1
|
Kang KA, Park J, Piao MJ, Fernando PDSM, Herath HMUL, Senavirathna HMMM, Kim JH, Cho SJ, Hyun JW. Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation. Biomol Ther (Seoul) 2025; 33:182-192. [PMID: 39711111 PMCID: PMC11704403 DOI: 10.4062/biomolther.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators. Reactive oxygen species (ROS) levels, antioxidant enzyme expression, NRF2 expression, and nuclear translocation were higher in SNUC5/RR cells irradiated with or without 8 Gy than in SNUC5 cells. The DNA demethylase ten-eleven translocation 1 (TET1) expression and TET1 binding to the NRF2 promoter in SNUC5/RR cells were stronger than those in SNUC5 cells, indicating lower methylation of CpG islands in the NRF2 promoter. TET1 knockdown in SNUC5/RR cells suppressed NRF2 expression significantly. Additionally, histone mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, whereas enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, was downregulated, leading to decreased trimethylation of histone H3 lysine 27. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) levels were lower and higher in SNUC5/RR cells than in SNUC5 cells, respectively. MLL and HAT knockdown in SNUC5/RR cells irradiated with or without 8 Gy decreased levels of NRF2 and heme-oxygenase 1, resulting in enhanced γ-radiation sensitivity. These findings support NRF2 as a target for improving the response to radiotherapy in patients with colorectal cancer.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Jinny Park
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | | | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Suk Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Plavskii VY, Sobchuk AN, Mikulich AV, Dudinova ON, Plavskaya LG, Tretyakova AI, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenka IA. Identification by methods of steady-state and kinetic spectrofluorimetry of endogenous porphyrins and flavins sensitizing the formation of reactive oxygen species in cancer cells. Photochem Photobiol 2024; 100:1310-1327. [PMID: 38258972 DOI: 10.1111/php.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The question about acceptor molecules of optical radiation that determine the effects of photobiomodulation in relation to various types of cells still remains the focus of attention of researchers. This issue is most relevant for cancer cells, since, depending on the parameters of optical radiation, light can either stimulate their growth or inhibit them and lead to death. This study shows that endogenous porphyrins, which have sensitizing properties, may play an important role in the implementation of the effects of photobiomodulation, along with flavins. For the first time, using steady-state and kinetic spectrofluorimetry, free-base porphyrins and their zinc complexes were discovered and identified in living human cervical epithelial carcinoma (HeLa) cells, as well as in their extracts. It has been shown that reliable detection of porphyrin fluorescence in cells is hampered by the intense fluorescence of flavins due to their high concentration (micromolar range) and higher (compared to tetrapyrroles) fluorescence quantum yield. Optimization of the spectral range of excitation and the use of extractants that provide multiple quenching of the flavin component while increasing the emission efficiency of tetrapyrroles makes it possible to weaken the contribution of the flavin component to the recorded fluorescence spectra.
Collapse
Affiliation(s)
- Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Andrei N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| |
Collapse
|
3
|
Kusumoto J, Akashi M, Terashi H, Sakakibara S. Differential Photosensitivity of Fibroblasts Obtained from Normal Skin and Hypertrophic Scar Tissues. Int J Mol Sci 2024; 25:2126. [PMID: 38396801 PMCID: PMC10889571 DOI: 10.3390/ijms25042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| | - Shunsuke Sakakibara
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| |
Collapse
|
4
|
Abstract
The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it is an open question to what extent the applied media, and especially their riboflavin concentration, can influence the results. A literature search identified appropriate virus photoinactivation publications and, where possible, viral light susceptibility was quantitatively determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue) light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively. Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin, have so far produced results with the greatest viral susceptibilities. It should be critically evaluated whether the currently published virus sensitivities are really only intrinsic properties of the virus, or whether the medium played a significant role. In future experiments, irradiation should be carried out in solutions with the lowest possible riboflavin concentration.
Collapse
|
5
|
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev 2022; 180:114057. [PMID: 34800566 PMCID: PMC8728809 DOI: 10.1016/j.addr.2021.114057] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Sana Mushtaq
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Pakistan
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
6
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Zhang S, Xu M, Shen Z, Shang C, Zhang W, Chen S, Liu C. Green light exposure aggravates high-fat diet feeding-induced hepatic steatosis and pancreatic dysfunction in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112802. [PMID: 34555719 DOI: 10.1016/j.ecoenv.2021.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The increased incidence of metabolic syndrome (MetS) has been demonstrated to be closely associated with external environments, such as unhealthy ambient light exposure. Of note, spectral distribution of the light functions as a critical determinant of light's pathophysiological effects. However, the effects of the lighting spectrum on metabolic homeostasis and the specific target organs remain elusive. To address this concern, we in this study high-fat diet (HFD)-fed obese mice with different spectra of the light, and divided them into white light (WL)-treated group, green light (GL)-treated group and blue light (BL)-treated group. We found that compared with BL- or WL-treated obese mice, animals exposed to GL showed worsened metabolic status, including increased body weight gain, impaired glucose tolerance/insulin sensitivity, increased levels of serum lipids, and decreased levels of serum insulin. At the organ level, GL exposure particularly exacerbated hepatic lipid accumulation and enlarged the islet volume. Taking advantages of metabolomics and transcriptomics analyses, we screened out taurocholic acid (TCA) and adenosine (AD) as two promising metabolites mediating the deleterious effects of GL on the liver and islets, respectively. In detail, GL aggravates HFD-induced lipid synthesis and gluconeogenesis in the liver via the reduction of TCA, while triggering inflammation and cellular dysfunction in islets via the induction of AD. Collectively, our findings confirmed that GL and the HFD have a synergistic effect in the induction of metabolic disorders. DATA AVAILABILITY: All data supported the paper are present in the paper and/or the Supplementary Materials. The original datasets are also available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ziyue Shen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changrui Shang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
8
|
Vatter P, Hoenes K, Hessling M. Blue light inactivation of the enveloped RNA virus Phi6. BMC Res Notes 2021; 14:187. [PMID: 34001258 PMCID: PMC8128082 DOI: 10.1186/s13104-021-05602-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ultraviolet radiation is known for its antimicrobial properties but unfortunately, it could also harm humans. Currently, disinfection techniques against SARS-CoV-2 are being sought that can be applied on air and surfaces and which do not pose a relevant thread to humans. In this study, the bacteriophage phi6, which like SARS-CoV-2 is an enveloped RNA virus, is irradiated with visible blue light at a wavelength of 455 nm. RESULTS For the first time worldwide, the antiviral properties of blue light around 455 nm can be demonstrated. With a dose of 7200 J/cm2, the concentration of this enveloped RNA virus can be successfully reduced by more than three orders of magnitude. The inactivation mechanism is still unknown, but the sensitivity ratio of phi6 towards blue and violet light hints towards an involvement of photosensitizers of the host cells. Own studies on coronaviruses cannot be executed, but the results support speculations about blue-susceptibility of coronaviruses, which might allow to employ blue light for infection prevention or even therapeutic applications.
Collapse
Affiliation(s)
- Petra Vatter
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|