1
|
Mohaghegh S, Fathi H, Molaasadollah F, Teimoori M, Chiniforush N, Taghipour N, Shekarchi F, Nokhbatolfoghahaei H. Evaluating the effect of strontium ranelate and photobiomodulation on cementogenic and osteogenic differentiation of buccal fat pad-derived stem cells: An in vitro study. Photochem Photobiol 2024; 100:1419-1430. [PMID: 38234287 DOI: 10.1111/php.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to analyze the impact of strontium ranelate (Str), photobiomodulation (PBM), or their combination of the proliferation, osteogenic differentiation, and cementogenic differentiation of buccal fat pad-derived stem cells. BFPdSCs were exposed to one of the following interventions: (1) PBM (660 nm), (2) PBM (660 nm) + Str, (3) PBM (880 nm), (4) PBM (880 nm) + Str, (5) Str. All study groups had significantly higher osteogenic differentiation than the control group (p < 0.05), and no significant difference existed between the 660 and 808 nm groups (p = 0.97). Compared to the Str group, 660 nm and 880 nm group samples had significantly lower osteogenic differentiation (p < 0.0001), while other groups did not show a significant difference. Regarding cementogenic differentiation, the 660 nm group showed higher values than the 808 nm group (p < 0.01). Compared with the Str group, 660 nm, 660 nm + Str, and 808 nm + Str groups showed significantly higher gene expression (p < 0.05). In the case of osteogenic differentiation, although photobiomodulation alone had a lower inducing effect than strontium ranelate, combining 808 nm diode lasers and strontium ranelate may provide the best results. Moreover, using a 660 nm diode laser and exposing stem cells to strontium ranelate can be the most effective approach to induce cementogenic differentiation.
Collapse
Affiliation(s)
- S Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Fathi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Molaasadollah
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Teimoori
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - N Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - N Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Shekarchi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mohamed Abdelgawad L, Gamal Mahmoud Ibrahim Salem Y, El Tayeb ESAA. Impact of Photobiomodulation and Melatonin on Periodontal Healing of Periodontitis in Immunosuppressed Rats. J Lasers Med Sci 2024; 15:e39. [PMID: 39193106 PMCID: PMC11348441 DOI: 10.34172/jlms.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 08/29/2024]
Abstract
Introduction: Periodontitis is an inflammatory disease due to bacterial origin; it has a chronic course and progresses by immunosuppressive therapy. However, adjuvant therapies such as photobiomodulation (PBM) and melatonin can reduce the severity of the inflammation and inhibit the progression of periodontitis. Therefore, the present study evaluated the effects of PBM (PBM) and melatonin, as adjuvant therapies, on periodontal healing in immunosuppressed rats with periodontitis. Methods: Random allocation was performed on 36 albino Wistar rats, divided into the following groups: control, periodontitis, immunosuppressant only, immunosuppressant+PBM, immunosuppressant+melatonin, and immunosuppressant+melatonin+PBM. Periodontitis caused by ligature in all groups, except for the control group. Subcutaneous administration of dexamethasone was performed in the immunosuppressant groups for immunosuppression. All the groups except the control group received scaling and root planning (SRP). Each group was subdivided into three equal subgroups according to the evaluation period: (A), one week, (B) two weeks (C), 4 weeks. Histological examination was done with haematoxylin & eosin and Masson's Trichrome for inflammation and periodontal healing. Statistical Analysis of the data was done by using the chi-square test. The significance level was set at P≤0.05. Results: Regarding the inflammatory response and periodontal healing, histological examination revealed statistically significant difference in all treated groups in comparison with the control untreated immunosuppressed group (P<0.001). The combined application of melatonin and PBM resulted in a best histological response presented by lower inflammatory response and better periodontal healing, when compared with all other treated groups (P<0.001). Conclusion: After considering the circumstances of this research, the combination of melatonin and PBM by a 650 nm diode laser with output power of 100 mw for one minute for three sessions appeared to be a beneficial adjunct in periodontal healing in immunosuppressed rats with periodontitis.
Collapse
Affiliation(s)
- Latifa Mohamed Abdelgawad
- Medical applications of lasers Department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| | | | - El-Sayed Abd Allah El Tayeb
- Medical applications of lasers Department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Silveira ABVD, Oliveira BLS, Bergamo MTDOP, Lourenço Neto N, Machado MAM, Oliveira TM. Cytotoxicity of dilutions of bioceramic materials in stem cells of human exfoliated deciduous teeth. J Appl Oral Sci 2024; 32:e20230462. [PMID: 39140577 PMCID: PMC11321797 DOI: 10.1590/1678-7757-2023-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ana Beatriz Vieira da Silveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Bárbara Luísa Silva Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | | | - Natalino Lourenço Neto
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Maria Aparecida Moreira Machado
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Thais Marchini Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| |
Collapse
|
4
|
Ferro AP, de Jesus Guirro RR, Ferraresi C, Celli J, Orellana MD, de Santis GC, Junior JAF, de Oliveira Guirro EC. Influence of Different Photobiomodulation Parameters on Multi-Potent Adipose Tissue Mesenchymal Cells In Vitro. Photobiomodul Photomed Laser Surg 2024; 42:200-207. [PMID: 38416634 DOI: 10.1089/photob.2023.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Objective: Investigating the effect of different parameters of photobiomodulation (PBM) with low-power laser on multi-potent mesenchymal stem cells (MSCs) derived from adipose tissue in terms of proliferation and cell death. Methods: MSCs were submitted to PBM applications with combinations of the following physical parameters: control group (no intervention), wavelengths of 660 and 830 nm; energy of 0.5, 2, and 4 J; and power of 40 and 100 mW. MSC analysis was performed using MetaXpress® software at 24, 48, and 72 h. Results: Irradiation promoted a significant increase in cell proliferation (p < 0.05), with 830 nm laser, 100 mW, with energy of 0.5, 2, and 4 J in relation to the control group at all times. PBM with 660 nm, power of 40 mW, and energy of 0.5, 2, and 4 J produced greater cell death at 24 h compared with the control group. At the time of 72 h, there was no significant difference concerning cell death. Conclusions: According to the results found, we can conclude that both wavelengths were effective; however, the 830 nm laser was more effective in terms of cell proliferation compared with the 660 nm laser. The 660 nm wavelength showed a significant increase in cell death when compared with the 830 nm laser.
Collapse
Affiliation(s)
- Ana Paula Ferro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cleber Ferraresi
- Department of Physical Therapy, Postgraduate Program in Physiotherapy, Federal University of São Carlos, São Paulo, Brazil
| | - Jonathan Celli
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Maristela Delgado Orellana
- Department of Cell Biology, Ribeirão Preto Blood Center Foundation, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gil Cunha de Santis
- Department of Cell Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jayme Adriano Farina Junior
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Firoozi P, Amiri MA, Soghli N, Farshidfar N, Hakimiha N, Fekrazad R. The Role of Photobiomodulation on Dental-Derived Stem Cells in Regenerative Dentistry: A Comprehensive Systematic Review. Curr Stem Cell Res Ther 2024; 19:559-586. [PMID: 35950251 DOI: 10.2174/1574888x17666220810141411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photobiomodulation therapy involves exposing tissues to light sources, including light-emitting diodes or low-level lasers, which results in cellular function modulation. The molecular mechanism of this treatment is revealed, demonstrating that depending on the light settings utilized, it has the potential to elicit both stimulatory and inhibitory reactions. OBJECTIVE The current systematic review aimed to evaluate the impact of photobiomodulation therapy on dental stem cells and provide an evidence-based conclusion in this regard. METHODS This systematic review was performed and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) revised guidelines. PICO(S) components were employed to define the inclusion criteria. Web of Science, Scopus, Medline as well as grey literature, and google scholar were searched up to September 2021 to retrieve relevant papers. RESULTS Photobiomodulation therapy showed promising effects on the proliferation, viability, and differentiation of dental stem cells. This finding was based on reviewing related articles with a low risk of bias. CONCLUSION Despite the positive benefits of photobiomodulation therapy on dental stem cells, the current data do not provide a definitive conclusion on the best physical parameters for enhancing cell viability, proliferation, and differentiation.
Collapse
Affiliation(s)
- Parsa Firoozi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Soghli
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Fekrazad
- Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Singh A, Gururaj SB, Shankar SM, Chidambar CK, Bhushan K, Poojary B. Effect of LASER photobiomodulation on the cell viabilities of periodontal ligament fibroblasts of older and younger individuals - An in vitro study. J Indian Soc Periodontol 2023; 27:465-470. [PMID: 37781322 PMCID: PMC10538507 DOI: 10.4103/jisp.jisp_167_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/02/2022] [Accepted: 02/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background and Objectives Fibroblasts form the major cell type of the periodontal ligament and most often studied for periodontal regeneration. The aim of the present study was to investigate the effects of photobiomodulation (PBM) on aged periodontal fibroblasts and compare the viability of periodontal fibroblasts of older and younger individuals. Materials and Methods A total of 32 patients were divided into four groups: A, B, C, and D. Groups A and C and B and D comprised of extracted teeth of older (>60 year) and younger individuals (<25 year), respectively. Extracted teeth from Groups A and B received PBM, (diode laser, 660 nm, 100 mW at 4J) whereas Groups C and D did not. Tissue from extracted teeth of all groups was processed and cultured and subjected to 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to assess their viability. Results The difference between the groups in terms of viability was significant (P < 0.0001). The mean viability of A and B (PBM) was 1.04 and 1.19, respectively. The mean viability for C and D (non-PBM) was 0.95 and 0.85, respectively. Conclusion Older fibroblasts have lower viability than younger fibroblasts. PBM improves viability in both older and younger fibroblasts and more so in younger fibroblasts. However, more than one PBM would be required to sustain the effect longer.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Periodontics, Sharavathi Dental College and Hospital, Shivamogga, Karnataka, India
| | - Soumya Bardvalli Gururaj
- Department of Periodontics, Sharavathi Dental College and Hospital, Shivamogga, Karnataka, India
| | - Shrinidhi Maji Shankar
- Department of Periodontics, Sharavathi Dental College and Hospital, Shivamogga, Karnataka, India
| | | | - Kala Bhushan
- Department of Periodontics, Sharavathi Dental College and Hospital, Shivamogga, Karnataka, India
| | - Bharathi Poojary
- Department of Periodontics, Sharavathi Dental College and Hospital, Shivamogga, Karnataka, India
| |
Collapse
|
7
|
Amid R, Kadkhodazadeh M, Gilvari Sarshari M, Parhizkar A, Mojahedi M. Effects of Two Protocols of Low-Level Laser Therapy on the Proliferation and Differentiation of Human Dental Pulp Stem Cells on Sandblasted Titanium Discs: An In Vitro Study. J Lasers Med Sci 2022; 13:e1. [PMID: 35642237 DOI: 10.34172/jlms.2022.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Introduction: Stem cell activities have different effects on tissue response and its outcomes. Low-level laser therapy (LLLT) can be considered a trigger to modify stem cell activities. The objective of the present experimental investigation was to study the effects of two protocols of LLLT on the proliferation and differentiation of human dental pulp stem cells (hDPSCs) cultured on sandblasted titanium discs. Methods: Cells obtained from human dental pulp were seeded/cultured on titanium discs and were set in 2 main groups: (i) Radiated cells using the gallium-aluminium-arsenide (GaAlAs) diode laser at a continuous wavelength of 808 nm at 3 J/cm2 for 12 sec or 5 J/cm2 for 20 seconds, and (ii) Non-irradiated cells serving as control groups. The impact of LLLTs on hDPSC-proliferation and viability was investigated using the MTT assay after 24, 72 and 96 hours. The alkaline phosphatase activity was studied with p-nitrophenylphosphate after 14 and 28 days. The ability of hDPSCs to express osteocalcin was investigated using real-time polymerase chain reaction after 28 days, while their attachment was observed under a scanning electron microscope (SEM) after 14 and 28 days. Results: Our study showed that LLLTs caused maximum cell proliferation in 96 hours (P<0.001) with 3 J/cm2 resulting in a higher proliferation rate. The highest activity of alkaline phosphatase and osteocalcin expression was observed in the laser radiation groups after 28 days. Conclusion: The outcomes of the current study showed that cultured hDPSCs on sandblasted titanium discs had a tendency towards increased cellular activity in response to LLLTs. Thus, LLLTs could regulate the activities of hDPSCs on bone repair surrounding the sandblasted titanium discs.
Collapse
Affiliation(s)
- Reza Amid
- Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ardavan Parhizkar
- Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Mojahedi
- Department of Laser, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kamarehei F. The effects of combination therapy by solid lipid nanoparticle and dental stem cells on different degenerative diseases. Am J Transl Res 2022; 14:3327-3343. [PMID: 35702091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Stem cells have multiple therapeutic applications, as well as solid lipid nanoparticles. Solid lipid nanoparticle has appeared as a field of nano lipid technology with various potential applications in drug delivery, clinical medicine and research. Besides, the stem cells have a high proliferation rate and could differentiate into a variety of tissues. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest source and neurotrophic potential. These consist of both dental pulp stem cells from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth. With the emergence of stem cell banks, stem cells are considering for tissue engineering with respect to therapies attitude and regenerative medicine. The present study aimed to evaluate the advantages and disadvantages of the solid lipid nanoparticle and stem cells combination therapy in different therapeutic applications. The solid lipid nanoparticles have anticancer activity against tumors, induce neural differentiation in pluripotent stem cells, and regulate the mesenchymal stem cells. They also have immunomodulatory effects on human mesenchymal stem cells, the gene transfection efficiency, osteogenic differentiation and bone regeneration. But, the crucial health hazards related to stem cell transplantation such as immune rejection reactions and the interaction with other tissues and the effect of solid lipid nanoparticles must not be neglected. Overall, more experiments need to approve the synergism and antagonism effects of the stem cells and solid lipid nanoparticle combination therapy on different degenerative diseases.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences Hamadan, Iran
| |
Collapse
|
9
|
Ahmadi F, Dalirsani Z, Tayarani-Najaran Z, Ebrahimzadeh-Bideskan A, Shafieian R. A Comparative Analysis of Photobiomodulation-Mediated Biological Effects of Single Versus Double Irradiation on Dental Pulp Stem Cells: An In Vitro Study. Photobiomodul Photomed Laser Surg 2022; 40:334-342. [PMID: 35559714 DOI: 10.1089/photob.2021.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: In recent years, fractionated irradiation protocols, rather than a simple plan of exposure, have been proposed as a more effective method in the field of tissue regeneration. Thus, this study aimed at a comparative analysis of single versus double irradiation of an 808-nm diode laser, in terms of dental pulp stem cells' (DPSCs) viability and proliferation in vitro. Methods: Subcultured DPSCs were either irradiated, or not (control group), with energy densities of 3, 7, and 12 J·cm-2 in a single- or double-session manner (24 h apart). On 0, 12, 24, 48, and 72 h postirradiation, cell viability and proliferation were evaluated through Trypan Blue and alamarBlue assays, respectively. Results: During the first 48 h postirradiation, the highest rates of DPSC proliferation were assigned to double irradiation at 3 or single exposure to 7 J⋅cm-2, with no cytotoxic effects on cell viability. Inversely, single irradiation at 12, or a double session of exposure to 7 or 12 J⋅cm-2, led to a significant descent in the rates of proliferation and cell viability. Conclusions: Within the limitations of this study, evidence suggests a positive impact on the biological responses of DPSCs following double session of exposure to lower energy densities as well as a single irradiation at a higher energy dosage.
Collapse
Affiliation(s)
- Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Stem Cells and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Naderi F, Mehdiabadi M, Kamarehei F. The therapeutic effects of stem cells from human exfoliated deciduous teeth on clinical diseases: a narrative review study. AMERICAN JOURNAL OF STEM CELLS 2022; 11:28-36. [PMID: 35607403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Stem cells isolated from human dental pulp tissue are different from other sources of Mesenchymal stem cells because of their embryonic neural crest sources and neuro-trophic potential. These stem cells consist of dental pulp stem cells from human permanent teeth and stem cells from human exfoliated deciduous teeth. AIM In this study, we survey the advantages and disadvantages of these stem cells with therapies attitude. MAIN TEXT Stem cells from human exfoliated deciduous teeth with a high proliferation rate could distinguish into a wide types of cells. After stem cell banking appearance, stem cells from human exfoliated deciduous teeth can preserve and use for treatment, especially in regenerative medicine. But the crucial health hazards related to stem cell transplantation, such as immune rejection reactions and the interaction with other tissues, should not be neglected. CONCLUSION Further experiments are required to approve the impact of these stem cells on different human disorders.
Collapse
Affiliation(s)
- Fariba Naderi
- Pediatric Dentistry Department, Faculty of Dentistry, Hamadan University of Medical Sciences Hamadan, Iran
| | - Mohsen Mehdiabadi
- Pediatric Dentistry Department, Faculty of Dentistry, Hamadan University of Medical Sciences Hamadan, Iran
| | - Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences Hamadan, Iran
| |
Collapse
|
11
|
Hendi SS, Gholami L, Saidijam M, Mahmoudi R, Arkian AA, Bakhtiyar H, Hasani NH, Afshar S. Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions. Regen Med 2021; 17:69-80. [PMID: 34931540 DOI: 10.2217/rme-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study aimed to investigate photobiomodulation's (PBM) effect on inflamed dental pulp stem cells (IDPSCs) under different nutritional conditions. Methods: Cell proliferation and odontogenic differentiation were evaluated using the MTT assay and real-time quantitative reverse transcription PCR, respectively after laser PBM of cells in 5 or 10% fetal bovine serum (FBS) culture conditions. Results: A significant positive effect of laser irradiation on cell proliferation under both nutritional conditions after 24 and 48 h was observed. DMP-1 gene expression increased in the groups with laser irradiation and 5% FBS. Comparison of gene expression levels in the four groups revealed no statistically significant stimulatory effect. The highest gene expression was observed in the non-laser group with 5% FBS. Conclusion: Further studies are required to obtain an irradiation setup to ideally improve inflamed dental pulp stem cells' proliferation and differentiation.
Collapse
Affiliation(s)
- Seyedeh Sareh Hendi
- Department of Endodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, School of dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Ali Asghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hengameh Bakhtiyar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Haji Hasani
- East-Azarbaijan Agricultural & Natural Resources Research & Education Center, AREEO, Tabriz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Jin XL, Zhang YN, Sun CR, Zou ZH. Protective effect of low-level laser irradiation on lipopolysaccharide-mediated inflammatory injury of human periodontal ligament fibroblasts. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:260-266. [PMID: 34041873 DOI: 10.7518/hxkq.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To study the effect and mechanism of low-level laser irradiation (LLLI) on lipopolysaccharide (LPS)-induced inflammatory injury of human periodontal ligament fibroblasts (hPDLFs). METHODS hPDLFs were inoculated into well plates and randomly divided into the normal group, LPS group, and LPS+LLLI group. The cells in the normal group were cultured in conventional medium. The hPDLFs in the LPS and LPS+LLLI groups were cultured in RPMI1640 medium containing 1 mg·L-1 LPS. The three subgroups of the LPS+LLLI group were exposed to different LLLI. After 4 days, the cell apoptosis, viability, and intracellular free Ca2+ concentration of each group were measured. The contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-8, IL-1β, and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of matrix metalloproteinase (MMP)-2, MMP-3, and MMP-9 genes and proteins of hPDLFs in each group. RESULTS Compared with the normal group, the LPS group showed increased apoptosis rate of hPDLFs and intracellular free Ca2+concentration and decreased cell viability (P<0.05). The TNF-α, IL-8, IL-1β, and IL-6 levels were higher in the cell supernatant (P<0.05), and the expression of MMP-2, MMP-3, and MMP-9 genes and proteins of hPDLFs was significantly increased (P<0.05). Compared with the LPS group, the LPS+LLLI group showed significantly decreased apoptosis rate and intracellular free Ca2+ concentration and significantly increased cell viability (P<0.05). The TNF-α, IL-8, IL-1β, and IL-6 levels in the supernatant of cells and the expression of MMP-2, MMP-3, and MMP-9 genes and proteins of hPDLFs were significantly decreased (P<0.05). CONCLUSIONS LLLI has a protective effect on the inflammatory injury of hPDLFs induced by LPS, and the effect is most obvious when the irradiation intensity is 4 J·cm-2.
Collapse
Affiliation(s)
- Xiao-Lan Jin
- Dept. of Stomatology, Tianjin Jinnan Hospital, Tianjin 300350, China
| | - Ya-Nan Zhang
- Dept. of Stomatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, China
| | - Cheng-Rui Sun
- Dept. of Stomatology, Tianjin Jinnan Hospital, Tianjin 300350, China
| | - Zhao-Hui Zou
- Dept. of Endodontics Third Room, School of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
14
|
Bergamo MT, Vitor LLR, Dionísio TJ, Marques NCT, Oliveira RC, Ambrosio ECP, Sakai VT, Santos CF, Lourenço Neto N, Machado MAAM, Oliveira TM. Could the photobiomodulation therapy induce angiogenic growth factors expression from dental pulp cells? Lasers Med Sci 2021; 36:1751-1758. [PMID: 33796964 DOI: 10.1007/s10103-021-03291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/09/2021] [Indexed: 01/20/2023]
Abstract
This study aimed to evaluate the effect of different photobiomodulation (PBM) radiant exposures on the viability, proliferation, and gene expression of pulp fibroblasts from human primary teeth (HPF) involved in the pulp tissue repair. HPF were irradiated with Laser InGaAlP (Twin Flex Evolution, MMOptics®) at 660-nm wavelength (red); single time, continuous mode, 0.04-cm2 laser tip area, and 0.225-cm laser tip diameter, keeping the distance of 1 mm between the laser beam and the cell culture. The doses used were between 1.2 and 6.2 J/cm2 and were evaluated at the 6 h, 12 h, and 24 h after PBM. MTT and crystal violet assays evaluated the cell viability and proliferation. RT-PCR verified VEGF and FGF-2 mRNA expression. A blinded examiner analyzed the data through two-way ANOVA followed by Tukey test (p < 0.05). The groups with higher powers (10 mW, 15 mW, 20 mW, and 25 mW), shortest application periods (10 s), and radiant exposures between 2.5 and 6.2 J/cm2 exhibited statistically higher viability than that of the groups with small power (5 mW), longer application period (50 s), and radiant exposure of 6.2 J/cm2 (p < 0.05). VEGF and FGF-2 mRNA expression were observed at the three evaluated periods (6 h, 12 h, and 24 h) and the highest expression was in the shortest period (p < 0.05). All radiant exposures maintained HPF viable. The period of 6 h after irradiation showed statistically greater gene expression for both growth factors than other periods. VEGF mRNA had no differences among the dosimetries studied. The best radiant exposures for FGF-2 gene expression were 2.5 J/cm2 and 3.7 J/cm2.
Collapse
Affiliation(s)
- Mariel Tavares Bergamo
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Thiago José Dionísio
- Department of Biology Science, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, 17012-901, Brazil
| | | | - Rodrigo Cardoso Oliveira
- Department of Biology Science, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, 17012-901, Brazil
| | - Eloá Cristina Passucci Ambrosio
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, 37130 000, Brazil
| | - Carlos Ferreira Santos
- Department of Biology Science, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, 17012-901, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Maria Aparecida Andrade Moreira Machado
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|
15
|
Deluca MCDC, Scarparo RK, Aspesi M, Matte BF, Brand LM, Grecca FS, Casagrande L, Kopper PMP. Cytotoxic, Migration, and Angiogenic Effects of Photodynamic Therapy and Photobiomodulation Associated with a Revascularization Protocol. J Endod 2020; 47:69-77. [PMID: 33058937 DOI: 10.1016/j.joen.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study evaluated photodynamic therapy (PDT) and photobiomodulation therapy (PBM) as adjuncts to pulp revascularization using cultures of apical papilla cells (APCs) and endothelial cells (HUVECs). METHODS The root canal and apical foramen of 2 mandibular first premolars were enlarged to simulate immature teeth. The canal of 1 tooth was filled with 1 mL 0.005% methylene blue (MB). After that, the canals of both teeth were irrigated with 20 mL 1.5% sodium hypochlorite (NaOCl) and 20 mL 17% EDTA. The resulting solutions were diluted in cell culture media at a concentration of 0.5% (0.5% MB + NaOCl + EDTA and 0.5% NaOCl + EDTA). After PDT (0.5% MB + NaOCl + EDTA + PDT) and PBM (0.5% NaOCl + EDTA + PBM) applications, the effects were evaluated to determine cytotoxicity, polarity index, APC migration, and HUVEC sprouting, and results were compared with those of their controls (solutions without laser application). Cell culture media (CT) was also used as a control. Data were analyzed using 1-way analysis of variance and the Tukey post hoc test (P ≤ .05). RESULTS PDT and PBM promoted greater APC viability than their controls, and PDT had greater cell viability than CT (P < .05). All protocols reduced APC migration when compared with CT (P < .05). HUVEC sprouts grown out of spheroids in PBM had a greater ratio area than their control (P ≤ .01), and the PDT ratio of the spheroid area was similar to that of its control (P > .05). CONCLUSIONS PBM and PDT seem to be potentially effective adjuncts to revascularization in nonvital immature teeth.
Collapse
Affiliation(s)
| | | | - Marina Aspesi
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bibiana Franzen Matte
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Meurer Brand
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Soares Grecca
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciano Casagrande
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Maria Poli Kopper
- Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
16
|
Karic V, Chandran R, Abrahamse H. Laser-Induced Differentiation of Human Adipose-Derived Stem Cells to Temporomandibular Joint Disc Cells. Lasers Surg Med 2020; 53:567-577. [PMID: 33030751 DOI: 10.1002/lsm.23332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Temporomandibular disorder (TMD) is an incapacitating disease with temporomandibular joint (TMJ) disc degenerative changes in patients. Despite several research attempts to find a definitive treatment, there is no evidence of a permanent solution. The objective of the current study was to observe the role of 660 nm diode laser in the differentiation of human adipose-derived stem cells (ADSCs) to fibroblasts and chondrocytes. STUDY DESIGN/MATERIALS AND METHODS After irradiation, the morphology, viability, and adenosine triphosphate (ATP) proliferation of the ADSCs were analyzed at different time intervals. The differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes was supported using flow cytometry and immunofluorescence at 1- and 2-week post-irradiation. RESULTS More than 90% of viable cells were observed in all experimental groups, with an increase in ATP proliferation. Flow cytometry analyses and immunofluorescence demonstrated the presence of chondrogenic and fibroblastic cell surface markers at 1- and 2-week post-irradiation. CONCLUSION This study has demonstrated methods to induce the differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes with a 660 nm diode laser. The study also proposes a future alternative method of treatment for patients with degenerative TMJ disc disorders and presents a positive prospect in the application of photobiomodulation and ADSCs in the treatment of degenerative TMJ disc. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vesna Karic
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa.,Department of Prosthodontic and Oral Rehabilitation, and Laser Therapy in Dentistry, Division, School of Oral Sciences, Health Sciences Faculty, WITS University, PO Box, 2010, 7 York Street, Johannesburg, 2193, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
17
|
Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY. Review on the Cellular Mechanisms of Low-Level Laser Therapy Use in Oncology. Front Oncol 2020; 10:1255. [PMID: 32793501 PMCID: PMC7393265 DOI: 10.3389/fonc.2020.01255] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Photobiomodulation (PBM) using low-level laser therapy (LLLT) is a treatment that is increasingly used in oncology. Studies reported enhancement of wound healing with reduction in pain, tissue swelling and inflammatory conditions such as radiation dermatitis, oral mucositis, and lymphedema. However, factors such as wavelength, energy density and irradiation frequency influence the cellular mechanisms of LLLT. Moreover, the effects of LLLT vary according to cell types. Thus, controversy arose as a result of poor clinical response reported in some studies that may have used inadequately planned treatment protocols. Since LLLT may enhance tumor cell proliferation, these will also need to be considered before clinical use. This review aims to summarize the current knowledge of the cellular mechanisms of LLLT by considering its effects on cell proliferation, metabolism, angiogenesis, apoptosis and inflammation. With a better understanding of the cellular mechanisms, bridging findings from laboratory studies to clinical application can be improved.
Collapse
Affiliation(s)
- Shing Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Victor C W Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shanmugasundaram Ramkumar
- Department of Clinical Oncology, NHS Foundation Trust, University Hospital Southampton, Southampton, United Kingdom
| | - May Ling Khaw
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Helen K W Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shara W Y Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
18
|
İslam A, Özverel CS, Yilmaz HG. Comparative evaluation of low-level laser therapy on proliferation of long-term cryopreserved human dental pulp cells isolated from deciduous and permanent teeth. Lasers Med Sci 2020; 36:421-427. [PMID: 32613417 DOI: 10.1007/s10103-020-03090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
The aim of the current study was to evaluate the proliferative effect of low-level laser therapy on long-term cryopreserved dental pulp stem cells (DPSCS) and stem cells from human exfoliated deciduous teeth (SHEDS). The DPSCS and SHEDS were divided into 2 main groups according to gallium aluminum arsenide (GaAIAs) diode laser irradiation densities as 5 J/cm2 and 7 J/cm2. Each main group was further divided into 4 groups according to laser irradiation periods as 0, 24, 48, 72 h groups. During the incubation periods, cells received laser irradiation in every 24 h according to their groups and were put into incubator after irradiation. Cell groups that were not subjected to laser irradiation were served as control groups. Viabilities of cells were determined via MTT assay at the end of all incubation periods, and data were statistically analyzed. Laser irradiation demonstrated significant effects on proliferation rate of DPSCs and SHEDs in comparison with control. Intragroup comparison data of DPSCS revealed that repetitive laser irradiation for long term (72 h) increased the cellular viability significantly in comparison with all other treatment groups; however, no significant differences were found when energy densities were compared within each time interval, except for 48 h group at which irradiation with 7 J/cm2 provided significantly higher cell viability rates of SHEDS. DPSCs showed significantly higher cellular viability than SHEDs only for the 7 J/cm2 energy density in 72 h. Longer term (72 h) repetitive laser irradiation with energy densities of 5 and 7 J/cm2 (wavelength of 980 nm) may be recommended to induce the proliferative effect on long-term cryopreserved DPSCS and SHEDS.
Collapse
Affiliation(s)
- Aylin İslam
- Department of Pediatric Dentistry, Faculty of Dentistry, Near East University, Mersin, Turkey
| | - Cenk Serhan Özverel
- Department of Basic Medical Sciences, Faculty of Dentistry, Near East University, Mersin, Turkey
| | - Hasan Guney Yilmaz
- Department of Periodontology, Faculty of Dentistry, Near East University, Mersin, Turkey.
| |
Collapse
|