1
|
Na G, Kang JW. Green synthesis of ZnO/CQD nanocomposite using chestnut shell and evaluating its photocatalytic antimicrobial activity under visible light. Food Res Int 2025; 205:115948. [PMID: 40032460 DOI: 10.1016/j.foodres.2025.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
This research evaluated the photocatalytic antimicrobial activity under visible light and investigated its mechanisms by synthesizing CQDs and ZnO from a single ingredient, chestnut shells, a food processing byproduct, and then wrapping CQDs on the ZnO to form a nanocomposite. Characterization confirmed successful synthesis, highlighting the potential to economically and sustainably produce two nanomaterials from one source. When CQDs were wrapped onto ZnO at an 8% ratio (8%-ZnO/CQD), the highest photocatalytic antimicrobial activity was achieved. The study demonstrated that CQDs effectively suppress the recombination of photoexcited electron-hole pairs, increasing the generation of reactive species, such as e- and •OH. The increased surface area from CQD wrapping led to the production of intracellular reactive oxygen species (iROS), further enhancing their antimicrobial activity and causing cell membrane damage. These findings suggest that 8%-ZnO/CQD holds promise for microbial control, offering a cost-effective and environmentally friendly solution to reducing water- and food-borne diseases.
Collapse
Affiliation(s)
- Gyumi Na
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
2
|
Marrone G, Di Lauro M, Izzo F, Cornali K, Masci C, Vita C, Occhiuto F, Di Daniele N, De Lorenzo A, Noce A. Possible Beneficial Effects of Hydrolyzable Tannins Deriving from Castanea sativa L. in Internal Medicine. Nutrients 2023; 16:45. [PMID: 38201875 PMCID: PMC10780656 DOI: 10.3390/nu16010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Hydrolyzable tannins (HTs) deriving from chestnuts have demonstrated, through numerous studies, the ability to exert multiple beneficial effects, including antioxidant and antimicrobial effects, on the lipid metabolism and cancer cells. The latter effect is very fascinating, since different polyphenols deriving from chestnuts were able to synergistically induce the inhibition of cancerous cells through multiple pathways. Moreover, the main mechanisms by which tannins induce antioxidant functions include: the reduction in oxidative stress, the ability to scavenge free radicals, and the modulation of specific enzymes, such as superoxide dismutase. HTs have also been shown to exert significant antimicrobial activity by suppressing microbial growth. The actions on the lipid metabolism are several, among which is the inhibition of lipid accumulation. Thus, tannins seem to induce a cardioprotective effect. In fact, through various mechanisms, such as the relaxation of the vascular smooth muscle, HTs were proven to be efficient against arterial hypertension. Therefore, the great number of studies in this field prove the growing interest on the utilization of natural bioactive compounds, such as HTs deriving from natural sources or obtained by circular economy models, as potential nutraceuticals or adjuvants therapies.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Francesco Izzo
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Chiara Vita
- QuMAP (Quality of Goods and Product Reliability), University of Florence, PIN, 59100 Prato, Italy;
- Department of Economics, Management and Business Law, University of Bari “Aldo Moro”, Piazza Umberto I, 70121 Bari, Italy
| | - Francesco Occhiuto
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Yu JM, Nam M, Kim MS. Metabolite Profiling of Chestnut (Castanea crenata) According to Origin and Harvest Time Using 1H NMR Spectroscopy. Foods 2022; 11:foods11091325. [PMID: 35564048 PMCID: PMC9099845 DOI: 10.3390/foods11091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chestnuts are an important food crop commonly used as a food ingredient due to their nutritional properties and potential health benefits. In Korea, chestnuts have been crossbred to develop cultivars with insect resistance and high productivity, producing multiple chestnut varieties. This study classified 17 Castanea crenata cultivars produced in Korea according to origin and harvest time and determined the metabolites in chestnut kernels using 1H nuclear magnetic resonance spectroscopy. The 17 C. crenata cultivars were divided into four groups based on their geographic origin: Korean native, Korean hybrid, Japanese native, and Japanese hybrid. The cultivars were also divided into three groups depending on their harvest period: early-ripening cultivar, mid-ripening cultivar, and late-ripening cultivar. The partial least squares-discriminant analysis score plot revealed differences among the groups. Identified metabolites, including amino acids, organic acids, and sugars, contributed to discriminating the origin and harvest time of the C. crenata chestnut kernels. Significant differences were observed, mainly in amino acids, which suggests that the composition of amino acids is one factor influenced by both the origin and harvest time of C. crenata. These results are useful to both growers and breeders because they identify the nutritional and metabolic characteristics of each C. crenata cultivar.
Collapse
|
4
|
Lee SR, Jo SL, Heo JH, Kim TW, Lee KP, Hong EJ. The aqueous fraction of Castanea crenata inner shell extract reduces obesity and intramuscular lipid accumulation via induction of mitochondrial respiration and fatty acid oxidation in muscle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153974. [PMID: 35144137 DOI: 10.1016/j.phymed.2022.153974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Skeletal muscle is responsible for free fatty acid (FFA) disposal via mitochondrial respiration and fatty acid oxidation (FAO). Obesity triggers high levels of circulating FFAs, which can cause intramuscular lipid (IMCL) deposition. Diverse phytochemicals, including crude Castanea crenata inner shell extract (CCE), have been shown to possess an anti-obesity effect. PURPOSE We aimed to demonstrate whether the aqueous fraction of CCE (ACCE) provides an anti-obesity effect with a decrease in plasma FFAs and reduces IMCL. METHODS High-fat-fed C57BL/6 mice received ACCE via water intake. A204 cells incubated with fatty acids were treated with ACCE. Lipid accumulation and mitochondrial metabolism were assessed using histological and molecular techniques. RESULTS ACCE possessed a notably higher gallic acid content than CCE among the constituents. ACCE-administered mice exhibited reduced plasma FFA levels, adiposity, and IMCL. Muscle lipotoxicity was suppressed, including apoptosis, ER stress, and inflammation. The anti-lipid effect of ACCE was observed with the induction of mitochondrial respiration and fatty acid oxidation in muscle. CONCLUSIONS ACCE increases mitochondrial respiration and FAO in skeletal muscle and protects muscle from IMCL and lipotoxicity, reducing plasma FFA and adiposity.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jun H Heo
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Kyu-Pil Lee
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Evaluation of the Antioxidant Activity, Deodorizing Effect, and Antibacterial Activity of 'Porotan' Chestnut By-Products and Establishment of a Compound Paper. Foods 2021; 10:foods10051141. [PMID: 34065309 PMCID: PMC8161069 DOI: 10.3390/foods10051141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Chestnuts are widely cultivated for their edible portion (kernel), whereas the non-edible parts are discarded. To enable the utilization of the by-products of processed chestnuts, we separated them into green and brown burs, shells, inner skin, and leaves, and analyzed the bioactive properties of the ground components. We also created a composite paper, comprising the inner skin, and examined its deodorant properties. It was revealed that the inner skin had the highest functionality and showed potent antioxidant, antibacterial, and deodorant properties. Furthermore, when we produced a paper, containing 60% inner skin, and examined its deodorant properties, we found that it was highly effective in deodorizing ammonia and acetic acid gases. These results show that the inner skin of chestnuts is a promising material for developing hygiene and other products.
Collapse
|
6
|
Hu M, Yang X, Chang X. Bioactive phenolic components and potential health effects of chestnut shell: A review. J Food Biochem 2021; 45:e13696. [PMID: 33751612 DOI: 10.1111/jfbc.13696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Chestnut kernels are often used for direct consumption; or processed to produce marron glacé, chestnut purée, and gluten-free products, while chestnut by-products (inner shell and outer shell) are treated as waste residues. Many in vivo and in vitro studies have proved how chestnut shell extract functions as an antioxidant and exhibits anticancer, anti-inflammatory, antidiabetic, and anti-obesity activities. This review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and reported potential health effects. The aim is to have a better understanding of the functional active ingredients in chestnut shells and their value-added uses, to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATIONS: In recent years, chestnut shells have become a hot research topic because of their rich bioactive ingredients. Due to the large amount of phenolic compounds in chestnut shells and their potential health functions (antioxidant, anticancer, antibacterial, anti-inflammatory, hypoglycemic, and treatment of obesity), extracts of chestnut shells have high biological value in the treatment of diseases. Therefore, this review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and the potential health effects of these compounds. The aim of this review is to better understand the functional, active ingredients in chestnut shells and their value-added uses, and to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Meiyi Hu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| | - Xiaokuan Yang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| |
Collapse
|
7
|
Cacciola NA, Cerrato A, Capriotti AL, Cavaliere C, D’Apolito M, Montone CM, Piovesana S, Squillaci G, Peluso G, Laganà A. Untargeted Characterization of Chestnut ( Castanea sativa Mill.) Shell Polyphenol Extract: A Valued Bioresource for Prostate Cancer Cell Growth Inhibition. Molecules 2020; 25:molecules25122730. [PMID: 32545546 PMCID: PMC7357160 DOI: 10.3390/molecules25122730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/13/2023] Open
Abstract
Chestnut seeds are used for fresh consumption and for the industrial preparation of derivatives, such as chestnut flour. During industrial processing, large amounts of by-products are generally produced, such as leaves, flowers, shells and burs. In the present study, chestnut shells were extracted by boiling water in order to obtain polyphenol-rich extracts. Moreover, for the removal or non-phenolic compounds, a separation by preparative reverse phase chromatography in ten fractions was carried out. The richest fractions in terms of phenolic content were characterized by means of untargeted high-resolution mass spectrometric analysis together with a dedicated and customized data processing workflow. A total of 243 flavonoids, phenolic acids, proanthocyanidins and ellagitannins were tentatively identified in the five richest fractions. Due its high phenolic content (450.03 µg GAE per mg of fraction), one tumor cell line (DU 145) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of fraction 3 dry extract for 24, 48 and 72 h. Moreover, for DU 145 cell lines, increase of apoptotic cells and perturbation of cell cycle was demonstrated for the same extract. Those outcomes suggest that chestnut industrial by-products could be potentially employed as a source of bioresources.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Research Institute on Terrestrial Ecosystems (IRET)-UOS Naples, National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy; (N.A.C.); (M.D.); (G.S.); (G.P.)
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
- Correspondence:
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
| | - Maria D’Apolito
- Research Institute on Terrestrial Ecosystems (IRET)-UOS Naples, National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy; (N.A.C.); (M.D.); (G.S.); (G.P.)
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
| | - Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
| | - Giuseppe Squillaci
- Research Institute on Terrestrial Ecosystems (IRET)-UOS Naples, National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy; (N.A.C.); (M.D.); (G.S.); (G.P.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-UOS Naples, National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy; (N.A.C.); (M.D.); (G.S.); (G.P.)
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (C.C.); (C.M.M.); (S.P.); (A.L.)
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
8
|
Kim KM, Lee HS, Yun MK, Cho HY, Yu HJ, Sohn J, Lee SJ. Fermented Castanea crenata Inner Shell Extract Increases Fat Metabolism and Decreases Obesity in High-Fat Diet-Induced Obese Mice. J Med Food 2019; 22:264-270. [DOI: 10.1089/jmf.2018.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Hee-Seop Lee
- Department of Food and Biotechnology, Korea University, Seoul, Korea
| | - Min-Kyu Yun
- Food R&D Center, SK Bioland Co., Ltd., Ansan, Korea
| | - Hong-Yon Cho
- Department of Food and Biotechnology, Korea University, Seoul, Korea
| | - Heui-Jong Yu
- Food R&D Center, SK Bioland Co., Ltd., Ansan, Korea
| | - Johann Sohn
- Food R&D Center, SK Bioland Co., Ltd., Ansan, Korea
| | - Sung-Jin Lee
- Food R&D Center, SK Bioland Co., Ltd., Ansan, Korea
| |
Collapse
|
9
|
Mechesso AF, Lee SJ, Park NH, Kim JY, Im ZE, Suh JW, Park SC. Preventive effects of a novel herbal mixture on atopic dermatitis-like skin lesions in BALB/C mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:25. [PMID: 30658631 PMCID: PMC6339437 DOI: 10.1186/s12906-018-2426-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND A combination of parts of Cornus officinalis, Rosa multiflora, Lespedeza bicolor, Platycladus orientalis, and Castanea crenata is commonly used for alleviating inflammatory skin disorders. Therefore, this study was carried out to evaluate the in vitro and in vivo preventive effects of a novel herbal formula made from the five plants (C2RLP) against atopic dermatitis in BALB/C mice. METHODS Mice were allocated into five groups (n = 8) including, control (Normal, petrolatum, and betamethasone treated) and treatment groups (treated with 2.5 and 5% C2RLP ointment). Atopic lesion was induced by applying 1-Chloro-2, 4-dinitrobenzene to the dorsal thoracic area of mice. Macroscopical and histological evaluations were performed to determine the effects of treatment on the progress of the skin lesions. The effects of treatment on the production and release of interleukins, interferon -ϒ, nitrite, prostaglandin E2, thymus and activation-receptor chemokine, and β-hexosaminidase were evaluated and comparisons were made between groups. In addition, the chemical compounds present in C2RLP were identified by Liquid Chromatography-Mass Spectrometry. RESULTS Topical application of C2RLP reduced the dermatitis score and suppressed histopathological changes in mice. Treatment significantly reduced (P < 0.05) plasma IL-4 level, the production of nitrite, prostaglandin E2, and thymus and activation-receptor chemokine production. The lipopolysaccharide-induced iNOS-mRNA expression in RAW 264.7 cells was also suppressed by high concentrations of C2RLP. In addition, C2RLP showed an inhibitory effect against DPPH free radical (IC50 = 147.5 μg/ml) and β-hexosaminidase release (IC50 = 179.5 μg/ml). Liquid Chromatography-Mass Spectrometry analysis revealed the presence of various compounds, including loganin, ellagic acid, and kaempferol 3-glucoside. CONCLUSION Down-regulation of T- helper 2 cellular responses and suppression of inflammatory mediators contributed to the protective effects of C2RLP from atopic dermatitis in BALB/C mice.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics (LVPP), College of Veterinary Medicine, Kyungpook National University, 41566, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| | - Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics (LVPP), College of Veterinary Medicine, Kyungpook National University, 41566, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| | - Na-Hye Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics (LVPP), College of Veterinary Medicine, Kyungpook National University, 41566, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| | - Jin-Yoon Kim
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics (LVPP), College of Veterinary Medicine, Kyungpook National University, 41566, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| | - Zi-Eum Im
- Forest Resources Development Institute of Gyeongsangbuk-do, Andong, Gyeongsangbuk-do 36605 Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728 Yongin, Gyeonggi Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics (LVPP), College of Veterinary Medicine, Kyungpook National University, 41566, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| |
Collapse
|
10
|
Youn UY, Kim RH, Kim GN, Lee SC. Antioxidant and anti-adipogenic activities of the nuts of Castanopsis cuspidata var. thunbergii. Food Sci Biotechnol 2017; 26:1407-1414. [PMID: 30263676 PMCID: PMC6049773 DOI: 10.1007/s10068-017-0183-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
The antioxidant and anti-adipogenic activities of the water extract (WE) and methanol extract (ME) of the shell and kernel of Castanopsis cuspidata var. thunbergii (CCT) nuts were evaluated. The shell extracts showed higher DPPH and ABTS radical scavenging activities (RSAs) than did the kernel extracts. Furthermore, the RSA of the ME was higher than that of the WE, regardless of the part. The total phenolic contents (TPCs) of the ME of the shell and kernel were 71.38 and 10.56 mg gallic acid equivalent (GAE)/100 mg extract, respectively. The TPCs of the WE of the shell and kernel were 17.44 and 9.27 mg GAE/100 mg extract, respectively. The WE inhibited 3T3-L1 adipogenesis more effectively than did the ME, and the shell extracts suppressed 3T3-L1 adipogenesis more effectively than did the kernel extracts. These results suggest that CCT nut kernels (ME) and shells (WE) may be strategically used to enhance antioxidant or and anti-obesity materials.
Collapse
Affiliation(s)
- Un-Young Youn
- Department of Food, Nutrition and Biotechnology, College of Health Sciences, Kyungnam University, Changwon, 51767 Republic of Korea
| | - Ryeong-Hyeon Kim
- Department of Food, Nutrition and Biotechnology, College of Health Sciences, Kyungnam University, Changwon, 51767 Republic of Korea
| | - Gyo-Nam Kim
- Department of Food, Nutrition and Biotechnology, College of Health Sciences, Kyungnam University, Changwon, 51767 Republic of Korea
| | - Seung-Cheol Lee
- Department of Food, Nutrition and Biotechnology, College of Health Sciences, Kyungnam University, Changwon, 51767 Republic of Korea
| |
Collapse
|
11
|
Woo Y, Oh J, Kim JS. Suppression of Nrf2 Activity by Chestnut Leaf Extract Increases Chemosensitivity of Breast Cancer Stem Cells to Paclitaxel. Nutrients 2017; 9:nu9070760. [PMID: 28718813 PMCID: PMC5537874 DOI: 10.3390/nu9070760] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Due to metastatic potential and drug resistance, cancer stem cells (CSCs) have become a critical target for the development of chemotherapeutic agents. Recent studies showed that CSCs highly express NF-E2-related factor 2 (Nrf2)-mediated antioxidant enzymes and thereby retain relatively low levels of reactive oxygen species (ROS). Since anticancer agents usually utilize ROS as an arsenal for killing cancer cells, we hypothesized that inhibition of Nrf2 activity could increase the sensitivity of CSCs to anticancer drugs, and thus enhancing their therapeutic efficacy. We found that MCF-7-derived CSCs with a CD44high/CD24low phenotype formed mammospheres and highly expressed Nrf2 compared to the adherent parental MCF-7 cells. In a separate experiment, we screened 89 different edible plant extracts for inhibitory activity against the Nrf2 signaling pathway by using an antioxidant response element (ARE)-luciferase assay system. Among those extracts, Castanea crenata (chestnut) leaf extract significantly decreased the nuclear translocation of Nrf2 and protein expression of antioxidant enzymes in MCF-7-derived CSCs. The combined treatment of the CSCs with chestnut leaf extract and paclitaxel resulted in more effective cell death than the treatment with paclitaxel alone. These findings suggest that the chestnut leaf extract or its constituents could increase the susceptibility of breast CSCs to an anticancer drug, paclitaxel, through inhibition of the Nrf2 signaling pathway, and could be utilized as an adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Yaejin Woo
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
- Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|