1
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Tang S, Liang C, Yu H, Hou W, Hu Z, Chen X, Duan Z, Zheng S. The potential serum sphingolipid biomarkers for distinguishing Wilson disease. Clin Chim Acta 2024; 553:117740. [PMID: 38145643 DOI: 10.1016/j.cca.2023.117740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The diagnosis of Wilson's disease (WD) remains a challenging endeavor in clinical practice. Serum sphingolipids play a significant role in the development of liver disease. In this study, we examined the serum sphingolipid profile in patients with WD and explored the potential diagnostic utility of serum sphingolipid metabolites. These metabolites may aid in distinguishing WD patients from healthy controls and identifying those with a risk of cirrhosis. METHODS This study consecutively enrolled 26 WD patients and 88 healthy controls. We utilized high-performance liquid chromatography-tandem mass spectrometry to analyze a panel of 88 serum sphingolipid metabolites. The data were analyzed by multivariate statistical methods. RESULTS Among the 88 sphingolipids metabolites analyzed, 17 sphingolipids were observed significant differences between WD and HC groups (all P < 0.05). Notably, five sphingolipids, namely S1P (d18:1), Cer (d18:2/21:0), SM41:2, sph(d18:1), and Cer (d18:2/22:0), each with an AUC exceeding 0.9, emerged as potential biomarkers for WD. Additionally, in the comparison between WD patients with and without cirrhosis, 24 sphingolipid metabolites exhibited significant differences (all P < 0.05). We identified Cer(d18:1/20:0), Cer(d18:2/22:0), Cer(d18:2/24:0), Cer(d18:2/20:0), and Cer(d18:2/18:0), each with an AUC exceeding 0.9, as potential serological markers for WD patients with cirrhosis. CONCLUSION For enhanced clinical applicability, we propose considering Cer (d18:2/22:0) as a predictive marker applicable to both WD patients and their susceptibility to cirrhosis. This particular ceramide has exhibited strong diagnostic and predictive performance. These findings have the potential to facilitate non-invasive WD diagnosis.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chen Liang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongjie Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Portincasa P. NAFLD, MAFLD, and beyond: one or several acronyms for better comprehension and patient care. Intern Emerg Med 2023; 18:993-1006. [PMID: 36807050 PMCID: PMC10326150 DOI: 10.1007/s11739-023-03203-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common type of chronic liver disease. NAFLD points to excessive hepatic fat storage and no evidence of secondary hepatic fat accumulation in patients with "no or little alcohol consumption". Both the etiology and pathogenesis of NAFLD are largely unknown, and a definitive therapy is lacking. Since NAFLD is very often and closely associated with metabolic dysfunctions, a consensus process is ongoing to shift the acronym NAFLD to MAFLD, i.e., metabolic-associated fatty liver disease. The change in terminology is likely to improve the classification of affected individuals, the disease awareness, the comprehension of the terminology and pathophysiological aspects involved, and the choice of more personalized therapeutic approaches while avoiding the intrinsic stigmatization due to the term "non-alcoholic". Even more recently, other sub-classifications have been proposed to concentrate the heterogeneous causes of fatty liver disease under one umbrella. While awaiting additional validation studies in this field, we discuss the main reasons underlying this important shift of paradigm.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
4
|
Peschel G, Weigand K, Grimm J, Müller M, Krautbauer S, Höring M, Liebisch G, Buechler C. Gender-Specific Differences in Serum Sphingomyelin Species in Patients with Hepatitis C Virus Infection-Sphingomyelin Species Are Related to the Model of End-Stage Liver Disease (MELD) Score in Male Patients. Int J Mol Sci 2023; 24:8402. [PMID: 37176109 PMCID: PMC10179471 DOI: 10.3390/ijms24098402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
5
|
Di Ciaula A, Bonfrate L, Krawczyk M, Frühbeck G, Portincasa P. Synergistic and Detrimental Effects of Alcohol Intake on Progression of Liver Steatosis. Int J Mol Sci 2022; 23:2636. [PMID: 35269779 PMCID: PMC8910376 DOI: 10.3390/ijms23052636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the most common liver disorders worldwide and the major causes of non-viral liver cirrhosis in the general population. In NAFLD, metabolic abnormalities, obesity, and metabolic syndrome are the driving factors for liver damage with no or minimal alcohol consumption. ALD refers to liver damage caused by excess alcohol intake in individuals drinking more than 5 to 10 daily units for years. Although NAFLD and ALD are nosologically considered two distinct entities, they show a continuum and exert synergistic effects on the progression toward liver cirrhosis. The current view is that low alcohol use might also increase the risk of advanced clinical liver disease in NAFLD, whereas metabolic factors increase the risk of cirrhosis among alcohol risk drinkers. Therefore, special interest is now addressed to individuals with metabolic abnormalities who consume small amounts of alcohol or who binge drink, for the role of light-to-moderate alcohol use in fibrosis progression and clinical severity of the liver disease. Evidence shows that in the presence of NAFLD, there is no liver-safe limit of alcohol intake. We discuss the epidemiological and clinical features of NAFLD/ALD, aspects of alcohol metabolism, and mechanisms of damage concerning steatosis, fibrosis, cumulative effects, and deleterious consequences which include hepatocellular carcinoma.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
| | - Marcin Krawczyk
- Department of Medicine II Saarland University Medical Center, Saarland University, 66424 Homburg, Germany;
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31009 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31009 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
6
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
7
|
Ma Y, Kan C, Qiu H, Liu Y, Hou N, Han F, Shi J, Sun X. Transcriptomic Analysis Reveals the Protective Effects of Empagliflozin on Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:793586. [PMID: 34992540 PMCID: PMC8724565 DOI: 10.3389/fphar.2021.793586] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Empagliflozin is a novel type of sodium-glucose cotransporter two inhibitor with diverse beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Although empagliflozin impacts NAFLD by regulating lipid metabolism, the underlying mechanism has not been fully elucidated. In this study, we investigated transcriptional regulation pathways affected by empagliflozin in a mouse model of NAFLD. In this study, NAFLD was established in male C57BL/6J mice by administration of a high-fat diet; it was then treated with empagliflozin and whole transcriptome analysis was conducted. Gene expression levels detected by transcriptome analysis were then verified by quantitative real-time polymerase chain reaction, protein levels detected by Western Blot. Differential expression genes screened from RNA-Seq data were enriched in lipid metabolism and synthesis. The Gene Set Enrichment Analysis (GSEA) results showed decreased lipid synthesis and improved lipid metabolism. Empagliflozin improved NAFLD through enhanced triglyceride transfer, triglyceride lipolysis and microsomal mitochondrial β-oxidation. This study provides new insights concerning the mechanisms by which sodium-glucose cotransporter two inhibitors impact NAFLD, particularly in terms of liver lipid metabolism. The lipid metabolism-related genes identified in this experiment provide robust evidence for further analyses of the mechanism by which empagliflozin impacts NAFLD.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Gan J, Gao Q, Wang LL, Tian AP, Zhu LD, Zhang LT, Zhou W, Mao XR, Li JF. Glucosylceramide synthase regulates hepatocyte repair after concanavalin A-induced immune-mediated liver injury. PeerJ 2021; 9:e12138. [PMID: 34611503 PMCID: PMC8447939 DOI: 10.7717/peerj.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Sphingolipids produce pleiotropic signaling pathways, and participate in the pathological mechanism of hepatocyte apoptosis and necrosis during liver injury. However, the role of glucosylceramide synthase (GCS)-key enzyme that catalyzes the first glycosylation step, in liver injury is still vague. METHODS All experiments were conducted using 7-9-week-old pathogen-free male C57BL/6 mice. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected in murine models of liver disease, in addition to histological characterization of liver injuries. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative expression of the GCS, matrix metallopeptidase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) genes. The GCS was observed through a fluorescence microscope, and the flow cytometry was used to detect hepatocyte apoptosis. The concentrations of serum IL-4, IL-6, and IL-10 were measured using enzyme-linked immune-sorbent assay (ELISA) kit. MMP-1 and TIMP-1 protein expression was measured via western blot (WB) analysis. RESULTS Con A is often used as a mitogen to activate T lymphocytes and promote mitosis. A single dose of Con A injected intravenously will cause a rapid increase of ALT and AST, which is accompanied by the release of cytokines that cause injury and necrosis of hepatocytes. In this study, we successfully induced acute immune hepatitis in mice by Con A. Con A administration resulted in GCS upregulation in liver tissues. Moreover, the mice in the Con A group had significantly higher levels of ALT, AST, IL-4, IL-6, IL-10 and increased hepatocyte apoptosis than the control group. In contrast, all of the aforementioned genes were significantly downregulated after the administration of a GCS siRNA or Genz-123346 (i.e., a glucosylceramide synthase inhibitor) to inhibit the GCS gene. Additionally, the histopathological changes observed herein were consistent with our ALT, AST, IL-4, IL-6, and IL-10 expression results. However, unlike this, hepatocyte apoptosis has been further increased on the basis of the Con A group. Moreover, our qRT-PCR and WB results indicated that the expression of MMP-1 in the Con A group was significantly lower than that in the control group, whereas TIMP-1 exhibited the opposite trend. Conversely, MMP-1 expression in the GCS siRNA and Genz-123346 groups was higher than that in the Con A group, whereas TIMP-1 expression was lower. CONCLUSIONS GCS inhibition reduces Con A-induced immune-mediated liver injury in mice, which may be due to the involvement of GCS in the hepatocyte repair process after injury.
Collapse
Affiliation(s)
- Jian Gan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qin Gao
- Physical Examination Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Li Li Wang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ai Ping Tian
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Dong Zhu
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Li Ting Zhang
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Zhou
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Rong Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jun Feng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Gan J, Mao XR, Zheng SJ, Li JF. Invariant natural killer T cells: Not to be ignored in liver disease. J Dig Dis 2021; 22:136-142. [PMID: 33421264 DOI: 10.1111/1751-2980.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
The liver is an important immune organ. Hepatocellular injury can be caused by many factors, which further leads to chronic liver diseases by activating the immune system. Multiple immune cells, such as T lymphocytes, B lymphocytes, natural killer cells (NKs), natural killer T cells (NKTs), and γδT cells, accumulate and participate in the immune regulation of the liver. NKTs are an indispensable component of immune cells in the liver, and invariant natural killer T cells (iNKTs) are the main subpopulation of NKTs. iNKTs activated by glycolipid antigen presented on CD1d secrete a series of cytokines and also act on other immune cells through cell-to-cell contact. Studies on the relationship between iNKTs and liver immunity have provided clues to uncover the pathogenesis of liver diseases and develop a promising strategy for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Rong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Su Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jun Feng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
10
|
Sphingomyelinases and Liver Diseases. Biomolecules 2020; 10:biom10111497. [PMID: 33143193 PMCID: PMC7692672 DOI: 10.3390/biom10111497] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) are critical components of membrane bilayers that play a crucial role in their physico-chemical properties. Ceramide is the prototype and most studied SL due to its role as a second messenger in the regulation of multiple signaling pathways and cellular processes. Ceramide is a heterogeneous lipid entity determined by the length of the fatty acyl chain linked to its carbon backbone sphingosine, which can be generated either by de novo synthesis from serine and palmitoyl-CoA in the endoplasmic reticulum or via sphingomyelin (SM) hydrolysis by sphingomyelinases (SMases). Unlike de novo synthesis, SMase-induced SM hydrolysis represents a rapid and transient mechanism of ceramide generation in specific intracellular sites that accounts for the diverse biological effects of ceramide. Several SMases have been described at the molecular level, which exhibit different pH requirements for activity: neutral, acid or alkaline. Among the SMases, the neutral (NSMase) and acid (ASMase) are the best characterized for their contribution to signaling pathways and role in diverse pathologies, including liver diseases. As part of a Special Issue (Phospholipases: From Structure to Biological Function), the present invited review summarizes the physiological functions of NSMase and ASMase and their role in chronic and metabolic liver diseases, of which the most relevant is nonalcoholic steatohepatitis and its progression to hepatocellular carcinoma, due to the association with the obesity and type 2 diabetes epidemic. A better understanding of the regulation and role of SMases in liver pathology may offer the opportunity for novel treatments of liver diseases.
Collapse
|
11
|
Papadopoulos C, Panopoulou M, Mylopoulou T, Mimidis K, Tentes I, Anagnostopoulos K. Cholesterol and Phospholipid Distribution Pattern in the Erythrocyte Membrane of Patients with Hepatitis C and Severe Fibrosis, before and after Treatment with Direct Antiviral Agents: A pilot Study. MÆDICA 2020; 15:162-168. [PMID: 32952679 DOI: 10.26574/maedica.2020.15.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objectives: Hepatitis C virus requires and induces changes in liver lipidome for its life cycle. In addition, alterations in plasma and erythrocyte lipidome are observed during a range of chronic liver diseases. Methods: A total of six subjects (three males and three females) were included in our study. All subjects were HCV positive according to virus RNA detection. Erythrocyte ghosts were prepared from blood and collected upon diagnosis and also at the end of the treatment with Direct Antiviral Agents (DAA). Lipids were extracted from the erythrocyte ghosts, and cholesterol and phospholipids were analyzed by thin layer chromatography. A semi-quantitative estimation of cholesterol (CHOL), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC) and sphingomyelin (SM) was performed by densitometric analysis of the chromatographs. Results: After the antiviral treatment, PE percentage decreased, whereas the PC/PE and CHOL/PE ratio increased significantly. There were also other weaker differences for CHOL, PI, PS, PC and SM. Before DAA there was a very weak correlation between ALT and PC/PE ratio. In contrast, there was a steep negative correlation between these two parameters after DAA. Conclusion: Red blood cell lipid composition and especially the PC/PE ratio could be a candidate real time biological marker for inflammation resolution during hepatitis C treatment.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Laboratory of Microbiology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodora Mylopoulou
- Laboratory of Microbiology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Mimidis
- Laboratory of Microbiology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Tentes
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
12
|
Jiang Y, Tie C, Wang Y, Bian D, Liu M, Wang T, Ren Y, Liu S, Bai L, Chen Y, Duan Z, Zheng S, Zhang J. Upregulation of Serum Sphingosine (d18:1)-1-P Potentially Contributes to Distinguish HCC Including AFP-Negative HCC From Cirrhosis. Front Oncol 2020; 10:1759. [PMID: 33014866 PMCID: PMC7506152 DOI: 10.3389/fonc.2020.01759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Serum sphingolipids are widely involved in the development of hepatocellular carcinoma (HCC). We investigated the serum sphingolipid profile in patients with HCC or cirrhosis and explored the potential diagnostic efficiency of serum sphingolipid metabolites which may be helpful in differentiating HCC including α-fetoprotein (AFP)-negative HCC from cirrhosis. METHODS Seventy-two HCC patients (including 24 AFP-negative HCC) and 104 cirrhotic patients were consecutively enrolled in this study. High-performance liquid chromatography-tandem mass spectrometry was used to detect a panel of 57 serum sphingolipid metabolites. RESULTS Twenty-four sphingolipid metabolites showed significant differences between HCC and cirrhotic patients (all P < 0.05). Sphingosine (d18:1)-1-P was found to have the potential to differentiate HCC from cirrhosis by orthogonal partial least squares discriminant analysis (OPLS-DA). There was no significant difference in the efficacy of Sphingosine (d18:1)-1-P and AFP to distinguish HCC from cirrhosis, and the area under the receiver operating curve (AUC) were 0.85 and 0.83 (P > 0.05), respectively. When the cut-off value of Sphingosine (d18:1)-1-P was set at 56.29 pmol/0.1 ml, the sensitivity and specificity were 79.20% and 78.70%, respectively. Notably, the upregulation of Sphingosine (d18:1)-1-P could also distinguish AFP-negative HCC from cirrhosis with an AUC of 0.79. The sensitivity and specificity were 62.50% and 77.90% at a cut-off value of 56.29 pmol/0.1 ml. Spearman rank correlation analysis revealed that serum Sphingosine (d18:1)-1-P was not correlated with AFP in patients with cirrhosis, AFP-positive HCC, and AFP-negative HCC. Moreover, the difference in the diagnostic efficiency of serum Sphingosine (d18:1)-1-P was not statistically significant between tumor size (≤2 cm vs. >2 cm, P = 0.476). Also, there was no difference among patients with different TNM stages and BCLC stages. CONCLUSION The upregulation of serum Sphingosine (d18:1)-1-P exhibits good diagnostic performance for HCC. Particularly, Sphingosine (d18:1)-1-P could also serve as a biomarker for the diagnosis of AFP-negative HCC. These findings may contribute to the non-invasive diagnosis of HCC including AFP-negative HCC.
Collapse
Affiliation(s)
- Yingying Jiang
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Cai Tie
- Institute of Materia Medica, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Yang Wang
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dandan Bian
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Ren
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuang Liu
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jinlan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| |
Collapse
|
13
|
Zhang Y, Takagi N, Yuan B, Zhou Y, Si N, Wang H, Yang J, Wei X, Zhao H, Bian B. The protection of indolealkylamines from LPS-induced inflammation in zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112122. [PMID: 31356965 DOI: 10.1016/j.jep.2019.112122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toad skin came from Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. As the traditional Chinese medicine, it had the effect of clearing away heat and detoxification. In traditional applications, toad skin was often used for the treatment of cancer and inflammation. Total indolealkylamines (IAAs) from this medicine were proved the main compounds exert anti-inflammatory activity in our previous research. AIM OF THE STUDY In the present study, we aimed to investigate the potential mechanism of anti-inflammatory activity of IAAs on LPS induced zebrafish. MATERIALS AND METHODS LPS induced zebrafish was applicated as an in vivo inflammation model to clarify the structure-activity relationship of 4 major IAAs (N-methyl serotonin, bufotenine, dehydrobufotenine and bufothionine) from toad skin. Quantitative RT-PCR was applied to detect key cytokines and members of the MyD88-dependent signaling pathway. In addition, the targeted lipidomics was conducted to find out the potential biomarkers in the inflammatory zebrafish. Network pharmacology was used to unveil the main enzymes closely related to the target lipids. RESULTS Our results showed that the anti-inflammatory activity of free IAAs (N-methyl serotonin, bufotenine and dehydrobufotenine) was more potent than that of combined IAAs (bufothionine). RT-PCR demonstrated that 4 IAAs exerted antiendotoxin inflammatory effect via suppressing the TLR4/MyD88/NF-κB and TLR4/MyD88/MAPKs signaling pathway. A total of 33 possible inflammatory biomarkers, including 14 SM, 6 Cer, 11 PC and 2 GlcCer, triggered by LPS were screened out. The levels of most of candidates could be regulated toward a normal level by IAAs, especially in N-methyl serotonin and dehydrobufotenine groups. Enzymes especially LBP, PLA2, CERK, SMPD and SGMS were found closely associated with the regulation of most lipid markers. CONCLUSIONS Overall, the mechanism underlying the anti-inflammatory activity of IAAs probably attributed to their capability to suppress NF-κB and MAPKs inflammatory pathway. Meanwhile, IAAs could also interfere the metabolism of SM, Cer and PC probably by regulating LBP, PLA2, CERK, SMPD and SGMS.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Zhang T, Zhao Q, Xiao X, Yang R, Hu D, Zhu X, Gonzalez FJ, Li F. Modulation of Lipid Metabolism by Celastrol. J Proteome Res 2019; 18:1133-1144. [PMID: 30706713 PMCID: PMC6626529 DOI: 10.1021/acs.jproteome.8b00797] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hyperlipidemia, characterized by high serum lipids, is a risk factor for cardiovascular disease. Recent studies have identified an important role for celastrol, a proteasome inhibitor isolated from Tripterygium wilfordii Hook. F., in obesity-related metabolic disorders. However, the exact influences of celastrol on lipid metabolism remain largely unknown. Celastrol inhibited the terminal differentiation of 3T3-L1 adipocytes and decreased the levels of triglycerides in wild-type mice. Lipidomics analysis revealed that celastrol increased the metabolism of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs). Further, celastrol reversed the tyloxapol-induced hyperlipidemia induced associated with increased plasma LPCs, PCs, SMs, and ceramides (CMs). Among these lipids, LPC(16:0), LPC(18:1), PC(22:2/15:0), and SM(d18:1/22:0) were also decreased by celastrol in cultured 3T3-L1 adipocytes, mice, and tyloxapol-treated mice. The mRNAs encoded by hepatic genes associated with lipid synthesis and catabolism, including Lpcat1, Pld1, Smpd3, and Sptc2, were altered in tyloxapol-induced hyperlipidemia, and significantly recovered by celastrol treatment. The effect of celastrol on lipid metabolism was significantly reduced in Fxr-null mice, resulting in decreased Cers6 and Acer2 mRNAs compared to wild-type mice. These results establish that FXR was responsible in part for the effects of celastrol in controlling lipid metabolism and contributing to the recovery of aberrant lipid metabolism in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuerong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
15
|
Duan RD. Alkaline sphingomyelinase (NPP7) in hepatobiliary diseases: A field that needs to be closely studied. World J Hepatol 2018; 10:246-253. [PMID: 29527260 PMCID: PMC5838443 DOI: 10.4254/wjh.v10.i2.246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidylcholine. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.
Collapse
Affiliation(s)
- Rui-Dong Duan
- Gastroenterology and Nutrition Lab, Department of Clinical Sciences, Lund University, Lund S-22184, Sweden
| |
Collapse
|
16
|
Li JF, Zheng SJ, Wang LL, Liu S, Ren F, Chen Y, Bai L, Liu M, Duan ZP. Glucosylceramide synthase regulates the proliferation and apoptosis of liver cells in vitro by Bcl‑2/Bax pathway. Mol Med Rep 2017; 16:7355-7360. [PMID: 28944894 PMCID: PMC5865865 DOI: 10.3892/mmr.2017.7580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
Our previous study found that glucosylceramide, a type of sphingolipids, was associated with liver inflammation and fibrosis. Glucosylceramide is generated by glucosylceramide synthase (GCS), which is encoded by the UDP‑glucose ceramide glucosyltransferase (UGCG) gene. GCS is a key enzyme to regulate the physiological activity of cells. However, the role of GCS in hepatic cells remains unclear. The aim of the present study was to explore the mechanism of GCS in the proliferation and apoptosis of liver cells. Following the interference of expression of GCS in vitro by UGCG small interfering (si)RNA, the MTT method was performed to detect the proliferation of HL‑7702 hepatocytes, and ELISA was used to determine the concentration of tumor necrosis factor (TNF) α and cytochrome c in the supernatant of culture system. Fluorescence microscopy was used to observe the apoptosis of liver cells stained by Annexin V‑fluorescein isothiocyanate/propidium iodide. Reverse transcription‑quantitative polymerase chain reaction was used to detect the gene expression apoptosis regulator Bcl‑2 (Bcl‑2), apoptosis regulator Bax (Bax) and caspase-3. Western blot analysis was used to detect the expression of caspase-3 protein in the liver cells. Following treatment with UGCG siRNA for 24 h, the proliferation of HL‑7702 hepatocytes was significantly inhibited when compared with the transfection reagent group. Furthermore, the early and advanced apoptosis of liver cells showed an increasing trend. Additionally, concentrations of TNF α and cytochrome c showed no significant difference between the UGCG siRNA and transfection reagent groups. Compared with the transfection reagent group, Bcl‑2 mRNA expression decreased, and Bax and caspase-3 mRNA expression increased in the UGCG siRNA transfection group. The protein expression level of caspase-3 showed increased in hepatocytes following the treatment with UGCG siRNA. In conclusion, the metabolic changes of sphingolipids caused by the lack of GCS may be involved in the proliferation and apoptosis of liver cells through the Bcl‑2/Bax signaling pathway.
Collapse
Affiliation(s)
- Jun-Feng Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Institute of Infectious Diseases, Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Su-Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Li-Li Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuang Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Institute of Liver Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Li Bai
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mei Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
17
|
Recent Advances in the Pathogenesis of Hepatitis C Virus-Related Non-Alcoholic Fatty Liver Disease and Its Impact on Patients Cured of Hepatitis C. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11901-017-0370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis. Sci Rep 2017; 7:11289. [PMID: 28900132 PMCID: PMC5595927 DOI: 10.1038/s41598-017-10637-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid metabolism is increasingly being appreciated to affect immunoregulation, inflammation and pathology. In this study we found that mice infected with lymphocytic choriomeningitis virus (LCMV) exhibit global perturbations of circulating serum lipids. Mice lacking the lipid-sensing surface receptor triggering receptor expressed on myeloid cells 2 (Trem2 -/-) were protected from LCMV-induced hepatitis and showed improved virus control despite comparable virus-specific T cell responses. Non-hematopoietic expression of TREM2 was found to be responsible for aggravated hepatitis, indicating a novel role for TREM2 in the non-myeloid compartment. These results suggest a link between virus-perturbed lipids and TREM2 that modulates liver pathogenesis upon viral infection. Targeted interventions of this immunoregulatory axis may ameliorate tissue pathology in hepatitis.
Collapse
|
19
|
Kurko J, Tringham M, Tanner L, Näntö-Salonen K, Vähä-Mäkilä M, Nygren H, Pöhö P, Lietzen N, Mattila I, Olkku A, Hyötyläinen T, Orešič M, Simell O, Niinikoski H, Mykkänen J. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI). Metabolism 2016; 65:1361-75. [PMID: 27506743 DOI: 10.1016/j.metabol.2016.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. METHODS Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. RESULTS Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. CONCLUSIONS This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity.
Collapse
Affiliation(s)
- Johanna Kurko
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Maaria Tringham
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Laura Tanner
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Clinical Genetics, Turku University Hospital, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Heli Nygren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Boxs 1000, Espoo 02044 VTT, Finland.
| | - Päivi Pöhö
- Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Boxs 56, Helsinki 00014, Finland.
| | - Niina Lietzen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
| | - Ismo Mattila
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Anu Olkku
- Eastern Finland Laboratory Centre, Puijonlaaksontie 2, 70210 Kuopio, Finland.
| | - Tuulia Hyötyläinen
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Matej Orešič
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Harri Niinikoski
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
20
|
Zhang JY, Qu F, Li JF, Liu M, Ren F, Zhang JY, Bian DD, Chen Y, Duan ZP, Zhang JL, Zheng SJ. Up-regulation of Plasma Hexosylceramide (d18: 1/18: 1) Contributes to Genotype 2 Virus Replication in Chronic Hepatitis C: A 20-Year Cohort Study. Medicine (Baltimore) 2016; 95:e3773. [PMID: 27281078 PMCID: PMC4907656 DOI: 10.1097/md.0000000000003773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to explore the relationship between plasma sphingolipids and hepatitis C virus (HCV) replication in chronic hepatitis C (CHC) patients.A cohort of 120 treatment-naïve CHC patients was included. Liver biopsies and the Scheuer scoring system were used to assess hepatic inflammatory activity. Blood biochemical indicators, HCV-RNA load, and immunological markers were also measured. Forty-four plasma sphingolipids were identified and quantified using high-performance liquid chromatography-tandem mass spectrometry.The hexosylceramide (HexCer) (d18:1/18:1) level was significantly different between patients with a low HCV load (<10 IU/mL) and a high HCV load (≥10 IU/mL), and it was positively correlated with the HCV-RNA load (r = 0.337, P = 0.001) in CHC patients. Additionally, the plasma HexCer (d18:1/18:1) level (odds ratio 1.302, 95% confidence interval 1.129-1.502) was an independent factor for a high HCV-RNA load. For patients with hepatic inflammation grade ≤2 or HCV genotype 2, HexCer (d18:1/18:1) was independently related to a high HCV-RNA load.Plasma HexCer (d18:1/18:1) might be involved in the high viral replication level in chronic HCV infection, especially for CHC patients with genotype 2.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- From the Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China (J-YZ, ML, FR, J-YZ, D-DB, YC, Z-PD, S-JZ); State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medica Sciences & Peking Union Medical College, Beijing, China (FQ, J-LZ); and Institute of Infectious Diseases, Department of Infectious Diseases, the First Hospital of Lanzhou University, Lanzhou, China (J-FL)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haga Y, Kanda T, Sasaki R, Nakamura M, Nakamoto S, Yokosuka O. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis. World J Gastroenterol 2015; 21:12989-12995. [PMID: 26675364 PMCID: PMC4674717 DOI: 10.3748/wjg.v21.i46.12989] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/07/2015] [Accepted: 10/17/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) is globally increasing and has become a world-wide health problem. Chronic infection with hepatitis B virus or hepatitis C virus (HCV) is associated with hepatic steatosis. Viral hepatitis-associated hepatic steatosis is often caused by metabolic syndrome including obesity, type 2 diabetes mellitus and/or dyslipidemia. It has been reported that HCV genotype 3 exerts direct metabolic effects that lead to hepatic steatosis. In this review, the differences between NAFLD/NASH and viral hepatitis-associated steatosis are discussed.
Collapse
|
22
|
Hori A, Yamashita M, Yamaura M, Hongo M, Honda T, Hidaka H. Rapid quantitative analysis of human serum sphingomyelin species using MALDI-TOF mass spectrometry with lipid hydrolase treatment. Clin Chim Acta 2015; 453:95-9. [PMID: 26585754 DOI: 10.1016/j.cca.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sphingomyelin (SM) is a key component of extracellular membranes and lipoproteins, and plays roles in cell signaling and as a component of lipoproteins. SM species differ in terms of fatty acid (FA) composition. However, no simple, rapid, quantitative assay for identifying different SM species has yet been reported. In this study, lipid hydrolase treatment and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to identify serum SM species. METHODS Sera were collected from healthy young individuals. To identify SM species, sera were treated with phospholipase A2 and lipoprotein lipase, and lipids were extracted using the standard chloroform/methanol (2/1 v/v) method. RESULTS We detected 15 peaks from serum using MALDI-TOF MS, which were assigned to SM species bound with FA components ranging from C15:0 to C24:2. The most prominent serum SM species was SM [C16:0], which accounted for approximately 26% of serum SM. Some SM species contained an odd-carbon FA (C15, C21, and C23), and these accounted for approximately 4% of serum SM. The reproducibility of major SM species within and between application positions on MS-sample plate was CV=3.0%-7.9% and CV=3.1%-6.8%, respectively. The concentration and dilution ratio were linearly related. The SM species composition of 10 healthy young subjects showed a similar profile. CONCLUSIONS We developed a rapid, and quantitative method for identifying serum SM species using lipid hydrolase treatment and MALDI-TOF MS. This method will be suitable for clinical laboratory studies to examine the associations between SM species and disease states.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-0821, Japan
| | - Mine Yamashita
- Department of Biomedical Laboratory Science, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Makoto Yamaura
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-0821, Japan
| | - Minoru Hongo
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-0821, Japan
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-0821, Japan
| | - Hiroya Hidaka
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-0821, Japan.
| |
Collapse
|
23
|
Ren Y, Liu M, Zhao J, Ren F, Chen Y, Li JF, Zhang JY, Qu F, Zhang JL, Duan ZP, Zheng SJ. Serum vitamin D₃ does not correlate with liver fibrosis in chronic hepatitis C. World J Gastroenterol 2015; 21:11152-11159. [PMID: 26494969 PMCID: PMC4607912 DOI: 10.3748/wjg.v21.i39.11152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the relationship between serum vitamin D3 levels and liver fibrosis or inflammation in treatment-naive Chinese patients with chronic hepatitis C (CHC). METHODS From July 2010 to June 2011, we enrolled 122 CHC patients and 11 healthy controls from Dingxi city, Gansu Province, China. The patients were infected with Hepatitis C virus (HCV) during blood cell re-transfusion following plasma donation in 1992-1995, and had never received antiviral treatment. At present, all the patients except two underwent liver biopsy with ultrasound guidance. The Scheuer Scoring System was used to evaluate hepatic inflammation and the Metavir Scoring System was used to evaluate hepatic fibrosis. Twelve-hour overnight fasting blood samples were collected in the morning of the day of biopsy. Serum levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, cholinesterase, prothrombin activity, albumin, γ-glutamyl transpeptidase, hemoglobin, calcium and phosphorus were determined. Serum HCV RNA levels were measured by real-time PCR. Serum levels of 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were measured by high-performance liquid chromatography tandem mass spectrometry. RESULTS Serum levels of 25(OH)D3 but not 24,25(OH)2D3 were significantly lower in CHC patients than in control subjects. Serum 25(OH)D3 levels did not correlate with liver fibrosis, inflammation, patient age, or levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, prothrombin activity, cholinesterase or HCV RNA. However, serum 25(OH)D3 levels did correlate with serum 24,25(OH)2D3 levels. Serum 25(OH)D3 and 24,25(OH)2D3 levels, and the 25(OH)D3/24,25(OH)2D3 ratio, have no difference among the fibrosis stages or inflammation grades. CONCLUSION We found that serum levels of 25(OH)D3 and its degradation metabolite 24,25(OH)2D3 did not correlate with liver fibrosis in treatment-naive Chinese patient with CHC.
Collapse
|
24
|
Zheng SJ, Qu F, Li JF, Zhao J, Zhang JY, Liu M, Ren F, Chen Y, Zhang JL, Duan ZP. Serum sphingomyelin has potential to reflect hepatic injury in chronic hepatitis B virus infection. Int J Infect Dis 2015; 33:149-155. [PMID: 25625177 DOI: 10.1016/j.ijid.2015.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To explore the relation between serum sphingolipids and hepatic injury in chronic HBV infection. METHODS A cohort of participants including 48 healthy persons, 103 chronic HBV-infected patients containing chronic hepatitis B (CHB) and HBV-related cirrhosis were included. High performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was performed to detect serum sphingolipids. The serological indicators were detected and quantified. The valid liver biopsy specimens were acquired from twenty five CHB. RESULTS Twenty four serum sphingolipids were detected. There were eighteen sphingolipids showing significant differences between the healthy control and chronic HBV infection groups. In patients with chronic HBV infection, fourteen sphingolipids differed significantly between CHB and HBV-related cirrhosis. Among sphingolipids with a significant difference in both HBV infection vs healthy control and CHB vs cirrhosis, seven sphingolipids were independently related to the presence of cirrhosis. SM(d18:1/24:0), a sphingomyelin (SM) compound, was found to have a negative correlation with model for end-stage liver disease (MELD) score. Additionally, SM(d18:1/24:0) was demonstrated to have a correlation with inflammation grades by liver biopsy in CHB patients. CONCLUSIONS Serum sphingolipids have close relation with hepatic injury in chronic HBV infection, especially that SM(d18:1/24:0) might be a potential serum biomarker.
Collapse
Affiliation(s)
- Su-Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Feng Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun-Feng Li
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Institute of Infectious Diseases, Department of Infectious Diseases, the First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jing-Yun Zhang
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|