1
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
2
|
Ang BJ, Suardi N, Ong EBB, Khasim SNH, Gemanam SJ, Mustafa IS, Fong JH. Exploring the role of impedance spectroscopy in assessing 405 nm laser-induced inactivation of saccharomyces cerevisiae. Photochem Photobiol Sci 2024; 23:931-940. [PMID: 38592591 DOI: 10.1007/s43630-024-00564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Impedance spectroscopy was employed to assess the electrical properties of yeast following 405 nm laser irradiation, exploring the effects of visible, non-ionizing laser-induced inactivation as a more selective and safer alternative for photoinactivation applications compared to the use of DNA targeting, ionizing UV light. Capacitance and impedance spectra were obtained for yeast suspensions irradiated for 10, 20, 30, and 40 min using 100 and 200 mW laser powers. Noticeable differences in capacitance spectra were observed at lower frequencies (40 Hz to 1 kHz), with a significant increase at 40 min for both laser powers. β-dispersion was evident in the impedance spectra in the frequency range of 10 kHz to 10 MHz. The characteristic frequency of dielectric relaxation steadily shifted to higher frequencies with increasing irradiation time, with a drastic change observed at 40 min for both laser powers. These changes signify a distinct alteration in the physical state of yeast. A yeast spot assay demonstrated a decrease in cell viability with increasing laser irradiation dose. The results indicate a correlation between changes in electrical properties, cell viability, and the efficacy of 405 nm laser-induced inactivation. Impedance spectroscopy is shown to be an efficient, non-destructive, label-free method for monitoring changes in cell viability in photobiological effect studies. The development of impedance spectroscopy-based real-time studies in photoinactivation holds promise for advancing our understanding of light-cell interactions in medical applications.
Collapse
Affiliation(s)
- Beng Jiong Ang
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Nursakinah Suardi
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | | | | | | | - Jing Heng Fong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
3
|
Takeuchi Y, Aoki A, Hiratsuka K, Chui C, Ichinose A, Aung N, Kitanaka Y, Hayashi S, Toyoshima K, Iwata T, Arakawa S. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics (Basel) 2023; 12:1676. [PMID: 38136710 PMCID: PMC10740818 DOI: 10.3390/antibiotics12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
| | | | - Akiko Ichinose
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon 11241, Myanmar;
| | - Yutaro Kitanaka
- Department of Oral Diagnosis and General Dentistry, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Shinich Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| |
Collapse
|
4
|
Ahn JC, Mo SJ, Choi M, Kim B, Cho SB. In vivo Guinea Pig Model Study for Evaluating Antifungal Effect of a Dual-Diode Laser with Wavelengths of 405 Nm and 635 Nm on Dermatophytosis. Clin Cosmet Investig Dermatol 2023; 16:1559-1567. [PMID: 37351065 PMCID: PMC10284164 DOI: 10.2147/ccid.s415679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Background Various laser- and light-based devices have been introduced as complementary or alternative treatment modalities for dermatophytosis, particularly for finger or toenail onychomycosis. Objective This study aimed to comparatively evaluate the antifungal effects of 405-nm and 635-nm dual-band diode lasers using an in vivo guinea pig model of dermatophytosis. Materials and Methods A guinea pig model was developed by the repetitive application of fungal spore preparations to the back skin of guinea pigs. Dual-diode laser treatment was delivered to the guinea pig skin at a power of 24 mW at a wavelength of 405 nm and 18 mW at 635 nm for 12 min. The treatments were administered three times weekly for 2 weeks, and a mycological study was performed. Results Mycological studies using scraped samples obtained from treatment groups A (N = 8) and B (N = 8) after dual-diode laser treatment revealed that seven of eight (87.5%) samples in each group had negative results for direct potassium hydroxide microscopy and fungal culture studies. Skin specimens from each infected laser-untreated guinea pig exhibited spongiotic psoriasiform epidermis with parakeratosis. Meanwhile, skin specimens from infected laser-treated guinea pigs in groups A and B demonstrated thinner epidermal thickness than those from infected untreated controls but thicker than those from uninfected treated controls without noticeable inflammatory cell infiltration in the dermis. Conclusion The guinea pig dermatophytosis model can be used to comparatively evaluate the efficacy and safety of various treatment modalities, including dual-diode lasers, for superficial fungal skin infection.
Collapse
Affiliation(s)
- Jin-Chul Ahn
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Korea
| | - Sang Joon Mo
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Korea
| | - Min Choi
- R&D Center, Shenb Co., Ltd, Seoul, Korea
| | - Bora Kim
- R&D Center, Shenb Co., Ltd, Seoul, Korea
| | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
| |
Collapse
|
5
|
Zeaiter N, Grzech-Leśniak K, Grzech-Leśniak Z, Ghandour M, El Mobadder M. Facial Aesthetic Laser-Assisted Protocol for the Management of Acne and Pigmentation: A Case Report. Cureus 2022; 14:e28871. [PMID: 36225514 PMCID: PMC9542000 DOI: 10.7759/cureus.28871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
The demand for aesthetic procedures is significantly increasing worldwide. In this case report, an in-office laser-assisted protocol coupled with rejuvenating concentrate serum (Gluage, TEBISKIN Gluage, SkinMed, Italy) was made. A 24-year-old female patient presented with a chief complaint of abundant facial acne and localized pigmentation. Clinical examination revealed the presence of abundant acne on the forehead and cheeks and the presence of localized pigmentation. Laser-assisted protocol coupled with rejuvenating concentrate serum was suggested. The protocol consisted of a thorough cleansing of the face followed by irradiation with a 980 nm diode laser (Smart M, Lasotronix, Poland), followed by a 405 nm diode laser (Smart M, Lasotronix, Poland), the application of rejuvenating concentrate serum (Gluage, TEBISKIN Gluage, SkinMed, Italy), and irradiation with the 635 nm diode laser (Smart M, Lasotronix, Poland). The protocol was made once per week for three weeks (three sessions in total), and a three-month follow-up was made after the end of the last session to confirm the effectiveness of the treatment. Stomatology 1 diode laser (Smart M, Lasotronix, Poland) was used in this case report as a 980 nm, 405 nm, and 635 nm diode laser (Smart M, Lasotronix, Poland). During the follow-up period, an almost total reduction of the acne was observed with the total disappearance of the localized pigmentation. This case report confirms the effectiveness of the proposed laser-assisted facial aesthetic treatment. We invite further studies to be made within the same suggested promising protocol.
Collapse
|
6
|
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112540. [PMID: 35973287 DOI: 10.1016/j.jphotobiol.2022.112540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 μg/mL) and LC90 (18.3 μg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khalid T Nawaf
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Anbar Health Department, Anbar province, Ministry of Health, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Faculty of Medicine, Department of Ophthalmology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
7
|
Roy S, Satvaya P. The effects of lamp types and surface reflectance combinations on the subjective perception of a simulated lit hospital ward environment. FACILITIES 2022. [DOI: 10.1108/f-01-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Good illumination creates an aesthetic environment that may positively influence patients’ well-being and provide comfort to the hospital staff. This study aims to focus on exploring the energy efficiency of lighting and subjective perception of the lit environment in a hospital ward to assess quality indicators of ambient lighting conditions.
Design/methodology/approach
The existing conventional tubular fluorescent lamp–based lighting system in the surveyed patients’ ward was retrofitted with light-emitting diode (LED) luminaires to explore illumination and energy parameters. Thereafter, a software lighting model was created, simulated and analyzed. A Web-based survey with five bipolar adjective pairs in a semantic differential scale was conducted with 48 participants to record and analyze their subjective responses pertaining to the variations in lamp types and surface reflectance combinations.
Findings
The findings imply that the LED tubular lamp–based illumination was deemed more adequate compared to other lamp types and the effects of variations in room surface reflectance combinations on the participants’ responses were statistically significant at α = 0.05 level. The simulated horizontal work plane average illuminance level varied from 131 to 171 lx, mean room surface exitance (MRSE) levels remained between 30 and 90 lm/m2 and overall uniformity of illuminance remained between 0.5 and 0.7.
Originality/value
In a hospital ward illuminated by LED tubular lamps, variations in room surface reflectance combinations for a constant luminous flux package output from the lamps may affect the subjective perception of users and the correlation between horizontal work plane average illuminance and MRSE is found to be highly linear (coefficient of determination > 0.97).
Collapse
|
8
|
Spinella A, de Pinto M, Galluzzo C, Testoni S, Macripò P, Lumetti F, Parenti L, Magnani L, Sandri G, Bajocchi G, Starnoni M, De Santis G, Salvarani C, Giuggioli D. Photobiomodulation Therapy: A New Light in the Treatment of Systemic Sclerosis Skin Ulcers. Rheumatol Ther 2022; 9:891-905. [PMID: 35334095 PMCID: PMC9127012 DOI: 10.1007/s40744-022-00438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Skin ulcers (SU) represent one of the most frequent manifestations of systemic sclerosis (SSc), occurring in almost 50% of scleroderma patients. SSc-SU are often particularly difficult to treat with conventional systemic and local therapies. In this study, a preliminary evaluation of the role and effectiveness of blue light photobiomodulation (PBM) therapy with EmoLED® in the treatment of scleroderma skin ulcers (SSc-SU) was performed. METHODS We retrospectively analyzed 12 consecutive SSc patients with a total of 15 SU on finger hands. All patients were treated with adequate systemic therapy and local treatment for SU; after a standard skin ulcer bed preparation with debridement of all lesions, EmoLED® was performed. All patients were locally treated every week during 2 months of follow-up; SU data were collected after 4 weeks (T4) and 8 weeks (T8). Eight SSc patients with comparable SU were also evaluated as controls. RESULTS The application of EmoLED® in addition to debridement apparently produced faster healing of SU. Complete healing of SU was recorded in 41.6% cases during EmoLED® treatment. Significant improvements in SU area, length, and width, wound bed, and related pain were observed in EmoLED® patients from T0 to T8. Control subjects treated with standard systemic/local therapies merely showed an amelioration of SU area and width at the end of the follow-up. No procedural or post-procedural adverse events were reported. CONCLUSIONS The positive clinical results and the absence of side effects suggest that EmoLED® could be a promising tool in the management of SSc-SU, with an interesting role to play in the healing process in addition to conventional systemic and local treatments.
Collapse
Affiliation(s)
- Amelia Spinella
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Marco de Pinto
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Claudio Galluzzo
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Sofia Testoni
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Pierluca Macripò
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Federica Lumetti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Parenti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Magnani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Gilda Sandri
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | | | - Marta Starnoni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Dilia Giuggioli
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy.
| |
Collapse
|
9
|
de Oliveira Assunção FF, Nascimento É, Chaves L, da Silva AMH, Martinez R, de Jesus Guirro RR. Inhibition of bacterial growth through LED (light-emitting diode) 465 and 630 nm: in vitro. Lasers Med Sci 2022; 37:2439-2447. [PMID: 35075597 DOI: 10.1007/s10103-022-03505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Photobiomodulation has been used to inactivate bacterial growth, in different laser or LED protocols. Thus, the aim of this study was to verify the inhibition of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, in ATCC strains and bacteria collected from patients with skin burns, after irradiation with LED; 300 μl of saline solution with bacterial suspension was irradiated at a concentration of 0.5-0.63, by the McFarland scale, after five serial dilutions, with evaluation of pre- and post-irradiation pH and temperature control. The cultures were placed in a bacteriological incubator at 37 °C for 24 h for later counting of colony-forming units (CFU). Data were analyzed by Shapiro-Wilk tests and single-factor ANOVA, with Tukey post hoc (p < 0.05). Both wavelengths and energy densities tested showed inhibition of bacterial growth. The comparison of the irradiated groups (ATCC) with the control group showed the following: S. aureus and P. aeruginosa 465 nm (40 J/cm2) and 630 nm (50 J/cm2) and E. coli 465 nm (40 J/cm2) and 630 nm (30 J/cm2). Among the ATCC S. aureus groups, there was a difference for 630 nm (30 J/cm2) and 465 nm (30, 40, 50 J/cm2). The bacteria from the burned patients were S. aureus (30 and 50 J/cm2) and P. aeruginosa (50 J/cm2). We conclude that different bacterial strains were reduced into colony-forming units after LED irradiation.
Collapse
Affiliation(s)
- Flávia Fernanda de Oliveira Assunção
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 - Ribeirão Preto, SP, CEP, 14049-900, Brazil
| | - Érika Nascimento
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Chaves
- Graduate Program in Public Health, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alessandro Márcio Hakme da Silva
- Center for Engineering Applied To Heath School of Engineering of São Carlos, Postdoctoral Researcher, University of São Paulo, São Carlos, SP, Brazil
| | - Roberto Martinez
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 - Ribeirão Preto, SP, CEP, 14049-900, Brazil.
| |
Collapse
|
10
|
Terrosi C, Anichini G, Docquier JD, Gori Savellini G, Gandolfo C, Pavone FS, Cusi MG. Efficient Inactivation of SARS-CoV-2 and Other RNA or DNA Viruses with Blue LED Light. Pathogens 2021; 10:pathogens10121590. [PMID: 34959545 PMCID: PMC8708627 DOI: 10.3390/pathogens10121590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Blue LED light has proven to have a powerful bacteria-killing ability; however, little is known about its mechanism of virucidal activity. Therefore, we analyzed the effect of blue light on different respiratory viruses, such as adenovirus, respiratory syncytial virus and SARS-CoV-2. The exposure of samples to a blue LED light with a wavelength of 420 nm (i.e., in the visible range) at 20 mW/cm2 of irradiance for 15 min appeared optimal and resulted in the complete inactivation of the viral load. These results were similar for all the three viruses, demonstrating that both enveloped and naked viruses could be efficiently inactivated with blue LED light, regardless of the presence of envelope and of the viral genome nature (DNA or RNA). Moreover, we provided some explanations to the mechanisms by which the blue LED light could exert its antiviral activity. The development of such safe and low-cost light-based devices appears to be of fundamental utility for limiting viral spread and for sanitizing small environments, objects and surfaces, especially in the pandemic era.
Collapse
Affiliation(s)
- Chiara Terrosi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Jean Denis Docquier
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gianni Gori Savellini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, 50121 Florence, Italy;
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
- Correspondence: ; Tel.: +39-0577-233871; Fax: +39-0577-233870
| |
Collapse
|
11
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Fornaini C, Fekrazad R, Rocca JP, Zhang S, Merigo E. Use of Blue and Blue-Violet Lasers in Dentistry: A Narrative Review. J Lasers Med Sci 2021; 12:e31. [PMID: 34733754 DOI: 10.34172/jlms.2021.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023]
Abstract
Introduction: Blue and blue-violet diode lasers (450 and 405 nm) seem to represent an interesting approach for several clinical treatments today. The aim of this narrative review is to describe and comment on the literature regarding the utilization of blue and blue-violet lasers in dentistry. Methods: A search for "blue laser AND dentistry" was conducted using the PubMed database, and all the papers referring to this topic, ranging from 1990 to April 2020, were analyzed in the review. All the original in vivo and in vitro studies using 450 nm or 405 nm lasers were included in this study. All the articles on the LED light, laser wavelengths other than 405 and 450 nm and using lasers in specialties other than dentistry, as well as case reports, guideline papers and reviews were excluded. Results: From a total of 519 results, 47 articles met the inclusion criteria and were divided into 8 groups based on their fields of application: disinfection (10), photobiomodulation (PBM) (4), bleaching (1), resin curing (20), surgery (7), periodontics (1), endodontics (1) and orthodontics (3). Conclusion: Blue and blue-violet diode lasers may represent new and effective devices to be used in a large number of applications in dentistry, even if further studies will be necessary to fully clarify the potentialities of these laser wavelengths.
Collapse
Affiliation(s)
- Carlo Fornaini
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,Group of Applied Electro Magnetics (GAEM), Department of Engineering and Architecture, University of Parma, Viale G. P. Usberti 181/A -43124 -Parma, Italy.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jean-Paul Rocca
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Shiying Zhang
- 2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Elisabetta Merigo
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| |
Collapse
|
13
|
Nikinmaa S, Podonyi A, Raivio P, Meurman J, Sorsa T, Rantala J, Kankuri E, Tauriainen T, Pätilä T. Daily Administered Dual-Light Photodynamic Therapy Provides a Sustained Antibacterial Effect on Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10101240. [PMID: 34680821 PMCID: PMC8533018 DOI: 10.3390/antibiotics10101240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/12/2023] Open
Abstract
New means to reduce excessive antibiotic use are urgently needed. This study tested dual-light aPDT against Staphylococcus aureus biofilm with different relative ratios of light energy with indocyanine green. We applied single-light aPDT (810 nm aPDT, 405 aBL) or dual-light aPDT (simultaneous 810 nm aPDT and 405 nm aBL), in both cases, together with the ICG photosensitizer with constant energy of 100 or 200 J/cm2. Single-dose light exposures were given after one-day, three-day, or six-day biofilm incubations. A repeated daily dose of identical light energy was applied during biofilm incubations for the three- and six-day biofilms. Using 100 J/cm2 light energy against the one-day biofilm, the dual-light aPDT consisting of more than half of aBL was the most effective. On a three-day maturated biofilm, single-dose exposure to aPDT or dual-light aPDT was more effective than aBL alone. With total light energy of 200 J/cm2, all dual-light treatments were effective. Dual-light aPDT improves the bactericidal effect on Staphylococcus aureus biofilm compared to aPDT or aBL and provides a sustained effect. An increase in the relative ratio of aBL strengthens the antibacterial effect, mainly when the treatment is repeatedly applied. Thus, the light components' energy ratio is essential with dual-light.
Collapse
Affiliation(s)
- Sakari Nikinmaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
| | - Anna Podonyi
- Department of Cardiac Surgery, University Hospital Southampton, Southampton SO16 6YD, Hampshire, UK;
| | - Peter Raivio
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
| | - Jukka Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | | | - Esko Kankuri
- Department of Pharmacology, University of Helsinki, 00290 Helsinki, Finland;
| | - Tuomas Tauriainen
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tommi Pätilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-427-2291; Fax: +358-94-717-4479
| |
Collapse
|
14
|
El-Gendy AO, Samir A, Ahmed E, Enwemeka CS, Mohamed T. The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on gram-positive and gram-negative bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112300. [PMID: 34455353 DOI: 10.1016/j.jphotobiol.2021.112300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles are well-known for their antimicrobial effect. However, they are potentially toxic in high doses. We explored the possibility of enhancing the bactericidal effect of low concentrations of silver nanoparticles with blue light femtosecond laser irradiation, since such concentrations are less toxic. The growth dynamics of Pseudomonas aeruginosa, Listeria monocytogenes and methicillin-resistant Staphylococcus aureus grown in pre-synthesized silver nanoparticles were measured with or without pre-irradiation with 50 mW and 400 nm femtosecond laser irradiation. With each bacterium, combined treatment with laser and silver nanoparticles significantly reduced bacterial growth, indicating that this form of treatment could be beneficial in the ongoing efforts to reduce the deleterious effects of antibiotic resistant Gram-positive and Gram-negative bacteria. The combined treatment was more antimicrobial than treatment with silver nanoparticles alone or photo-irradiation alone. P. aeruginosa and L. monocytogenes were more susceptible to the bactericidal effects of silver nanoparticles, and the combination of laser treatment and silver nanoparticles than MRSA.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
15
|
Galo IDC, Prado RP, Santos WGD. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth. BRAZ J BIOL 2021; 82:e231742. [PMID: 33787710 DOI: 10.1590/1519-6984.231742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The ability of pathogenic bacteria acquire resistance to the existing antibiotics has long been considered a dangerous health risk threat. Currently, the use of visible light has been considered a new approach to treat bacterial infections as an alternative to antibiotics. Herein, we investigated the antimicrobial effect of two range of visible light, blue and red, on Staphylococcus aureus and Pseudomonas aeruginosa, two pathogenic bacterial commonly found in healthcare settings-acquired infections and responsible for high rate of morbidity and mortality. Bacterial cultures were exposed to blue or red light (470 nm and 660 nm) provided by light-emitting diodes - LED. The fluencies and irradiance used for blue and red light were 284.90 J/cm2, 13.19 mW/cm2 and 603.44 J/cm2, 27.93 mW/cm2 respectively. Different experimental approaches were used to determine the optimal conditions of light application. Only exposure to blue light for 6 hours was able to inhibit about 75% in vitro growth of both bacterial species after 24 hours. The surviving exposed bacteria formed colonies significantly smaller than controls, however, these bacteria were able to resume growth after 48 hours. Blue light was able to inhibit bacterial growth upon inoculation in both saline solution and BHI culture medium. We can conclude that blue light, but not red light, is capable of temporarily retarding the growth of gram negative and gram positive bacteria.
Collapse
Affiliation(s)
- I D C Galo
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| | - R P Prado
- Universidade Federal de Catalão - UFCAT, Departamento de Medicina, Catalão, GO, Brasil
| | - W G Dos Santos
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| |
Collapse
|
16
|
Amini A, Soleimani H, Rezaei F, Ghoreishi SK, Chien S, Bayat M. The Combined Effect of Photobiomodulation and Curcumin on Acute Skin Wound Healing in Rats. J Lasers Med Sci 2021; 12:e9. [PMID: 34084735 PMCID: PMC8164908 DOI: 10.34172/jlms.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Abnormal wound repair is a cause for considerable expense, as well as patient morbidity and mortality. Here, we investigated the combined impact of photobiomodulation (PBM) and curcumin on a rat experimental model of an acute skin wound. Methods: A round full-thickness wound was created on the back of each rat. We divided the rats into the following four groups. Group one was the control group. Group two received pulse wave (PW) PBM at a dose of 890 nm, 80 Hz, and 0.2 J/cm2. Group 3 received 40 mg/kg curcumin by gastric gavage and group 4 were treated with PWPBM + curcumin. We measured the wound area on days 4, 7, and 15, and performed microbiological and tensiometric examinations. Results: There was markedly improved wound contraction in the curcumin (7.5 ± 0.57; P =0.000), PBM (8.5 ± 1.2; P =0.000), and PBM + curcumin (14.5 ± 4.3; P =0.002) groups relative to the control group (25 ± 6). PBM (100 ± 7.3; P =0.005), and PBM + curcumin (98 ± 6; P =0.005) groups meaningfully improved tensile strength relative to the control group (61 ± 8.2). On day 15, the PBM (10 ± 5; P =0.000), curcumin (14 ± 4.5, P =0.000), and PBM + curcumin (27.3 ± 8.3; P =0.000) groups meaningfully decreased microbial flora relative to the control group (95 ± 6). Conclusion: We concluded that the PBM and PBM + curcumin groups meaningfully accelerated wound healing of the acute skin wound in the rats. The results of the PBM group were statistically more effective than the curcumin alone and PBM + curcumin-treated groups.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Soleimani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
The viability of human cells irradiated with 470-nm light at various radiant energies in vitro. Lasers Med Sci 2021; 36:1661-1670. [PMID: 33486613 DOI: 10.1007/s10103-021-03250-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.
Collapse
|
18
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
19
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
20
|
Galo IDC, Lima BED, Santos TG, Braoios A, Prado RP, Santos WGD. Staphylococcus aureus growth delay after exposure to low fluencies of blue light (470 nm). BRAZ J BIOL 2020; 81:370-376. [PMID: 32490986 DOI: 10.1590/1519-6984.226473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is one of the greatest challenges to treat bacterial infections worldwide, leading to increase in medical expenses, prolonged hospital stay and increased mortality. The use of blue light has been suggested as an innovative alternative to overcome this problem. In this study we analyzed the antibacterial effect of blue light using low emission parameters on Staphylococcus aureus cultures. In vitro bacterial cultures were used in two experimental approaches. The first approach included single or fractionated blue light application provided by LED emitters (470 nm), with the following fluencies: 16.29, 27.16 and 54.32 J/cm2. For the second approach a power LED (470 nm) was used to deliver 54.32 J/cm2 fractionated in 3 applications. Our results demonstrated that bacterial cultures exposed to fractionated blue light radiation exhibited significantly smaller sizes colonies than the control group after 24 h incubation, however the affected bacteria were able to adapt and continue to proliferate after prolonged incubation time. We could conclude that the hypothetical clinical use of low fluencies of blue light as an antibacterial treatment is risky, since its action is not definitive and proves to be ineffective at least for the strain used in this study.
Collapse
Affiliation(s)
- I D C Galo
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - B E De Lima
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - T G Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - A Braoios
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - R P Prado
- Departamento de Medicina, Universidade Federal de Goiás - UFG, Regional Catalão, Campus II, Av. Castelo Branco, s/n, Setor Universitário, CEP 75704-020, Catalão, GO, Brasil
| | - W G Dos Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| |
Collapse
|
21
|
Yang Y, Ma S, Xie Y, Wang M, Cai T, Li J, Guo D, Zhao L, Xu Y, Liang S, Xia X, Shi C. Inactivation of Pseudomonas aeruginosa Biofilms by 405-Nanometer-Light-Emitting Diode Illumination. Appl Environ Microbiol 2020; 86:e00092-20. [PMID: 32169938 PMCID: PMC7205484 DOI: 10.1128/aem.00092-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/07/2020] [Indexed: 12/26/2022] Open
Abstract
Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination.IMPORTANCEPseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.
Collapse
Affiliation(s)
- Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yawen Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjun Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Tricarico PM, Zupin L, Ottaviani G, Rupel K, Celsi F, Genovese G, Boniotto M, Crovella S, Marzano AV. Photobiomodulation as potential novel third line tool for non-invasive treatment of hidradenitis suppurativa. GIORN ITAL DERMAT V 2020; 155:88-98. [DOI: 10.23736/s0392-0488.19.06247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Masson-Meyers DS, Bumah VV, Castel C, Castel D, Enwemeka CS. Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111719. [PMID: 31770705 DOI: 10.1016/j.jphotobiol.2019.111719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Infection with Propionibacterium acnes is ubiquitous, and drug resistant strains have been on the rise as the use of pharmaceutical antimicrobials continues to engender the emergence of further resistant strains. In previous studies, we showed that treatment with blue light serves as an alternative to pharmaceutical intervention. As a part of our ongoing effort to improve the antimicrobial efficacy of blue light, we studied the effect of pulsed 450 nm light on P. acnes in vitro and compared two pulsed rates with continuous wave irradiation. We irradiated cultures of P. acnes at various irradiances and radiant energies either singly or repeatedly at various time intervals, using printed micro-LEDs, with the goal of finding the lowest combination of irradiance and radiant energy that would yield 100% bacterial suppression. Our results show that treatment with 33% pulsed light gave the best result compared to 20% pulsed wave or continuous wave. Timing irradiation to coincide with the replication cycle of P. acnes produced a significantly better antimicrobial effect. Furthermore, repeated irradiation at 3-h or 4-h interval enabled significant bacterial suppression even at lower irradiances; thus, making single irradiation at high irradiances unnecessary. Moreover, combining repeated irradiation with appropriate duration of treatment and 33% irradiation pulse rate gave optimal 100% [7 log10] bacterial suppression.
Collapse
Affiliation(s)
| | - Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182. USA.
| | - Chris Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Dawn Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182. USA.
| |
Collapse
|
24
|
Bumah VV, Masson-Meyers DS, Enwemeka CS. Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111702. [PMID: 31760372 DOI: 10.1016/j.jphotobiol.2019.111702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
In our recent study, we showed that pulsed blue light (PBL) suppresses the growth of Propionibacterium acnes more than continuous wave (CW) blue light in vitro, but it is not known that other bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), respond similarly to PBL. The high potency of PBL relative to CW blue light makes it a suitable antimicrobial for suppressing bacterial growth in biofilms as well. Therefore, we determined if MRSA-a deadly bacterium of global concern-is susceptible to 450 nm PBL irradiation in vitro, and ascertained whether the bactericidal effect of PBL on planktonic P. acnes culture can be replicated in biofilms of P. acnes and MRSA. In three series of experiments, we irradiated P. acnes and MRSA respectively, either in planktonic cultures, forming biofilms or formed biofilms. Compared to controls, the results showed 100% bacterial suppression in planktonic cultures of MRSA irradiated with 3 mW/cm2 irradiance and 7.6 J/cm2 radiant exposure three times at 30-minute intervals, and also in P. acnes cultures irradiated with 2 mW/cm2 irradiance 5 J/cm2 radiant exposure thrice daily during each of 3 days. Irradiation of biofilms with the same irradiances and radiant exposures that gave 100% bacterial suppression in planktonic cultures resulted in disruption and disassembly of the architecture of MRSA and P. acnes biofilms, more so in forming biofilms than formed biofilms. The antimicrobial effect on each bacterium was minimal in forming biofilms, and even less in formed biofilms. Increasing radiant exposure slightly from 7.6 J/cm2 to 10.8 J/cm2 without changing any other parameter, yielded more disruption of the biofilm and fewer live MRSA and P. acnes, suggesting that 100% bacterial suppression is possible with further refinement of the protocol. In both planktonic cultures and biofilms, PBL suppressed MRSA more than P. acnes.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
25
|
Hoenes K, Wenzel U, Spellerberg B, Hessling M. Photoinactivation Sensitivity of
Staphylococcus carnosus
to Visible‐light Irradiation as a Function of Wavelength. Photochem Photobiol 2019; 96:156-169. [DOI: 10.1111/php.13168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | - Ulla Wenzel
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | | | - Martin Hessling
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| |
Collapse
|
26
|
Rupel K, Zupin L, Ottaviani G, Bertani I, Martinelli V, Porrelli D, Vodret S, Vuerich R, Passos da Silva D, Bussani R, Crovella S, Parsek M, Venturi V, Di Lenarda R, Biasotto M, Zacchigna S. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. NPJ Biofilms Microbiomes 2019; 5:29. [PMID: 31602310 PMCID: PMC6785554 DOI: 10.1038/s41522-019-0102-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
Resolution of bacterial infections is often hampered by both resistance to conventional antibiotic therapy and hiding of bacterial cells inside biofilms, warranting the development of innovative therapeutic strategies. Here, we report the efficacy of blue laser light in eradicating Pseudomonas aeruginosa cells, grown in planktonic state, agar plates and mature biofilms, both in vitro and in vivo, with minimal toxicity to mammalian cells and tissues. Results obtained using knock-out mutants point to oxidative stress as a relevant mechanism by which blue laser light exerts its anti-microbial effect. Finally, the therapeutic potential is confirmed in a mouse model of skin wound infection. Collectively, these data set blue laser phototherapy as an innovative approach to inhibit bacterial growth and biofilm formation, and thus as a realistic treatment option for superinfected wounds.
Collapse
Affiliation(s)
- Katia Rupel
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luisa Zupin
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giulia Ottaviani
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Iris Bertani
- 2Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Valentina Martinelli
- 3Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Davide Porrelli
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Simone Vodret
- 3Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Roman Vuerich
- 3Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | | | - Rossana Bussani
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sergio Crovella
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.,5Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Matthew Parsek
- 4Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Vittorio Venturi
- 2Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Roberto Di Lenarda
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Biasotto
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Serena Zacchigna
- 1Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.,3Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
27
|
Behzadpour N, Akbari N, Sattarahmady N. Photothermal inactivation of methicillin-resistant Staphylococcus aureus: anti-biofilm mediated by a polypyrrole-carbon nanocomposite. IET Nanobiotechnol 2019; 13:800-807. [PMID: 31625519 PMCID: PMC8676018 DOI: 10.1049/iet-nbt.2018.5340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/01/2019] [Accepted: 02/07/2019] [Indexed: 04/05/2024] Open
Abstract
Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole-carbon nanocomposite (PPy-C) upon laser irradiation in order to destroy the pathogenic gram-positive bacterium, methicillin-resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 μg ml-1 concentrations of PPy-C and irradiated with an 808-nm laser at a power density of 1.0 W cm-2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy-C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml-1 PPy-C led to >98% killing of MRSA. Furthermore, 20 min radiation of near-infrared light to PPy-C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy-C was introduced as a photothermal absorber with a bactericidal effect in MRSA.
Collapse
Affiliation(s)
- Niloufar Behzadpour
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18:1877-1909. [PMID: 31183484 PMCID: PMC6685747 DOI: 10.1039/c9pp00089e] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.
Collapse
Affiliation(s)
- Hannah Serrage
- College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
The impact of photobiomodulation of major salivary glands on caries risk. Lasers Med Sci 2019; 35:193-203. [PMID: 31325124 DOI: 10.1007/s10103-019-02845-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
Dental caries is a complex multifactorial chronic infectious disease guided by several risk or protective factors. Saliva has an important role in caries and the remineralization process. Caries risk assessment is defined as the probability of new caries lesion development or the existing lesion progression in a given time period. Caries diagnostics and risk factor assessment are followed by targeted elimination of risk factors and less conservative but abundant preventive therapeutic measures. The aim of our prospective randomized study was to elucidate on how photobiomodulation of major salivary glands with polychromatic light or LED light affects caries risk factors in high caries-risk patients. Thirty-six patients were assigned to one of the following three experimental groups: the first, irradiated with polarized polychromatic light (40 mW/cm2, wavelengths 480-3400 nm); the second, a continuous LED light (16 mW/cm2, wavelengths 625, 660, 850 nm); the third, same LED light in a pulsed mode. The fourth group was the control, for which a non-therapeutic visible light was used. Light was administered extra-orally bilaterally above the parotid and submandibular glands for 10 min and intra-orally above the sublingual glands for 5 min, 3 times a week, for 4 consecutive weeks. Each patient's caries risk was assessed according to Cariogram before and after therapy. Caries risk factors were determined from samples of saliva before therapy, two weeks after it commenced, at the end of therapy, and four weeks after the end of therapy. At the end of treatment, the following findings were obtained: In the group irradiated with polarized polychromatic light and in the group irradiated with continuous LED light, the Streptococcus mutans and Lactobacillus counts decreased and salivary buffering capacity increased (p < 0.05). In the group irradiated with pulsed LED light, Streptococcus mutans counts decreased and unstimulated salivary flow and salivary buffering capacity increased (p < 0.05). In all three experimental groups, caries risk was lower (p < 0.05). In the placebo control group, there were no statistically significant differences between parameters before and after therapy. We concluded that photobiomodulation of major salivary glands in high caries-risk patients can reduce the cariogenic bacteria in saliva and improve some salivary parameters, thus reducing caries risk.
Collapse
|
30
|
Shehatou C, Logunov SL, Dunman PM, Haidaris CG, Klubben WS. Characterizing the Antimicrobial Properties of 405 nm Light and the Corning® Light-Diffusing Fiber Delivery System. Lasers Surg Med 2019; 51:887-896. [PMID: 31302937 PMCID: PMC6916415 DOI: 10.1002/lsm.23132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Hospital-acquired infections (HAIs) and multidrug resistant bacteria pose a significant threat to the U.S. healthcare system. With a dearth of new antibiotic approvals, novel antimicrobial strategies are required to help solve this problem. Violet-blue visible light (400-470 nm) has been shown to elicit strong antimicrobial effects toward many pathogens, including representatives of the ESKAPE bacterial pathogens, which have a high propensity to cause HAIs. However, phototherapeutic solutions to prevention or treating infections are currently limited by efficient and nonobtrusive light-delivery mechanisms. STUDY DESIGN/MATERIALS AND METHODS Here, we investigate the in vitro antimicrobial properties of flexible Corning® light-diffusing fiber (LDF) toward members of the ESKAPE pathogens in a variety of growth states and in the context of biological materials. Bacteria were grown on agar surfaces, in liquid culture and on abiotic surfaces. We also explored the effects of 405 nm light within the presence of lung surfactant, human serum, and on eukaryotic cells. Pathogens tested include Enterococcus spp, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Staphylococcus epidermidis, Streptococcus pyogenes, Candida albicans, and Escherichia coli. RESULTS Overall, the LDF delivery of 405 nm violet-blue light exerted a significant degree of microbicidal activity against a wide range of pathogens under diverse experimental conditions. CONCLUSIONS The results exemplify the fiber's promise as a non-traditional approach for the prevention and/or therapeutic intervention of HAIs. Lasers Surg. Med. © 2019 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cindy Shehatou
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642
| | - Stephan L Logunov
- Division of Science and Technology, Corning Research & Development Corporation, Corning, New York, 14831
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642
| | - Constantine G Haidaris
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642
| | - W Spencer Klubben
- Division of Science and Technology, Corning Research & Development Corporation, Corning, New York, 14831
| |
Collapse
|
31
|
Plavskii VY, Mikulich AV, Tretyakova AI, Leusenka IA, Plavskaya LG, Kazyuchits OA, Dobysh II, Krasnenkova TP. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:172-183. [PMID: 29715591 DOI: 10.1016/j.jphotobiol.2018.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 12/23/2022]
Abstract
It is shown that exposure of suspensions of gram-positive Staphylococcus aureus, gram-negative Escherichia coli and yeast-like fungi Candida albicans to laser radiation of blue spectral region with 405 and 445 nm causes their growth inhibition without prior addition of exogenous photosensitizers. It is experimentally confirmed that compounds of flavin type capable of sensitizing the formation of reactive oxygen species can act as acceptors of optical radiation of blue spectral region determining its antimicrobial effect along with endogenous metal-free porphyrins (the role of endogenous porphyrins has been confirmed earlier by a number of researchers). The participation of these compounds in the antimicrobial effect of laser radiation is supported by the registration of porphyrin and flavin fluorescence in extracts of microbial cells upon excitation by radiation used to inactivate the pathogens. In addition, the intensity of the porphyrin fluorescence in extracts of microbial cells in the transition from radiation with λ = 405 nm to radiation with λ = 445 nm decreases by 15-30 times, whereas the photosensitivity of the cells under study in this transition decreases only 3.7-6.2 times. The contribution of porphyrin photosensitizers is most pronounced upon exposure to radiation with λ = 405 nm (absorption maximum of the Soret band of porphyrins), and flavins - upon exposure to radiation with λ = 445 nm (maximum in the flavin absorption spectrum and minimum in the absorption spectrum of porphyrins). The ratio between the intensity of the porphyrin and flavin components in the fluorescence spectrum of extracts depends on the type of microbial cells.
Collapse
Affiliation(s)
- V Yu Plavskii
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus.
| | - A V Mikulich
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Tretyakova
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Leusenka
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - L G Plavskaya
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - O A Kazyuchits
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| | - I I Dobysh
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| | - T P Krasnenkova
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| |
Collapse
|
32
|
Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Pouriran R, Chien S, Bayat M. The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 181:23-30. [PMID: 29486459 DOI: 10.1016/j.jphotobiol.2018.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/25/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The purpose of the present scientific study was to analyze the effects of combined pulsed wave Photobiomodulation (PW PBM) and Curcumin on the microbial flora; in addition, the tensiometrical wounds properties for type one diabetes mellitus (TIDM) in an experimental animal model. TIDM induction was performed in thirty rats. In the entire animals, one full-thickness excision was implemented on their backs. Randomly, the divisions of rats into 5 groups took place. The primary group was considered as the control group and did not receive any treatment. The secondary group (placebo) received sesame oil by gastric gavage. The third group received PWPBM (890 nm, 80 Hz, 0.2 J/cm2). The fourth group received curcumin (40 mg/kg, which was dissolved in sesame oil) by gastric gavage. Eventually, the fifth group received PW PBM + curcumin. Precisely, on day 7, microbiological examinations, and on the 15th day microbiological and tensiometrical examinations were conducted. The data were analyzed by statistical tests. PW PBM, significantly exacerbated tensiometrical properties of the TIDM repairing wound. PW PBM, curcumin, and PWPBM + curcumin significantly decreased colony forming units compared to the control and the placebo groups indeed. It was remarkably attained that PW PBM significantly accelerated the process of wound healing in the STZ-induced TIDM. The PW PBM was statistically more compelling compared to the curcumin and PWPBM + curcumin. PW PBM, curcumin, and PWPBM + curcumin significantly decreased colony forming units compared to the control and placebo groups.
Collapse
Affiliation(s)
- Hasan Soleimani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudabeh Taheri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasha Shafikhani
- Rush University Medical Center, Department of Medicine, Division of Hematology/Oncology, Department of Immunology/Microbiology, Cancer Center,1735 W. Harrison, Cohn Research Building, Room 612, Chicago, IL 60612-3806, USA.
| | - Lucia A Schuger
- Department of Pathology, The University of Chicago, 5841 S. Maryland Avenue, MC 1089, Room J-541-D, Chicago, IL 60637, USA.
| | - Vijaya B Reddy
- Dermatopathology, Cytopathology, Rush University Medical Center, Pathology Department, 1653 W. Congress Pkwy., 570 Jelke, Chicago, IL 60612, USA.
| | | | - Ramin Pouriran
- School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Noveratech LLC of Louisville, KY, USA; Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Po Box: 19395/4719, Tehran 1985717443, Iran.
| |
Collapse
|
33
|
Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 2018; 94:445-458. [DOI: 10.1111/php.12883] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rachael M. Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Tracy A. White
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - John E. Coia
- Department of Clinical Microbiology; Glasgow Royal Infirmary; Glasgow UK
| | - John G. Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Scott J. MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
- Department of Biomedical Engineering; University of Strathclyde; Glasgow UK
| |
Collapse
|
34
|
Araújo TSD, Rodrigues PLF, Santos MS, de Oliveira JM, Rosa LP, Bagnato VS, Blanco KC, da Silva FC. Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 21:219-223. [PMID: 29274394 DOI: 10.1016/j.pdpdt.2017.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Photodynamic Therapy (PDT) is a promising alternative for the treatment of infectious bone lesions in the oral cavity. The objective of this study was to evaluate the antimicrobial effectiveness of PDT using blue LED associated with curcumin in methicillin-resistant Staphylococcus aureus biofilms (MRSA) in bovine bone cavities by fluorescence spectroscopy. Standardized suspensions of MRSA culture were inoculated into bone lesions to form biofilm. Forty bone species were distributed in three distinct groups: L-C- (control); L + C- (LED for 5 min); L-C+ (curcumin incubation for 5 min) and L + C+ (PDT). Aliquots of 100 μL were collected from the bone cavities after the treatments and were cultived in BHI for 24 h at 36 °C ± 1 and bacterial colonies counting were performed. Statistical analysis were performed using the paired t-test and analysis of variance (ANOVA) for the variables studied. RESULTS The control and PDT groups presented statistically significant differences (p < 0.001). It was possible to reduce 3.666 log10 CFU/mL of MRSA and a reduction in the fluorescence emitted after the treatments was observed. The MRSA reduction in biofilms by PDT was the most efficient treatmnent. There was a significant reduction of biofilms in the L + C- and non-PDT groups by fluorescence spectroscopy images.
Collapse
Affiliation(s)
| | | | - Mariana Sousa Santos
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil.
| | | | - Luciano Pereira Rosa
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | | | - Kate Cristina Blanco
- Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | - Francine Cristina da Silva
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| |
Collapse
|
35
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem 2017; 9:1557-1574. [PMID: 28792235 DOI: 10.4155/fmc-2017-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Resistances to antibiotics employed for treatment of infectious diseases have increased to alarming numbers making it more and more difficult to treat diseases caused by microorganisms resistant to common antibiotics. Consequently, novel methods for successful inactivation of pathogens are required. In this instance, one alternative could be application of light for treatment of topical infections. Antimicrobial properties of UV light are well documented, but due to its DNA-damaging properties use for medical purposes is limited. In contrast, irradiation with visible light may be more promising. METHODS Literature was systematically screened for research concerning inactivation of main oral bacterial species by means of visible light. RESULTS Inactivation of bacterial species, especially pigmented ones, in planktonic state showed promising results. There is a lack of research examining the situation when organized as biofilms. CONCLUSION More research concerning situation in a biofilm state is required.
Collapse
|
37
|
Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman MR, Enwemeka CS, Raicu V. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:118-124. [DOI: 10.1016/j.jphotobiol.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
38
|
Hessling M, Spellerberg B, Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. FEMS Microbiol Lett 2016; 364:fnw270. [PMID: 27915252 DOI: 10.1093/femsle/fnw270] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.
Collapse
Affiliation(s)
- M Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - K Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
39
|
Blue light does not impair wound healing in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:53-60. [DOI: 10.1016/j.jphotobiol.2016.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
|
40
|
Masson-Meyers DS, Bumah VV, Enwemeka CS. A comparison of four methods for determining viability in human dermal fibroblasts irradiated with blue light. J Pharmacol Toxicol Methods 2016; 79:15-22. [PMID: 26780674 DOI: 10.1016/j.vascn.2016.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Several tests are available for assessing the viability of cells; however, there is a dearth of studies comparing the results obtained with each test. We compared the capability of four viability assays (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), neutral red, trypan blue and live/dead fluorescence), to detect potential toxicity in fibroblasts irradiated with 470nm blue light. METHODS Cells were irradiated at 3, 55, 110 and 220J/cm(2), incubated for 24h and viability assessed using each test. RESULTS MTT assay showed significant decreases in viability when cells were irradiated with 110 and 220J/cm(2) energy fluence (dose) (89% and 57% viable cells, respectively; p<0.0001, compared to control); likewise the trypan blue assay showed 42% and 46% viable cells (p<0.0001). Neutral red assay revealed significant decrease in viability when cells were irradiated with 220J/cm(2) (84% viable cells; p=0.0008, compared to control). The live/dead fluorescence assay was less sensitive, evincing 91% and 95% viable cells after irradiation with 110 and 220J/cm(2) respectively. DISCUSSION (1) The four assays differed in their levels of sensitivity to cell viability. (2) The adverse effect of increasing doses seems to manifest as alteration of mitochondrial metabolism, followed by lysosomal dysfunction, membrane disruption and finally loss of cell membrane integrity. (3) Overall, irradiation with 3J/cm(2) or 55J/cm(2) did not adversely affect cell viability. Thus, doses below 110J/cm(2) appear safe.
Collapse
Affiliation(s)
- Daniela S Masson-Meyers
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| | - Violet V Bumah
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| | - Chukuka S Enwemeka
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|