1
|
Díaz L, Gil AC, Marttens AV, Basualdo J, Sotomayor C, Becerra AV, Beltrán V, Jorquera G, Caviedes R, Fernández E. The clinical efficacy of intravascular laser irradiation of blood (ILIB): A narrative review of randomized controlled trial. Photodiagnosis Photodyn Ther 2025; 53:104618. [PMID: 40324571 DOI: 10.1016/j.pdpdt.2025.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Intravascular Laser Irradiation of Blood (ILIB) is a systemic application of photobiomodulation therapy (PBMT), proposed to modulate oxidative stress, inflammation, and mitochondrial function. Although its clinical use is expanding across various medical conditions, a consolidated evaluation of its therapeutic relevance remains lacking. OBJECTIVE This review aimed to synthesize available evidence from randomized controlled trials (RCTs) on the clinical efficacy and safety of ILIB, with particular focus on outcomes related to pain, inflammation, oxidative stress, and quality of life. METHODS a narrative literature review guided by PRISMA principles and the PROPS contextual framework. Eight RCTs involving 340 participants were identified through searches in five electronic databases and gray literature. Studies were eligible if they investigated ILIB-via intravascular or transcutaneous application-and reported clinical or biochemical outcomes compared to sham, placebo, or standard care. RESULTS Eight RCTs comprising 340 participants were included, addressing conditions such as cardiovascular disease, diabetic neuropathy, osteoarthritis, spinal cord injury, chronic endometritis, cellulite, and pediatric dental anxiety. ILIB demonstrated consistent reductions in pain (30-55 %), inflammatory cytokines (e.g., IL-6, TNF-α), and oxidative stress markers, along with significant improvements in mitochondrial activity and quality-of-life indicators (SF-36, WOMAC). No serious adverse events were reported. RoB analysis indicated four studies with low risk and four with some concerns. CONCLUSIONS ILIB appears to be a safe and promising intervention with systemic biological effects and multidimensional clinical benefits. Future clinical research should prioritize standardized dosimetry protocols and long-term, patient-centered outcomes to guide broader integration into evidence-based care.
Collapse
Affiliation(s)
- Leonardo Díaz
- Department of Prosthodontics, Faculty of Dentistry, University of Chile, Santiago, Chile; PhD Student, Department of Stomatology, Faculty of Dentistry, Universidad de Sevilla, Sevilla, Spain; Perioplastic Institute, Santiago, Chile
| | - Alain Chaple Gil
- Universidad Autónoma de Chile, Facultad de Ciencias de la Salud, Santiago, Chile
| | - Alfredo Von Marttens
- Department of Prosthodontics, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Javier Basualdo
- Graduate School, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Claudio Sotomayor
- Graduate School, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alexis Vera Becerra
- Clinical Investigation and Dental Innovation Center (CIDIC), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Víctor Beltrán
- Clinical Investigation and Dental Innovation Center (CIDIC), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Gilbert Jorquera
- Department of oral rehabilitation, Facultad de Odontologia, Universidad de Los Andes, Chile
| | - Rodrigo Caviedes
- Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Chile
| | - Eduardo Fernández
- Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Chile; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Chu XL, Zhao XX, Liu SY, Li YJ, Ding N, Liu MQ, Li QW, Li Q. Research progress in different physical therapies for treating peripheral nerve injuries. Front Neurol 2025; 16:1508604. [PMID: 40260135 PMCID: PMC12009707 DOI: 10.3389/fneur.2025.1508604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 04/23/2025] Open
Abstract
Physical therapy is gaining recognition as an effective therapeutic approach in the realm of peripheral nerve injury (PNI) research. This article seeks to provide a comprehensive review of the latest advancements, applications, and mechanisms of action of four physical therapy modalities-ultrasound, electrical stimulation, photobiomodulation, and aerobic exercise-in the context of PNI. Ultrasound, characterized by its mechanical and thermal effects, is widely regarded as an effective non-invasive or minimally invasive method for neural modulation. Electrical stimulation therapy, a prevalent technique in PNI treatment, entails the application of electric currents to stimulate nerve and muscle tissues, thereby facilitating nerve regeneration and mitigating muscle atrophy. Photobiomodulation, a process that influences cell metabolism through the absorption of photon energy, is closely associated with neural regeneration in the field of rehabilitation medicine. Additionally, aerobic exercise, a popular form of physical activity, serves to enhance blood circulation and improve neuronal function. The article discusses various physical therapy methods for peripheral nerve injuries, including hyperbaric oxygen therapy, magnetic therapy, and biofeedback therapy, in addition to traditional approaches. Despite advancements, challenges in nerve injury treatment persist, such as the need for standardized treatment protocols, consideration of individual variations, and assessment of long-term effectiveness. Future research is needed to address these issues. In summary, this article offers theoretical and empirical evidence supporting the utilization of physical therapy in the management of PNI. This research aims to promote further research and clinical practice in this field, contributing to enhancing patient quality of life and recovery outcomes.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Xiao-Xuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shuai-Yi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ya-Jie Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ning Ding
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Min-Qi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qing-Wen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
3
|
Glass GE, Mérai A, Molnár S, Clayton P. The Use of a Proprietary Near-Infrared Laser to Enhance Wound Healing: A Preliminary Preclinical and Clinical Study. Aesthet Surg J Open Forum 2025; 7:ojaf009. [PMID: 40201332 PMCID: PMC11975535 DOI: 10.1093/asjof/ojaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Background Nonthermal light energy has been used to enhance wound healing. This is known as photobiomodulation. Although preclinical evidence is largely based on laser light, light-emitting diodes (LEDs) form the mainstay of clinical studies owing to the lack of available lasers for nonclinical use. However, it is speculated the 2 technologies exhibit dissimilar biological responses. Objectives The influence of a new, commercially available near-infrared laser device on the gene expression profile of human skin relative to an equivalent, near-infrared LED device was evaluated. Additionally, the wound healing potential of the device was examined in practice. Methods Defatted human skin was exposed to the laser (3), LED (3), or negative control (3) for 5 days. On Day 6, skin samples were biopsied for ribonucleic acid extraction and gene expression assays run for 107 genes of interest. Twenty patients with chronic wounds were randomized to receive standard wound care ± laser therapy 3 times weekly for 4 weeks, and wounds were analyzed for healing. Results The laser altered expression of 45 genes. Highly up-regulated genes (>5-fold change) included those implicated in wound healing and antiaging, whereas highly down-regulated genes included those implicated in inflammation and extracellular matrix integrity. The LED device altered expression of only 1 gene relative to negative controls. The laser reduced mean wound area by 78% and healed 4 of 10 wounds completely. In contrast, 8 of 10 of those receiving standard care exhibited no change. Conclusions A proprietary near-infrared laser exhibited superior ability to influence gene expression in healthy skin than an equivalent LED device and induced the healing of chronic wounds. Level of Evidence 2 Therapeutic
Collapse
Affiliation(s)
- Graeme E Glass
- Corresponding Author: Dr Graeme E. Glass, C1, 120, 1st Floor OPC, Al-Gharrafa St, Ar-Rayyan, Doha, State of Qatar. E-mail: ; Twitter: @drgraemeglass
| | | | | | | |
Collapse
|
4
|
Mohaghegh S, Fathi H, Molaasadollah F, Teimoori M, Chiniforush N, Taghipour N, Shekarchi F, Nokhbatolfoghahaei H. Evaluating the effect of strontium ranelate and photobiomodulation on cementogenic and osteogenic differentiation of buccal fat pad-derived stem cells: An in vitro study. Photochem Photobiol 2024; 100:1419-1430. [PMID: 38234287 DOI: 10.1111/php.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to analyze the impact of strontium ranelate (Str), photobiomodulation (PBM), or their combination of the proliferation, osteogenic differentiation, and cementogenic differentiation of buccal fat pad-derived stem cells. BFPdSCs were exposed to one of the following interventions: (1) PBM (660 nm), (2) PBM (660 nm) + Str, (3) PBM (880 nm), (4) PBM (880 nm) + Str, (5) Str. All study groups had significantly higher osteogenic differentiation than the control group (p < 0.05), and no significant difference existed between the 660 and 808 nm groups (p = 0.97). Compared to the Str group, 660 nm and 880 nm group samples had significantly lower osteogenic differentiation (p < 0.0001), while other groups did not show a significant difference. Regarding cementogenic differentiation, the 660 nm group showed higher values than the 808 nm group (p < 0.01). Compared with the Str group, 660 nm, 660 nm + Str, and 808 nm + Str groups showed significantly higher gene expression (p < 0.05). In the case of osteogenic differentiation, although photobiomodulation alone had a lower inducing effect than strontium ranelate, combining 808 nm diode lasers and strontium ranelate may provide the best results. Moreover, using a 660 nm diode laser and exposing stem cells to strontium ranelate can be the most effective approach to induce cementogenic differentiation.
Collapse
Affiliation(s)
- S Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Fathi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Molaasadollah
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Teimoori
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - N Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - N Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Shekarchi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tong J, Subbiah SK, Rampal S, Ramasamy R, Wu X, You Y, Wang J, Mok PL. Effect of 660-nm LED photobiomodulation on the proliferation and chondrogenesis of meniscus-derived stem cells (MeSCs). Sci Rep 2024; 14:19735. [PMID: 39183213 PMCID: PMC11345413 DOI: 10.1038/s41598-024-70258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Meniscus-derived stem cells (MeSCs), a unique type of MSC, have outstanding advantages in meniscal cytotherapy and tissue engineering, but the effects and molecular mechanisms of PBM on MeSCs are still unclear. We used 660-nm LED light with different energy densities to irradiate six human MeSC samples and tested their proliferation rate via cell counting, chondrogenic differentiation capacity via the DMMB assay, mitochondrial activity via the MTT assay, and gene expression via qPCR. The proliferation ability, chondrogenic capacity and mitochondrial activity of the 18 J/cm2 group were greater than those of the 4 J/cm2 and control groups. The mRNA expression levels of Akt, PI3K, TGF-β3, Ki67 and Notch-1 in the 18 J/cm2 group were greater than those in the other groups in most samples. After chondrogenic induction, the expression of Col2A1, Sox9 and Aggrecan in the 18 J/cm2 group was significantly greater than that in the 4 J/cm2 and control groups in most of the samples. The variation in the MTT values and Src, PI3K, Akt, mTOR and GSK3β levels decreased with time. The results showed that 660-nm LED red light promoted proliferation and chondrogenic differentiation and affected the gene expression of MeSCs, and the effects on gene expression and mitochondrial activity decreased with time.
Collapse
Affiliation(s)
- Jiabei Tong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- The Fifth People's Hospital of Luoyang (The Fifth Affiliated Hospital of Henan University of Science and Technology), No.505 Taikang East Road, Luolong District, Luoyang City, 471000, Henan Province, China.
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Sanjiv Rampal
- Orthopaedic Department, School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
- Department of Orthopaedic and Traumatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Xiaoyun Wu
- Department of Technology, Inner Mongolia Stem Cell (ProterCell) Biotechnology Co., Ltd., Hohhot, China
| | - Yanyan You
- Pharmacy Department, Tongliao Hospital, Tongliao, 028000, Inner Mongolia, China
| | - Jiaojiao Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Haidian District, Beijing, 100080, China
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Ferro AP, de Jesus Guirro RR, Ferraresi C, Celli J, Orellana MD, de Santis GC, Junior JAF, de Oliveira Guirro EC. Influence of Different Photobiomodulation Parameters on Multi-Potent Adipose Tissue Mesenchymal Cells In Vitro. Photobiomodul Photomed Laser Surg 2024; 42:200-207. [PMID: 38416634 DOI: 10.1089/photob.2023.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Objective: Investigating the effect of different parameters of photobiomodulation (PBM) with low-power laser on multi-potent mesenchymal stem cells (MSCs) derived from adipose tissue in terms of proliferation and cell death. Methods: MSCs were submitted to PBM applications with combinations of the following physical parameters: control group (no intervention), wavelengths of 660 and 830 nm; energy of 0.5, 2, and 4 J; and power of 40 and 100 mW. MSC analysis was performed using MetaXpress® software at 24, 48, and 72 h. Results: Irradiation promoted a significant increase in cell proliferation (p < 0.05), with 830 nm laser, 100 mW, with energy of 0.5, 2, and 4 J in relation to the control group at all times. PBM with 660 nm, power of 40 mW, and energy of 0.5, 2, and 4 J produced greater cell death at 24 h compared with the control group. At the time of 72 h, there was no significant difference concerning cell death. Conclusions: According to the results found, we can conclude that both wavelengths were effective; however, the 830 nm laser was more effective in terms of cell proliferation compared with the 660 nm laser. The 660 nm wavelength showed a significant increase in cell death when compared with the 830 nm laser.
Collapse
Affiliation(s)
- Ana Paula Ferro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cleber Ferraresi
- Department of Physical Therapy, Postgraduate Program in Physiotherapy, Federal University of São Carlos, São Paulo, Brazil
| | - Jonathan Celli
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Maristela Delgado Orellana
- Department of Cell Biology, Ribeirão Preto Blood Center Foundation, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gil Cunha de Santis
- Department of Cell Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jayme Adriano Farina Junior
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Hu S, Liu TCY. Mechanism of action of photobiomodulation with light-emitting diode on the glutamine-dependent CT26 cell. JOURNAL OF BIOPHOTONICS 2024; 17:e202300353. [PMID: 37824572 DOI: 10.1002/jbio.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
We investigated the mechanism of action of photobiomodulation (PBM) with light-emitting diode (led) 640 nm of glutamine-dependent CT26 cells. Cells were exposed to 0.147-10.979 mW/cm2 of 640 ± 15 nm laser light for 15 min/day for 10 days. Cell proliferation and apoptosis were detected by MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide) and annexin V-FITC assays. mRNA and protein levels of cell proliferation-related genes were measured by RT-PCR and western blotting, respectively. With Gln 7.94 mM, on Day 8 and 10, genes GLUT1, MEK1, ERK2, BCL2, E2F1, HO-1, Ctnnb1, and Per2 was significantly upregulated (p < 0.01) of glutamine addiction. In PBM therapy, compared with the non-illuminated group, 2.17 mW/cm2 can significantly reduce cell apoptosis, the mRNA level of gene mTOR1 was significantly upregulated, and the protein level of raptor of GLUT1 and mTOR1, MEK1/2, and ERK1/2 were upregulated. LED 640 nm inhibits cell apoptosis without increasing cell proliferation by regulating GLUT1, MEK/ERK, and PI3K/AKT/mTOR signals.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, HengYang Normal University, Hengyang, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Fantaguzzi F, Tombolini B, Servillo A, Zucchiatti I, Sacconi R, Bandello F, Querques G. Shedding Light on Photobiomodulation Therapy for Age-Related Macular Degeneration: A Narrative Review. Ophthalmol Ther 2023; 12:2903-2915. [PMID: 37768527 PMCID: PMC10640464 DOI: 10.1007/s40123-023-00812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Photobiomodulation (PBM) relies on the pathophysiological mechanism whereby red to near-infrared light can target mitochondrial activity and promote ATP synthesis. Preclinical and clinical studies have shown promising results in treating intermediate age-related macular degeneration (AMD), since PBM can produce photochemical reactions in endogenous retinal chromophores. Currently, PBM is approved by the Food and Drug Administration and by the European Medicines Agency for the treatment of intermediate AMD. This narrative review aimed to evaluate the available evidence on the effectiveness and safety of PBM in treating intermediate AMD. METHODS A comprehensive search was conducted using the PubMed database, employing the keywords "photobiomodulation" and "age-related macular degeneration." All English-language studies published up to June 2023 were reviewed, and the search was expanded to include relevant references from selected articles. The included publications were analyzed for this review. RESULTS The available studies on PBM in AMD demonstrated promising but inconsistent results. PBM showed potential in improving best-corrected visual acuity (BCVA) and contrast sensitivity (CS) in patients with AMD. Some studies also suggested a reduction in AMD lesions, such as drusen volume. However, the long-term efficacy and optimal treatment parameters of PBM in AMD remained to be fully determined due to the limitations of the available studies. These included variations in irradiation techniques, wavelengths, exposure times, and treatment sessions, making it challenging to generalize the effectiveness of PBM. Furthermore, the lack of accurate classification of AMD phenotypes in the available studies hindered the understanding of which phenotypes could truly benefit from this treatment. Finally, the strength of evidence varied among studies, with limited sample sizes, unpublished results, and only three randomized sham-controlled trials. CONCLUSIONS Currently, the effectiveness of PBM in promoting drusen resorption or preventing progression to advanced forms of AMD, as observed in the cited studies, remains uncertain.
Collapse
Affiliation(s)
- Federico Fantaguzzi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Tombolini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Servillo
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Zucchiatti
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Sacconi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Querques
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Department of Ophthalmology, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
9
|
Wang X, Liu Q, Peng J, Song W, Zhao J, Chen L. The Effects and Mechanisms of PBM Therapy in Accelerating Orthodontic Tooth Movement. Biomolecules 2023; 13:1140. [PMID: 37509176 PMCID: PMC10377711 DOI: 10.3390/biom13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Malocclusion is one of the three major diseases, the incidence of which could reach 56% of the imperiled oral and systemic health in the world today. Orthodontics is still the primary method to solve the problem. However, it is clear that many orthodontic complications are associated with courses of long-term therapy. Photobiomodulation (PBM) therapy could be used as a popular way to shorten the course of orthodontic treatment by nearly 26% to 40%. In this review, the efficacy in cells and animals, mechanisms, relevant cytokines and signaling, clinical trials and applications, and the future developments of PBM therapy in orthodontics were evaluated to demonstrate its validity. Simultaneously, based on orthodontic mechanisms and present findings, the mechanisms of acceleration of orthodontic tooth movement (OTM) caused by PBM therapy were explored in relation to four aspects, including blood vessels, inflammatory response, collagen and fibers, and mineralized tissues. Also, the cooperative effects and clinical translation of PBM therapy in orthodontics have been explored in a growing numbers of studies. Up to now, PBM therapy has been gaining popularity for its non-invasive nature, easy operation, and painless procedures. However, the validity and exact mechanism of PBM therapy as an adjuvant treatment in orthodontics have not been fully elucidated. Therefore, this review summarizes the efficacy of PBM therapy on the acceleration of OTM comprehensively from various aspects and was designed to provide an evidence-based platform for the research and development of light-related orthodontic tooth movement acceleration devices.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
10
|
Alves ED, Benevenuto LGD, Morais BP, Barros MA, Achcar JA, Montrezor LH. Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Zafari J, Jouni FJ, Nikzad F, Esmailnasab S, Javan ZA, Karkehabadi H. Combination of Dental-Capping Agents with Low Level Laser Therapy Promotes Proliferation of Stem Cells from Apical Papilla. Photobiomodul Photomed Laser Surg 2023; 41:3-9. [PMID: 36577035 DOI: 10.1089/photob.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Direct pulp capping is a vital pulp therapy, which stimulates differentiation of stem cells from apical papilla (SCAPs). SCAPs have multipotential capacity to differentiate into types of cells, contributing to the regeneration of tissues. Objective: Considering the promising effects of dental-capping materials, we aim to investigate the effect of dental dressing materials combined with laser therapy on the percentage of SCAP viability and the consequent dental regeneration capacity. Methods: We collected two immature third molar teeth and isolated SCAPs through collagenase type I enzymatic activity. Isolated SCAPs were then cultured with Dulbecco's modified Eagle's medium and α-minimum essential medium enriched with 15% and 10% fetal bovine serum, respectively. After reaching 70-80% confluency, cells were seeded in a 96-well plate and then treated with mineral trioxide aggregate (MTA), enamel matrix derivative (EMD), biodentine, and low level laser therapy (LLLT) alone and in combination for 24, 48, and 168 h. After that, cell survival rate was assessed using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Results: We found that combination of MTA, EMD, and LLLT as well as that of biodentine, EMD, and LLLT could lead to significant increase of SCAP viability as compared with other treatment groups. Combination of MTA and biodentine with EMD could also show increased level of SCAP proliferation and viability. However, MTA and biodentine alone reduced SCAP survival rate in all time points. Conclusions: Our conclusion is that LLLT can serve as an enhancer of SCAP proliferation and differentiation rate when added to dental-capping agents such as MTA, EMD, and biodentine. Thus, LLLT combination with effective capping materials will serve as a promising option for dental tissue repair.
Collapse
Affiliation(s)
- Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Forough Nikzad
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Sogand Esmailnasab
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Zahra Abbasi Javan
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
12
|
Fekrazad S, Sohrabi M, Fekrazad R. Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: A histopathological, immunohistochemical, and molecular analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112599. [PMID: 36493717 DOI: 10.1016/j.jphotobiol.2022.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-surgical bone defects require new alternative approaches for a better healing process. For this matter, photobiomodulation therapy (PBMT) has been used in order to improve the process of healing, pain, and inflammation reduction and tissue rejuvenation. This study is set to evaluate the effect of PBMT on angiogenic and inflammatory factors for bone regeneration in rat post-surgical cranial defects. Thirty male Wistar rats were distributed accidentally into two groups (Subdivided into 3 groups according to their follow-up durations). During operation, an 8-mm critical-sized calvarial defect was made in each rat. A continuous diode laser was used (power density 100 mW/cm2, wavelength 810 nm, the energy density of 4 J/cm2). Bone samples were assessed histomorphometrically and histologically after hematoxylin and eosin (H&E) staining. ALP, PTGIR, OCN, and IL-1 levels were measured by RT-PCR. VEGF expression was studied by immunohistochemistry analysis. The level of IL-1 expression decreased significantly in the PBMT group compared to the control after 7 days (p < 0.05), while, the PTGIR level was improved significantly compared to the control group after 7 days. Furthermore, levels of OCN and ALP improved after PBM use; however, the alterations were not statistically meaningful (p > 0.05). Evaluation with IHC displayed a significant rise in VEGF expression after 3 days in the PBMT group compared to the control (p > 0.05). In this study's conditions, the results showed a meaningful alteration in osteogenic, inflammatory, and angiogenic mediators in post-surgical calvarial defect following PBMT. It appears that PBM can accelerate angiogenesis in the bone healing procedure which can be helpful in bone tissue engineering.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- Department of General Surgery, Subdivision of Surgical Oncology, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sohrabi
- Department of Pediatrics, Dental School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences - International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
13
|
Garzón J, Baldion PA, Grajales M, Escobar LM. Response of osteoblastic cells to low-level laser treatment: a systematic review. Lasers Med Sci 2022; 37:3031-3049. [PMID: 35751706 DOI: 10.1007/s10103-022-03587-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022]
Abstract
Low-level laser therapy (LLLT)-induced photobiomodulation (PBM) stimulates bone tissue regeneration by inducing osteoblast differentiation and mitochondrial activation. However, the role of reactive oxygen species (ROS) in this process remains controversial. The aim of this systematic review was to collect and analyze the available literature on the cellular and molecular effects of LLLT on osteoblasts and the role of ROS in this process. A search was conducted in PubMed, ScienceDirect, Scopus, and Web of Science. Studies published in English over the past 15 years were selected. Fourteen articles were included with moderate (n = 9) and low risk of bias (n = 5). Thirteen studies reported the use of diode lasers with wavelengths (λ) between 635 and 980 nm. One study used an Nd:YAG laser (λ1064 nm). The most commonly used λ values were 808 and 635 nm. The energy densities ranged from 0.378 to 78.75 J/cm2, and irradiation times from 1.5 to 300 s. Most studies found increases in proliferation, ATP synthesis, mitochondrial activity, and osteoblastic differentiation related to moderate and dose-dependent increases in intracellular ROS levels. Only two studies reported no significant changes. The data presented heterogeneity owing to the variety of LLLT protocols. Although several studies have shown a positive role of ROS in the induction of proliferation, migration, and differentiation of different cell types, further research is required to determine the specific role of ROS in the osteoblastic cell response and the molecular mechanisms involved in triggering previously reported cellular events.
Collapse
Affiliation(s)
- Juliana Garzón
- Grupo de Investigaciones Básicas Y Aplicadas en Odontología (IBAPO), Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Paula Alejandra Baldion
- Departamento de Salud Oral Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marggie Grajales
- Departamento de Salud Oral Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lina M Escobar
- Grupo de Investigaciones Básicas Y Aplicadas en Odontología (IBAPO), Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
14
|
Shu C, Hou L, Chen Q, Zhu T, Yang J, Luo X, Su Y, Wang Y. Irradiation with a red light-emitting diode enhances the proliferation of stem cells of apical papilla via the ERK5 signalling pathway. Lasers Med Sci 2022; 37:2259-2268. [PMID: 35022873 DOI: 10.1007/s10103-021-03492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
This Querystudy aimed to investigate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation of stem cells from apical papilla (SCAPs) and preliminarily elucidated the underlying molecular mechanisms. SCAPs were isolated and identified in vitro. The light source was a 10 W red LED with continuous output and a wavelength of 600-700 nm. SCAPs were irradiated with 0 (control group), 0.5 J/cm2, 1 J/cm2, 3 J/cm2, or 5 J/cm2. Cell Counting Kit-8 (CCK-8) assays were used to analyze cell proliferation rates and determine the most effective concentration of extracellular signal-regulated kinase 5 (ERK5) blocker, BIX02189. A real-time polymerase chain reaction (RT-PCR) was carried out to determine the involvement of the ERK5 signalling pathway and proliferation-associated genes (C-Jun, Jun B, and Cyclin D1). 5-Ethynyl-2'-deoxyuridine (EDU) was used to analyze cell cycle kinetic parameters. CCK-8 assay results suggested that SCAPs in red LED groups exhibited a higher proliferation rate than those in the control group, and 10 μmol/L BIX02189 was the most effective blocker. The RT-PCR results demonstrate that red LEDs upregulated the expression of the ERK5, C-Jun, Jun B, and Cyclin D1 genes, and BIX02189 successfully blocked the ERK5 signalling pathway. The results of EdU staining indicated that red LED promoted DNA synthesis activity and that BIX02189 suppressed cells into S phase. Red LEDs irradiation enhances the proliferation of SCAPs via the ERK5 signalling pathway by upregulating the expression of C-Jun, Jun B, and Cyclin D1.
Collapse
Affiliation(s)
- Chunxia Shu
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
- Suining First People's Hospital, Suining, 629000, China
| | - Lan Hou
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- The TCM Hospital of Longquanyi District, Chengdu, 610100, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Juan Yang
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Yutong Su
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- The Affiliated Stomatology Hospital of Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
15
|
Hanna R, Bensadoun RJ, Beken SV, Burton P, Carroll J, Benedicenti S. Outpatient Oral Neuropathic Pain Management with Photobiomodulation Therapy: A Prospective Analgesic Pharmacotherapy-Paralleled Feasibility Trial. Antioxidants (Basel) 2022; 11:533. [PMID: 35326183 PMCID: PMC8944471 DOI: 10.3390/antiox11030533] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain (NP) can be challenging to treat effectively as analgesic pharmacotherapy (MED) can reduce pain, but the majority of patients do not experience complete pain relief. Our pilot approach is to assess the feasibility and efficacy of an evidence-based photobiomodulation (PBM) intervention protocol. This would be as an alternative to paralleled standard analgesic MED for modulating NP intensity-related physical function and quality of life (QoL) prospectively in a mixed neurological primary burning mouth syndrome and oral iatrogenic neuropathy study population (n = 28). The study group assignments and outcome evaluation strategy/location depended on the individual patient preferences and convenience rather than on randomisation. Our prospective parallel study aimed to evaluate the possible pre/post-benefit of PBM and to allow for a first qualitative comparison with MED, various patient-reported outcome measures (PROMs) based on Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT-II) were used for up to a nine-month follow-up period in both intervention groups (PBM and MED). The PBM protocol applied to the PBM group was as follows: λ810 nm, 200 mW, 0.088 cm2, 30 s/point, 9 trigger and affected points, twice a week for five consecutive weeks, whereas the MED protocol followed the National Institute of Clinical Excellence (NICE) guidelines. Our results showed that despite the severe and persistent nature of the symptoms of 57.50 ± 47.93 months at baseline in the PBM group, a notably rapid reduction in PISmax on VAS from 7.6 at baseline (T0) to 3.9 at one-month post-treatment (T3) could be achieved. On the other hand, mean PISmax was only reduced from 8.2 at baseline to 6.8 at T3 in the MED group. Our positive PBM findings furthermore support more patients' benefits in improving QoL and functional activities, which were considerably impaired by NP such as: eating, drinking and tasting, whereas the analgesic medication regimens did not. No adverse events were observed in both groups. To the best knowledge of the authors, our study is the first to investigate PBM efficacy as a monotherapy compared to the gold standard analgesic pharmacotherapy. Our positive data proves statistically significant improvements in patient self-reported NP, functionality, psychological profile and QoL at mid- and end-treatment, as well as throughout the follow-up time points (one, three, six and nine months) and sustained up to nine months in the PBM group, compared to the MED group. Our study, for the first time, proves the efficacy and safety of PBM as a potent analgesic in oral NP and as a valid alternative to the gold standard pharmacotherapy approach. Furthermore, we observed long-term pain relief and functional benefits that indicate that PBM modulates NP pathology in a pro-regenerative manner, presumably via antioxidant mechanisms.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy;
| | - René Jean Bensadoun
- Department of Radiology Oncology, Centre De Haute Energie, 10 Boulevard Pasteur, 06000 Nice, France;
| | - Seppe Vander Beken
- Bredent Medical GmbH & Co., Gewerbegebiet Gartenäcker, Weißenhorner Str. 2, 89250 Senden, Germany;
| | - Patricia Burton
- Thor Photomedicine Ltd., Water Meadow, Chesham HP5 1LF, UK; (P.B.); (J.C.)
| | - James Carroll
- Thor Photomedicine Ltd., Water Meadow, Chesham HP5 1LF, UK; (P.B.); (J.C.)
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy;
| |
Collapse
|
16
|
Photobiomodulation Regulation as One Promising Therapeutic Approach for Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9962922. [PMID: 34336126 PMCID: PMC8313355 DOI: 10.1155/2021/9962922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction refers to myocardial necrosis caused by acute or persistent coronary ischemia and hypoxia. It is considered to be one of the significant crises threatening human health in the world. Following myocardial infarction, collagen gradually replaces the original tissue due to the loss of many cardiomyocytes, myocardial contractile function decreases, and myocardial fibrosis eventually leads to heart failure. Phototherapy is a new treatment which has shown superior efficacy on the nerve, skeletal muscle, skin, and other tissues. Likewise, there is growing evidence that phototherapy also has many positive effects on the heart. Therefore, this article introduces the progress of research on phototherapy as a new therapeutic strategy in the treatment of myocardial infarction. The wavelength of photobiomodulation in the treatment of myocardial infarction is specific, and the influence of light source power and light duration on the tissue presents a bell-shaped distribution. Under these conditions, phototherapy can promote ATP synthesis and angiogenesis, inhibit the inflammatory response, improve heart function, reduce infarct size, and protect myocardium. In addition, we summarized the molecular mechanisms of phototherapy. According to the location of photoreceptors, they can be divided into mitochondrial and nonmitochondrial parts.
Collapse
|
17
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
18
|
Liu N, Lu W, Qu X, Zhu C. LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med Sci 2021; 37:849-856. [PMID: 33884524 DOI: 10.1007/s10103-021-03322-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/β-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.
Collapse
Affiliation(s)
- Na Liu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weiwei Lu
- Medical school, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaowen Qu
- Laser Medical Center, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 JinBi Road, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Chongtao Zhu
- Laser Medical Center, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 JinBi Road, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
19
|
Chaweewannakorn C, Santiwong P, Surarit R, Sritanaudomchai H, Chintavalakorn R. The effect of LED photobiomodulation on the proliferation and osteoblastic differentiation of periodontal ligament stem cells: in vitro. J World Fed Orthod 2021; 10:79-85. [PMID: 33888447 DOI: 10.1016/j.ejwf.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The aim of this study was to investigate the influence of three different light-emitting diode (LED) wavelengths on the proliferation and osteoblastic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. METHODS PDLSCs seeded on 96- and 24-well plates, for proliferation and osteoblastic differentiation, respectively, were irradiated daily by LED light with peak emission wavelengths of 630, 680, and 830 nm at constant energy densities of 3.5 J/cm2. Cultures were grown for 8 days for the proliferation assay, 10 days for the alkaline phosphatase (ALP) assay, and 28 days for Alizarin red staining. Mitochondrial activity, ALP enzyme level, and the ability to form calcium phosphate deposits were measured and compared across cultures. RESULTS Results obtained from statistical analysis of the experimental data indicated that the rate of proliferation (P < 0.05) in 830-nm irradiated cultures were significantly higher than the control samples at day 6 and 8; whereas, for the 630- and 680-nm groups, test results showed lower proliferation rates at day 8. For osteoblastic differentiation, significantly greater mineralization than the control samples was detected in the red-light groups (630 and 680 nm) during the late differentiation period (P < 0.001), which was supported by a higher ALP activity of the 630- and 680-nm groups in the early stage (P < 0.01). CONCLUSION The results of this study demonstrate that the PDLSCs responded differently to specific LED wavelengths. For enhancing cellular proliferation, 830-nm LED irradiation was more effective. On the other hand, the wavelengths of 630 and 680 nm were better for stimulating osteoblastic differentiation.
Collapse
Affiliation(s)
| | - Peerapong Santiwong
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
20
|
Lewandowski RB, Stępińska M, Gietka A, Dobrzyńska M, Łapiński MP, Trafny EA. The red-light emitting diode irradiation increases proliferation of human bone marrow mesenchymal stem cells preserving their immunophenotype. Int J Radiat Biol 2021; 97:553-563. [PMID: 33471577 DOI: 10.1080/09553002.2021.1876947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE For effective clinical application of human bone marrow mesenchymal stem cells (hBM-MSCs), the enhancement of their proliferation in vitro together with maintaining the expression of their crucial surface antigens and differentiation potential is necessary. The present study aimed to investigate the effect of light-emitting diode (LED) irradiation on hBM-MSCs proliferation after two, five, or nine days post-irradiation. MATERIALS AND METHODS The hBM-MSCs were exposed to the LED light at 630 nm, 4 J/cm2, and power densities of 7, 17, or 30 mW/cm2. To assess the cell proliferation rate in the sham-irradiated and irradiated samples the cells metabolic activity and DNA content were determined. The number of apoptotic and necrotic cells in the samples was also evaluated. The expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2 was monitored with flow cytometry. Additionally, the potential of hBM-MSCs for induced differentiation was measured. RESULTS When the metabolic activity was assayed, the significant increase in the cell proliferation rate by 31 and 50% after the irradiation with 4 J/cm2 and 17 mW/cm2, respectively, was observed at day five and nine when compared to the sham-irradiated cells (p < .05). Similarly, DNA content within the irradiated hBM-MSCs increased by 31 and 41% at day five and nine after the irradiation with 4 J/cm2 and 17 mW/cm2 in comparison to the sham-irradiated cells. LED irradiation did not change the expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2. At the same experimental conditions, the hBM-MSCs maintain in vitro their capability for multipotential differentiation into osteoblasts, adipocytes, and chondrocytes. CONCLUSION Therefore, LED irradiation at a wavelength of 630 nm, energy density 4 J/cm2, and power density 17 mW/cm2 can effectively increase the number of viable hBM-MSCs in vitro.
Collapse
Affiliation(s)
- Rafał B Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Andrzej Gietka
- Optoelectronic Technologies Division, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Mariusz P Łapiński
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Elżbieta A Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| |
Collapse
|
21
|
Glass GE. Photobiomodulation: A review of the molecular evidence for low level light therapy. J Plast Reconstr Aesthet Surg 2020; 74:1050-1060. [PMID: 33436333 DOI: 10.1016/j.bjps.2020.12.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Light energy is harnessed for therapeutic use in a number of ways, most recently by way of photobiomodulation (PBM). This phenomenon is a cascade of physiological events induced by the nonthermal exposure of tissue to light at the near infrared end of the visible spectrum. Therapeutic PBM has become a highly commercialized interest, marketed for everything from facial rejuvenation to fat loss, and diode-based devices are popular in both the clinic setting and for use at home. The lack of regulatory standards makes it difficult to draw clear conclusions about efficacy and safety but it is crucial that we understand the theoretical basis for PBM, so that we can engage in an honest dialogue with our patients and design better clinical studies to put claims of efficacy to the test. This article presents a summary of the science of PBM and examines the differences between laser light, on which much of the preclinical evidence is based and light from diodes, which are typically used in a clinical setting.
Collapse
Affiliation(s)
- Graeme E Glass
- Department of Surgery, Sidra Medicine, Doha, Qatar; Chair, laser safety committee, Sidra Medicine, Doha, Qatar; Weill Cornell Medical College, New York and Qatar.
| |
Collapse
|
22
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
23
|
Ermakov AM, Ermakova ON, Popov AL, Manokhin AA, Ivanov VK. Opposite effects of low intensity light of different wavelengths on the planarian regeneration rate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111714. [PMID: 31830733 DOI: 10.1016/j.jphotobiol.2019.111714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Planarian freshwater flatworms have the unique ability to regenerate due to stem cell activity. The process of regeneration is extremely sensitive to various factors, including light radiation. Here, the effect of low-intensity LED light of different wavelengths on regeneration, stem cell proliferation and gene expression associated with these processes was studied. LED matrices with different wavelengths (red (λmax = 635 nm), green (λmax = 520 nm) and blue (λmax = 463 nm), as well as LED laser diodes (red (λmax = 638.5 nm), green (λmax = 533 nm) and blue (λmax = 420 nm), were used in the experiments. Computer-assisted morphometry, whole-mount immunocytochemical study and RT-PCR were used to analyze the biological effects of LED light exposure on the planarian regeneration in vivo. It was found that a one-time exposure of regenerating planarians with low-intensity red light diodes stimulated head blastema growth in a dose-dependent manner (up to 40%). The green light exposure of planarians resulted in the opposite effect, showing a reduced head blastema growth rate by up to 21%. The blue light exposure did not lead to any changes in the rate of head blastema growth. The maximum effects of light exposure were observed at a dose of 175.2 mJ/cm2. No significant differences were revealed in the dynamics of neoblasts' (planarian stem cells) proliferation under red and green light exposure. However, the RT-PCR gene expression analysis of 46 wound-induced genes revealed their up-regulation upon red LED light exposure, and down-regulation upon green light exposure. Thus, we have demonstrated that the planarian regeneration process is rather sensitive to the effects of low-intensity light radiation of certain wavelengths, the biological activity of red and green light being dictated by the different expression of the genes regulating transcriptional activity.
Collapse
Affiliation(s)
- A M Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - O N Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - A L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - A A Manokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Oblast 142290, Russia
| | - V K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
24
|
Ahrabi B, Rezaei Tavirani M, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S, Abbaszadeh HA. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. J Lasers Med Sci 2019; 10:S96-S103. [PMID: 32021681 DOI: 10.15171/jlms.2019.s17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The purpose of this study is to investigate the effect of a low-power laser on the proliferation, migration, differentiation of different types of mesenchymal stem cells (MSCs) in different studies. Methods: The relevant articles that were published from 2004 to 2019 were collected from the sources of PubMed, Scopus, and only the articles specifically examining the effect of a lowpower laser on the proliferation, differentiation, and migration of the MSCs were investigated. Results: After reviewing the literature, only 42 articles were found relevant. Generally, most of the studies demonstrated that different laser parameters increased the proliferation, migration, and differentiation of the MSCs, except the results of two studies which were contradictory. In fact, changing the parameters of a low-power laser would affect the results. On the other hand, the source of the stem cells was reported as a key factor. In addition, the combination of lasers with other therapeutic approaches was found to be more effective. Conclusion: The different parameters of lasers has been found to be effective in the proliferation, differentiation, and migration of the MSCs and in general, a low-power laser has a positive effect on the MSCs, helping to improve different disease models.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Noroozian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
PTPN21 Overexpression Promotes Osteogenic and Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells but Inhibits the Immunosuppressive Function. Stem Cells Int 2019; 2019:4686132. [PMID: 31885609 PMCID: PMC6907062 DOI: 10.1155/2019/4686132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.
Collapse
|
26
|
Vakhrushev IV, Yusupov VI, Raeva OS, Pyatnitskiy MA, Bagratashvili VN. Effect of Low-Level Laser Irradiation on Proliferative Activity of Wharton's Jelly Mesenchymal Stromal Cells. Bull Exp Biol Med 2019; 167:136-139. [PMID: 31183648 DOI: 10.1007/s10517-019-04477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/15/2022]
Abstract
We studied the effect of low-level laser irradiation on proliferative activity of cultured human Wharton's jelly mesenchymal stromal sells. Cells were irradiated with a solid-state laser emitting at 650 nm; irradiation doses were 0.04, 0.4, or 4 J/cm2. Laser irradiation was performed once at the start of the cell proliferation experiment or daily throughout the experiment. Cells were cultured for 7 days. The number of viable cells was assessed using the MTT test. An increase in cell proliferative activity was detected after daily laser irradiations; the maximum stimulating effect was achieved at a dose of 0.04 J/cm2. These results substantiate medical use of lasers for expansion of cells intended for transplantation.
Collapse
Affiliation(s)
- I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia. .,Private Institution Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia.
| | - V I Yusupov
- Institute of Photonics Technologies, Federal Research Center for Crystallography and Photonics, Russian Academy of Sciences, Troitsk, Russia
| | - O S Raeva
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - M A Pyatnitskiy
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V N Bagratashvili
- Institute of Photonics Technologies, Federal Research Center for Crystallography and Photonics, Russian Academy of Sciences, Troitsk, Russia
| |
Collapse
|
27
|
Paschalidou M, Athanasiadou E, Arapostathis K, Kotsanos N, Koidis PT, Bakopoulou A, Theocharidou A. Biological effects of low-level laser irradiation (LLLI) on stem cells from human exfoliated deciduous teeth (SHED). Clin Oral Investig 2019; 24:167-180. [DOI: 10.1007/s00784-019-02874-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
28
|
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:147-159. [PMID: 31002851 DOI: 10.1016/j.pbiomolbio.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) encompasses a light application aimed to increase healing process, tissue regeneration, and reducing inflammation and pain. PBM is specifically aimed to modify the expression of cellular molecules; however, PBM impacts on cellular and molecular pathways especially in bone regenerative medicine have been investigated in scattered different studies. The purpose of the current study is to systematically review evidence on molecular impact of PBM on bone regeneration. A comprehensive electronic search in Medline, Scopus, EMBASE, EBSCO, Cochrane library, web of science, and google scholar was conducted from January 1975 to October 2018 limited to English language publications on administrations of photobiomodulation for bone regeneration which evaluated biological factors. In addition, hand search of selected journals was done to retrieve all articles. This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials. The data tabulated according to the type of markers (osteogenic markers, angiogenic markers, growth factors, and inflammation mediators). PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2. Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia; Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Praveen R Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY, 14214, USA.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
29
|
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019; 34:115-126. [PMID: 30264177 PMCID: PMC6344244 DOI: 10.1007/s10103-018-2620-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.
Collapse
Affiliation(s)
- Reza Fekrazad
- Periodontics Department, Dentistry School, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran.
| | - Sohrab Asefi
- Orthodontic Department, Dentistry School, International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Taghiar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Bordbar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
30
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
31
|
Protective effect of human adipose-derived stem cells transplanted to fat grafts against high-power laser therapy mediated fat tissue damage. J ANAT SOC INDIA 2018. [DOI: 10.1016/j.jasi.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, Qiu Y. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci 2018; 34:169-178. [PMID: 30456535 DOI: 10.1007/s10103-018-2673-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/12/2018] [Indexed: 10/27/2022]
Abstract
The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.
Collapse
Affiliation(s)
- Liying Wang
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou General Hospital, Lanzhou Command of PLA, Lanzhou, Gansu, China
| | - Fan Wu
- Department of Laparoscope Surgery, The 451st Hospital of People's Liberation Army, Xi'an, Shaanxi, China
| | - Chen Liu
- Department of General Dentistry, Stomatological Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Yang Song
- Department of Stomatology, The 323rd Hospital of People's Liberation Army, Xi'an, Shaanxi, China
| | - Jiawen Guo
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yanwei Yang
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yinong Qiu
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China.
| |
Collapse
|
33
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
34
|
Rosso MPDO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering (Basel) 2018; 5:44. [PMID: 29890728 PMCID: PMC6027218 DOI: 10.3390/bioengineering5020044] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Photobiomodulation therapy (PBMT) has been investigated because of its intimate relationship with tissue recovery processes, such as on peripheral nerve damage. Based on the wide range of benefits that the PBMT has shown and its clinical relevance, the aim of this research was to carry out a systematic review of the last 10 years, ascertaining the influence of the PBMT in the regeneration of injured peripheral nerves. The search was performed in the PubMed/MEDLINE database with the combination of the keywords: low-level laser therapy AND nerve regeneration. Initially, 54 articles were obtained, 26 articles of which were chosen for the study according to the inclusion criteria. In the qualitative aspect, it was observed that PBMT was able to accelerate the process of nerve regeneration, presenting an increase in the number of myelinated fibers and a better lamellar organization of myelin sheath, besides improvement of electrophysiological function, immunoreactivity, high functionality rate, decrease of inflammation, pain, and the facilitation of neural regeneration, release of growth factors, increase of vascular network and collagen. It was concluded that PBMT has beneficial effects on the recovery of nerve lesions, especially when related to a faster regeneration and functional improvement, despite the variety of parameters.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Daniela Vieira Buchaim
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
- Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Rua Nove de Julho, 730, Centro, Adamantina, São Paulo CEP 17800-000, Brazil.
| | - Natália Kawano
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Gabriela Furlanette
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| |
Collapse
|
35
|
Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 2018; 33:1673-1683. [PMID: 29717386 DOI: 10.1007/s10103-018-2513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.
Collapse
|
36
|
Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 2018. [PMID: 29520687 DOI: 10.1007/s10103-017-2432-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P ≤ 0.001), HW- (P ≤ 0.01) and DHW-cells (P ≤ 0.05). HW-cells showed a significant progression in the S-phase (P ≤ 0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P ≤ 0.05 and P ≤ 0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).
Collapse
Affiliation(s)
- S M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - N N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| | - H Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
37
|
Wu Y, Xu J, Chen J, Zou M, Rusidanmu A, Yang R. Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro. Thorac Cancer 2017; 9:253-261. [PMID: 29286585 PMCID: PMC5792724 DOI: 10.1111/1759-7714.12572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background Transferrin receptor (TfR) is expressed in most lung cancers and is an indicator of poor prognosis in certain groups of patients. In this study, we blocked cell surface TfR to inhibit lung adenocarcinoma (LAC) cell growth in vitro and investigated the associated molecular mechanisms to determine a potential therapeutic target in human LAC. Methods RNA interference and antibody blocking techniques were used to block the function of TfR in LAC cells, and cell proliferation assays were used to detect the results. Affymetrix microarray analysis was conducted using H1299 cells in which TfR was blocked with an antibody to investigate the molecular mechanisms involved. Results The cell proliferation assay demonstrated that H1299 cell proliferation was significantly inhibited after small interfering RNA knockdown or blocking of TfR. Mechanistic studies found that 100 genes were altered more than two‐fold after TfR was blocked and that blocking TfR was accompanied by decreased expression of the oncogene KRAS. Conclusion Our data provide evidence that blocking TfR could significantly inhibit LAC proliferation by targeting the oncogene KRAS; therefore, TfR may be a therapeutic target for LAC. In addition, our results suggest a new method for blocking the signal from the oncogene KRAS by targeting TfR in LAC.
Collapse
Affiliation(s)
- Yihe Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbo Chen
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Meirong Zou
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Aizemaiti Rusidanmu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Peat FJ, Colbath AC, Bentsen LM, Goodrich LR, King MR. In Vitro Effects of High-Intensity Laser Photobiomodulation on Equine Bone Marrow-Derived Mesenchymal Stem Cell Viability and Cytokine Expression. Photomed Laser Surg 2017; 36:83-91. [PMID: 29131717 DOI: 10.1089/pho.2017.4344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aimed to examine the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on equine bone marrow-derived mesenchymal stem cell (MSC) viability, proliferation, and cytokine expression in vitro. BACKGROUND Photobiomodulation of cells using monochromatic light is a technique designed to influence cellular processes. Previous studies have shown dose-dependent effects of low-level laser irradiation on cell proliferation and cytokine expression in a range of cell types and species. Evidence for the influence of 1064 nm wavelength near-infrared irradiation on MSCs is sparse, and high-energy doses have shown inhibitory effects. METHODS MSC cultures from six horses were exposed to 1064 nm irradiation with an energy density of 9.77 J/cm2 and a mean output power of 13.0 W for 10 sec. MSC viability and proliferation were evaluated through flow cytometry and real-time live cell analysis. Gene expression and cytokine production in the first 24 h after irradiation were analyzed through polymerase chain reaction (PCR), multiplex assay, and enzyme-linked immunosorbent assay. RESULTS No difference in viability was detected between irradiated and control MSCs. Irradiated cells demonstrated slightly lower proliferation rates, but remained within 3.5% confluence of control cells. Twenty-four hours after irradiation, irradiated MSCs demonstrated a significant increase in expression of interleukin (IL)-10 and vascular endothelial growth factor (VEGF) compared with control MSCs. CONCLUSIONS Under these irradiation parameters, equine MSCs remained viable and expressed increased concentrations of IL-10 and VEGF. IL-10 has an anti-inflammatory action by inhibiting the synthesis of proinflammatory cytokines at the transcriptional level. This response to 1064 nm irradiation shows promise in the photobiomodulation of MSCs to enhance their therapeutic properties.
Collapse
Affiliation(s)
- Frances J Peat
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Aimee C Colbath
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Lori M Bentsen
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Laurie R Goodrich
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Melissa R King
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| |
Collapse
|
39
|
Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 2017; 33:95-102. [DOI: 10.1007/s10103-017-2355-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
|
40
|
Mostafavinia A, Dehdehi L, Ghoreishi SK, Hajihossainlou B, Bayat M. Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2017; 175:29-36. [DOI: 10.1016/j.jphotobiol.2017.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
|
41
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|
42
|
Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 2017; 12:e0174303. [PMID: 28333993 PMCID: PMC5363917 DOI: 10.1371/journal.pone.0174303] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. Results Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. Conclusions Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amrutesh S. Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fernandes AP, Junqueira MDA, Marques NCT, Machado MAAM, Santos CF, Oliveira TM, Sakai VT. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2016; 24:332-7. [PMID: 27556203 PMCID: PMC4990361 DOI: 10.1590/1678-775720150275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022] Open
Abstract
Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED).
Collapse
Affiliation(s)
- Ana Paula Fernandes
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, SP, Brasil
| | | | - Nádia Carolina Teixeira Marques
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, SP, Brasil
| | | | - Carlos Ferreira Santos
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Thais Marchini Oliveira
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, SP, Brasil
| | - Vivien Thiemy Sakai
- - Universidade Federal de Alfenas, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| |
Collapse
|
44
|
Lucaciu O, Crisan B, Crisan L, Baciut M, Soritau O, Bran S, Biris AR, Hurubeanu L, Hedesiu M, Vacaras S, Kretschmer W, Dirzu N, Campian RS, Baciut G. In quest of optimal drug-supported and targeted bone regeneration in the cranio facial area: a review of techniques and methods. Drug Metab Rev 2016; 47:455-69. [PMID: 26689239 DOI: 10.3109/03602532.2015.1124889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Craniofacial bone structures are frequently and extensively affected by trauma, tumors, bone infections and diseases, age-related degeneration and atrophy, as well as congenital malformations and developmental anomalies. Consequently, severe encumbrances are imposed on both patients and healthcare systems due to the complex and lengthy treatment duration. The search for alternative methods to bone transplantation, grafting and the use of homologous or heterologous bone thus responds to one of the most significant problems in human medicine. This review focuses on the current consensus of bone-tissue engineering in the craniofacial area with emphasis on drug-induced stem cell differentiation and induced bone regeneration.
Collapse
Affiliation(s)
- Ondine Lucaciu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Bogdan Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Olga Soritau
- b "Ion Chiricuta" Oncological Institute , Cluj-Napoca , Romania
| | - Simion Bran
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Alexandru Radu Biris
- c National Institute for Research and Development of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Lucia Hurubeanu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Hedesiu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Sergiu Vacaras
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Noemi Dirzu
- e Technical University of Cluj-Napoca , Cluj-Napoca , Romania
| | - Radu Septimiu Campian
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
45
|
Liu Y, Zhang H. Low-Level Laser Irradiation Precondition for Cardiac Regenerative Therapy. Photomed Laser Surg 2016; 34:572-579. [PMID: 27627137 DOI: 10.1089/pho.2015.4058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The purpose of this article was to review the molecular mechanisms of low-level laser irradiation (LLLI) preconditioning for heart cell therapy. BACKGROUND DATA Stem cell transplantation appears to offer a better alternative to cardiac regenerative therapy. Previous studies have confirmed that the application of LLLI plays a positive role in regulating stem cell proliferation and in remodeling the hostile milieu of infarcted myocardium. Greater understanding of LLLI's underlying mechanisms would be helpful in translating cell transplantation therapy into the clinic. METHODS Studies investigating LLLI preconditioning for cardiac regenerative therapy published up to 2015 were retrieved from library sources and Pubmed databases. RESULTS LLLI preconditioning stimulates proliferation and differentiation of stem cells through activation of cell proliferation signaling pathways and alteration of microRNA expression. It also could stimulate paracrine secretion of stem cells and alter cardiac cytokine expression in infarcted myocardium. CONCLUSIONS LLLI preconditioning provides a promising approach to maximize the efficacy of cardiac cell-based therapy. Although many studies have reported possible molecular mechanisms involved in LLLI preconditioning, the exact mechanisms are still not clearly understood.
Collapse
Affiliation(s)
- Yiwei Liu
- State Key Laboratory of Cardiovascular Disease and Key laboratory of Cardiac Regenerative Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease and Key laboratory of Cardiac Regenerative Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
46
|
Ertl NG, O'Connor WA, Brooks P, Keats M, Elizur A. Combined exposure to pyrene and fluoranthene and their molecular effects on the Sydney rock oyster, Saccostrea glomerata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:136-145. [PMID: 27286571 DOI: 10.1016/j.aquatox.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously detected in the water column, associated with particulate matter or in the tissue of marine organisms such as molluscs. PAH exposure and their resultant bioaccumulation in molluscs can cause a range of serious physiological effects in the affected animals. To examine the molecular response of these xenobiotics in bivalves, Sydney rock oysters (Saccostrea glomerata) were exposed to pyrene and fluoranthene for seven days. Chemical analysis of the soft-tissue of PAH stressed S. glomerata confirmed that pyrene and fluoranthene could be bioaccumulated by these oysters. RNA-Seq analysis of PAH-exposed S. glomerata showed a total of 765 transcripts differentially expressed between control and PAH-stressed oysters. Closer examination of the transcripts revealed a range genes encoding enzymes involved in PAH detoxification (e.g. cytochrome P450), innate immune responses (e.g. pathogen recognition, phagocytosis) and protein synthesis. Overall, pyrene and fluoranthene exposure appears to have resulted in a suppression of pathogen recognition and some protein synthesis processes, whereas transcripts of genes encoding proteins involved in clearance of cell debris and some transcripts of genes involved in PAH detoxification were induced in response to the stressors. Pyrene and fluoranthene exposure thus invoked a complex molecular response in S. glomerata, with results suggesting that oysters focus on removing the stressors from their system and dealing with the downstream effects of PAH exposure, potentially at the exclusion of other, less immediate concerns (e.g. protection from infection).
Collapse
Affiliation(s)
- Nicole G Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Australian Seafood Cooperative Research Centre, South Australia, Australia.
| | - Wayne A O'Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Department of Primary Industries, New South Wales, Australia. wayne.o'
| | - Peter Brooks
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | - Michael Keats
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|
47
|
Guo J, Wang Q, Wai D, Zhang QZ, Shi SH, Le AD, Shi ST, Yen SLK. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells. Orthod Craniofac Res 2016; 18 Suppl 1:50-61. [PMID: 25865533 DOI: 10.1111/ocr.12081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. MATERIALS AND METHODS Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. RESULT Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. CONCLUSIONS These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ.
Collapse
Affiliation(s)
- J Guo
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moskvin SV, Klyuchnikov DY, Antipov EV, Gorina AI, Kiseleva ON. [The influence of continuous low-intensity laser radiation at the red (635 nm) and green (525 nm) wavelengths on the human mesenchymal stem cells in vitro: a review of the literature and original investigations]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 93:32-42. [PMID: 27213947 DOI: 10.17116/kurort2016232-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Low-intensity laser radiation can be used as one of the methods for the non-specific regulation of the human mesenchymal stem cell (MSC) activity at the preliminary stage of their in vitro cultivation. The objective of the present study was to estimate the influence of the limiting regimes of continuous low-intensity laser radiation (CLIR) of red (635 nm) and green (525 nm) spectra. MATERIAL AND METHODS The adhesive culture of human mesenchymal stem cells obtained from a donor's umbilical cord tissue was used in the experiments (following 4 passages). They were irradiated using a Lazmik-VLOK laser therapeutic device equipped with the KLO-635-40 (635 nm, 4,9 mW/cm(2)) and KLO-525-50 (525 nm, 5,4 mW/cm(2)) laser diode emitting heads operating in a continuous mode. A special nozzle (jar) for laser and vacuum massage (KB-5, 35 cm in diameter) was employed to fix the heads. The exposure time in all the irradiation regimes was 5 minutes. CONCLUSION The study has demonstrated that neither the morphological features nor the viability of mesenchymal stem cells was altered under the influence of laser irradiation at the aforementioned energy and time parameters. The data obtained indicate that laser irradiation with the limiting levels of the chosen energy parameters produces no positive effect on the cell proliferative activity; more than that, it may cause its inhibition.
Collapse
Affiliation(s)
- S V Moskvin
- Federal state budgetary institution 'State Research Centre of Laser Medicine', Russian Federal Medico-Biological Agency, Moscow, Russia
| | - D Yu Klyuchnikov
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - E V Antipov
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| | - A I Gorina
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - O N Kiseleva
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| |
Collapse
|
49
|
Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM. Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomed Laser Surg 2016; 34:533-542. [PMID: 27070113 DOI: 10.1089/pho.2015.4029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to review available literature about the effect of photobiomodulation (PBM) on mesenchymal stem cells (MSCs). BACKGROUND DATA The effects of coherent and noncoherent light sources such as low-level lasers and light-emitting diodes (LEDs) on cells and tissues, known as PBM, form the basis of photomedicine. This treatment technique effects cell function, proliferation, and migration, and plays an important role in tissue regeneration. Stem cells have been found to be helpful elements in tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment results. MATERIALS AND METHODS An electronic search in PubMed was conducted of publications from the previous 12 years. English language articles related to the subject were found using selected key words. The full texts of potentially suitable articles were assessed according to inclusion and exclusion criteria. RESULTS After evaluation, 30 articles were deemed relevant according to the inclusion criteria. The energy density of the laser was 0.7-9 J/cm2. The power used for visible light was 30-110 mW and that used for infrared light was 50-800 mW. Nearly all studies showed that low-level laser therapy had a positive effect on cell proliferation. Similar outcomes were found for LED; however, some studies suggest that the laser alone is not effective, and should be used as an adjunct tool. CONCLUSIONS PBM has positive effects on MSCs. This review concluded that doses of 0.7-4 J/cm2 and wavelengths of 600-700 nm are appropriate for light therapy. The results were dependent upon different parameters; therefore, optimization of parameters used in light therapy to obtain favorable results is required to provide more accurate comparison.
Collapse
Affiliation(s)
- Reza Fekrazad
- 1 Dental Faculty, Periodontology Department, AJA University of Medical sciences , Tehran, Iran
| | - Sohrab Asefi
- 2 Postgraduate of Orthodontics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | | | | |
Collapse
|
50
|
Sonis ST, Hashemi S, Epstein JB, Nair RG, Raber-Durlacher JE. Could the biological robustness of low level laser therapy (Photobiomodulation) impact its use in the management of mucositis in head and neck cancer patients. Oral Oncol 2016; 54:7-14. [DOI: 10.1016/j.oraloncology.2016.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|