sheet-like films linked by random-coiled filaments under scanning electron microscopy. In addition, ASC-SB and PSC-SB could scavenge DPPH radical, hydroxyl radical, superoxide anion radical, and ABTS radical in a dose-dependent manner. Overall, the results indicate that collagens from the swim bladders of miiuy croaker are a viable substitute for mammalian collagen, with potential functional food and cosmeceutical applications.
Collapse
Affiliation(s)
- Wen-Hao Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
16
|
Tao J, Zhao YQ, Chi CF, Wang B. Bioactive Peptides from Cartilage Protein Hydrolysate of Spotless Smoothhound and Their Antioxidant Activity In Vitro. Mar Drugs 2018; 16:md16040100. [PMID: 29565311 PMCID: PMC5923387 DOI: 10.3390/md16040100] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/21/2022] Open
Abstract
In the experiment, crude proteins from spotless smoothhound (Mustelus griseus), cartilages were isolated by HCl-Guanidine buffer, and its hydrolysate was prepared using trypsin at pH 8.0, 40 °C with a total enzyme dose of 2.5%. Subsequently, three antioxidant peptides were purified from the hydrolysate using membrane ultrafiltration, anion-exchange chromatography, gel filtration chromatography, and reverse phase high-performance liquid chromatography. The amino acid sequences of isolated peptides were identified as Gly-Ala-Glu-Arg-Pro (MCPE-A); Gly-Glu-Arg-Glu-Ala-Asn-Val-Met (MCPE-B); and Ala-Glu-Val-Gly (MCPE-C) with molecular weights of 528.57, 905.00, and 374.40 Da, respectively, using protein amino acid sequence analyzer and mass spectrum. MCPE-A, MCPE-B and MCPE-C exhibited good scavenging activities on 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) (EC50 3.73, 1.87, and 2.30 mg/mL, respectively), hydroxyl radicals (HO•) (EC50 0.25, 0.34, and 0.06 mg/mL, respectively), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radicals (ABTS+•) (EC50 0.10, 0.05, and 0.07 mg/mL, respectively) and superoxide anion radicals (O2−•) (EC50 0.09, 0.33, and 0.18 mg/mL, respectively). MCPE-B showed similar inhibiting ability on lipid peroxidation with butylated hydroxytoluene (BHT) in a linoleic acid model system. Furthermore, MCPE-A, MCPE-B, and MCPE-C could protect H2O2-induced HepG2 cells from oxidative stress by decreasing the content of malonaldehyde (MDA) and increasing the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx). Glu, Gly, Met, and Pro in their sequences and low molecular weight could be attributed to the antioxidant activities of three isolated peptides. These results suggested that GAERP (MCPE-A), GEREANVM (MCPE-B), and AEVG (MCPE-C) from cartilage protein hydrolysate of spotless smoothhound might serve as potential antioxidants and be used in the pharmaceutical and health food industries.
Collapse
Affiliation(s)
- Jing Tao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| |
Collapse
|
17
|
Pan X, Zhao YQ, Hu FY, Wang B. Preparation and identification of antioxidant peptides from protein hydrolysate of skate ( Raja porosa ) cartilage. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Preparation and characterization of acid and pepsin-soluble collagens from scales of croceine and redlip croakers. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0264-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|