1
|
Parois SP, Eicher SD, Lindemann SR, Marchant JN. Potential improvements of the cognition of piglets through a synbiotic supplementation from 1 to 28 days via the gut microbiota. Sci Rep 2021; 11:24113. [PMID: 34916559 PMCID: PMC8677727 DOI: 10.1038/s41598-021-03565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
The influence of feed supplements on behavior and memory has been recently studied in livestock. The objectives of the study were to evaluate the effects of a synbiotic on: an episodic-like (SOR: Spontaneous Object Recognition), a working (BARR: Fence barrier task), a long-term (TMAZE: Spatial T-maze task) memory test and on gut microbiota composition. Eighteen female piglets were supplemented from 1 to 28 days of age with a synbiotic (SYN), while 17 served as control (CTL). Feces were collected on days 16, 33 and 41 for 16S rRNA gene composition analyses. In the SOR, SYN piglets interacted more quickly with the novel object than CTL piglets. In the BARR, SYN piglets had shorter distances to finish the test in trial 3. In the TMAZE, SYN piglets were quicker to succeed on specific days and tended to try the new rewarded arm earlier during the reversal stage. Difference of microbiota composition between treatments was nonexistent on D16, a tendency on D33 and significant on D41. The synbiotic supplement may confer memory advantages in different cognitive tasks, regardless of the nature of the reward and the memory request. Difference in memory abilities can potentially be explained by differences in microbiota composition.
Collapse
Affiliation(s)
- Severine P Parois
- PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France.
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN, USA.
| | - Susan D Eicher
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN, USA
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
2
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
3
|
Guo Y, Zou G, Qi K, Jin J, Yao L, Pan Y, Xiong W. Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice. Mol Brain 2021; 14:41. [PMID: 33627175 PMCID: PMC7905661 DOI: 10.1186/s13041-021-00758-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Lipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive function impairment, caused by long-term usage of BBB-permeable statins.
Collapse
Affiliation(s)
- Yujun Guo
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guichang Zou
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Jin Jin
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Yao
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei Xiong
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Wang Y, An Y, Zhang D, Yu H, Zhang X, Wang Y, Tao L, Xiao R. 27-Hydroxycholesterol Alters Synaptic Structural and Functional Plasticity in Hippocampal Neuronal Cultures. J Neuropathol Exp Neurol 2019; 78:238-247. [PMID: 30753597 PMCID: PMC7967841 DOI: 10.1093/jnen/nlz002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the neurotoxic effects of 27-hydroxycholesterol (27-OHC), a major circulating cholesterol active derivative in brain on synaptic structural and functional plasticity in primary hippocampal neurons. Newborn SD rat primary hippocampal neurons were treated with 0, 1, 3, 10, and 30 μM 27-OHC for 24 hours. MTT and CCK-8 assays were used to monitor the cell viability of neurons with different treatments. Neurite morphology was assessed by staining for microtubule-associated protein-2 (MAP2) and analyzed by immunofluorescence. Synaptic ultrastructure was evaluated by transmission electron microscopy. Real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression of key synaptic proteins: synaptophysin (SYP), postsynaptic density protein-95 (PSD-95), synaptosomal-associated protein 25 (SNAP-25), growth-associated protein-43 (GAP-43), MAP2, and activity-regulated cytoskeleton-associated protein (Arc). Treatment with 27-OHC at various doses stimulated cell death and resulted in significant decreases in neurite number and length, alteration of synaptic ultrastructure, and downregulated expression of synaptic proteins in a dose-dependent manner. These results suggest that 27-OHC is deleterious for synaptic structural and functional plasticity, which may partially account for its neurotoxic effects.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Capital Medical University, Beijing, China
| | - Dandi Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Zhang X, Lv C, An Y, Liu Q, Rong H, Tao L, Wang Y, Wang Y, Xiao R. Increased Levels of 27-Hydroxycholesterol Induced by Dietary Cholesterol in Brain Contribute to Learning and Memory Impairment in Rats. Mol Nutr Food Res 2018; 62. [PMID: 29193679 DOI: 10.1002/mnfr.201700531] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/08/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Dietary cholesterol has been shown to play a role in the development of Alzheimer's disease (AD). It is proposed that oxysterol especially 27-hydroxycholesterol (27-OHC) may play a potential role in β-amyloid peptides (Aβ) production and accumulation during AD progression. METHODS AND RESULTS To investigate the mechanisms of dietary cholesterol and 27-OHC on learning and memory impairment, male Sprague-Dawley rats are fed with cholesterol diet with or without 27-OHC synthetase inhibitor (anastrozole) injection. The levels of cholesterol, 27-OHC, 24-hydroxycholesterol (24S-OHC), 7α-hydroxycholesterol, and 7β-hydroxycholesterol in plasma are determined; apolipoprotein A (ApoA), apolipoprotein B (ApoB), HDL-cholesterol (HDL-C), and LDL-cholesterol (LDL-C) in plasma or brain; CYP27A1 and CYP7A1 in liver and CYP46A1 and CYP7B1 in brain; cathepsin B, cathepsin D, and acid phosphatase in lysosome; and Aβ1-40 and Aβ1-42 in brain. Results show increased levels of 27-OHC (p < 0.01), LDL-C (p < 0.01), and ApoB (p < 0.01), and decreased level of HDL-C (p < 0.05) in plasma, upregulated CYP27A1 (p < 0.01) and CYP7A1 (p < 0.01) expression in liver, altered lysosomal function, and increased level of Aβ in brain (p < 0.05). CONCLUSIONS This study indicates that the mechanisms of dietary cholesterol on learning and memory impairment may be involved in cholesterol metabolism and lysosome function with the increase of plasma 27-OHC, thus resulting in Aβ formation and accumulation.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Chenyan Lv
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Quanri Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongguo Rong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Gendle MH. The potential behavioral and economic impacts of widespread HMG-CoA reductase inhibitor (statin) use. Med Hypotheses 2016; 97:54-58. [DOI: 10.1016/j.mehy.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 01/21/2023]
|
8
|
Clouard C, Kemp B, Val‐Laillet D, Gerrits WJJ, Bartels AC, Bolhuis JE. Prenatal, but not early postnatal, exposure to a Western diet improves spatial memory of pigs later in life and is paired with changes in maternal prepartum blood lipid levels. FASEB J 2016; 30:2466-75. [DOI: 10.1096/fj.201500208r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Caroline Clouard
- Department of Animal SciencesAdaptation Physiology GroupWageningen UniversityWageningenThe Netherlands
| | - Bas Kemp
- Department of Animal SciencesAdaptation Physiology GroupWageningen UniversityWageningenThe Netherlands
| | - David Val‐Laillet
- Department of Animal SciencesAnimal Nutrition GroupWageningen UniversityWageningenThe Netherlands
| | - Walter J. J. Gerrits
- Unité de Recherche 1341, Alimentation et Adaptations Digestives, Nerveuses et ComportementalesInstitut National de la Recherche AgronomiqueSaint GillesFrance
| | - Andrea C. Bartels
- Department of Animal SciencesAdaptation Physiology GroupWageningen UniversityWageningenThe Netherlands
| | - J. Elizabeth Bolhuis
- Department of Animal SciencesAdaptation Physiology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
9
|
Wang D, Zheng W. Dietary cholesterol concentration affects synaptic plasticity and dendrite spine morphology of rabbit hippocampal neurons. Brain Res 2015; 1622:350-60. [PMID: 26188241 DOI: 10.1016/j.brainres.2015.06.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
Previous studies have shown dietary cholesterol can enhance learning but retard memory which may be partly due to increased cholesterol levels in hippocampus and reduced afterhyperpolarization (AHP) amplitude of hippocampal CA1 neurons. This study explored the dose-dependent effect of dietary cholesterol on synaptic plasticity of rabbit hippocampal CA1 neurons and spine morphology, the postsynaptic structures responsible for synaptic plasticity. Field potential recordings revealed a low concentration of dietary cholesterol increased long-term potentiation (LTP) expression while high concentrations produced a pronounced reduction in LTP expression. Dietary cholesterol facilitated basal synaptic transmission but did not influence presynaptic function. DiI staining showed dietary cholesterol induced alterations in dendrite spine morphology characterized by increased mushroom spine density and decreased thin spine density, two kinds of dendritic spines that may be linked to memory consolidation and learning acquisition. Dietary cholesterol also modulated the geometric measures of mushroom spines. Therefore, dietary cholesterol dose-dependently modulated both synaptic plasticity and dendrite spine morphologies of hippocampal CA1 neurons that could mediate learning and memory changes previously seen to result from feeding a cholesterol diet.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America; Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26505, United States of America.
| | - Wen Zheng
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26505, United States of America
| |
Collapse
|
10
|
Guillermo RB, Yang P, Vickers MH, McJarrow P, Guan J. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density. Food Nutr Res 2015; 59:25765. [PMID: 25818888 PMCID: PMC4377325 DOI: 10.3402/fnr.v59.25765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.
Collapse
Affiliation(s)
- Rosamond B Guillermo
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Panzao Yang
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Jian Guan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| |
Collapse
|
11
|
Orellana JA, Busso D, Ramírez G, Campos M, Rigotti A, Eugenín J, von Bernhardi R. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet. Front Cell Neurosci 2014; 8:403. [PMID: 25520621 PMCID: PMC4251442 DOI: 10.3389/fncel.2014.00403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/08/2014] [Indexed: 01/06/2023] Open
Abstract
Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke during pregnancy.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Dolores Busso
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Gigliola Ramírez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Marlys Campos
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Attilio Rigotti
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Rommy von Bernhardi
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
12
|
Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology 2014; 121:852-65. [PMID: 25093591 DOI: 10.1097/aln.0000000000000403] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood. METHODS The authors used a previously characterized mouse model of tibia fracture/cast immobilization showing the principal stigmata of CRPS (n = 8 to 20 per group) observed in humans. The central hypothesis was that fracture/cast mice manifest changes in measures of thigmotaxis (indicative of anxiety) and working memory reflected in neuroplastic changes in amygdala, perirhinal cortex, and hippocampus. RESULTS The authors demonstrate that nociceptive sensitization in these mice is accompanied by altered thigmotactic behaviors in the zero maze but not open field assay, and working memory dysfunction in novel object recognition and social memory but not in novel location recognition. Furthermore, the authors found evidence of structural changes and synaptic plasticity including changes in dendritic architecture and decreased levels of synaptophysin and brain-derived neurotrophic factor in specific brain regions. CONCLUSIONS The study findings provide novel observations regarding behavioral changes and brain plasticity in a mouse model of CRPS. In addition to elucidating some of the supraspinal correlates of the syndrome, this work supports the potential use of therapeutic interventions that not only directly target sensory input and other peripheral mechanisms, but also attempt to ameliorate the broader pain experience by modifying its associated cognitive and emotional comorbidities.
Collapse
|
13
|
Schreurs BG, Smith-Bell CA, Lemieux SK. Dietary cholesterol increases ventricular volume and narrows cerebrovascular diameter in a rabbit model of Alzheimer's disease. Neuroscience 2013; 254:61-9. [PMID: 24045100 PMCID: PMC3830722 DOI: 10.1016/j.neuroscience.2013.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022]
Abstract
Using structural magnetic resonance imaging in a clinical scanner at 3.0T, we describe results showing that following 12weeks on a diet of 2% cholesterol, rabbits experience a significant increase in the volume of the third ventricle compared to rabbits on a diet of 0% cholesterol. Using time-of-flight magnetic resonance angiography, we find cholesterol-fed rabbits also experience a decrease in the diameter of a number of cerebral blood vessels including the basilar, posterior communicating, and internal carotid arteries. Taken together, these data confirm that, despite the inability of dietary cholesterol to cross the blood-brain barrier, it does significantly enlarge ventricular volume and decrease cerebrovascular diameter in the rabbit - effects that are also seen in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- B G Schreurs
- Department of Physiology and Pharmacology, and the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States.
| | | | | |
Collapse
|
14
|
Schreurs BG, Smith-Bell CA, Wang D, Burhans LB. Dietary cholesterol degrades rabbit long term memory for discrimination learning but facilitates acquisition of discrimination reversal. Neurobiol Learn Mem 2013; 106:238-45. [PMID: 24076265 DOI: 10.1016/j.nlm.2013.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 01/01/2023]
Abstract
We have shown previously that feeding dietary cholesterol before learning can improve acquisition whereas feeding cholesterol after learning can degrade long term memory. To examine these different findings within a single paradigm, we fed groups of rabbits 2% cholesterol or normal chow with or without 0.12 ppm copper added to the drinking water following two-tone discrimination learning of the nictitating membrane response in which a 8-kHz tone (conditioned stimulus, CS+) was followed by air puff and a 1-kHz tone (CS-) was not. After eight weeks on the diet, we assessed the rabbits' conditioned responding during testing and retraining. We then reversed the two-tone discrimination and assessed responding to the 1-kHz tone CS+ and the 8-kHz CS-. During testing, rabbits given cholesterol without copper had lower levels of responding to CS+ than rabbits in the other groups suggesting they did not retain the discrimination as well. However, during a brief discrimination retraining session, their response levels to the CS+ returned to the level of the other groups, demonstrating a return of the memory of the original discrimination. At the end of discrimination reversal, these same rabbits exhibited superior discrimination indexed by lower response levels to CS- but similar levels to CS+, suggesting they were better able to acquire the new relationship between the two tones by inhibiting CS- responses. These results add to our previous data by showing cholesterol diet-induced degradation of an old memory and facilitation of a new memory can both be demonstrated within a discrimination reversal paradigm. Given discrimination reversal is a hippocampally-dependent form of learning, the data support the role of cholesterol in modifying hippocampal function as we have shown previously with in vitro brain slice recordings.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States.
| | | | | | | |
Collapse
|
15
|
Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013; 2013:518780. [PMID: 24073355 PMCID: PMC3773440 DOI: 10.1155/2013/518780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.
Collapse
|