1
|
Turon M, Ford M, Maldonado M, Sitjà C, Riesgo A, Díez-Vives C. Microbiome changes through the ontogeny of the marine sponge Crambe crambe. ENVIRONMENTAL MICROBIOME 2024; 19:15. [PMID: 38468324 DOI: 10.1186/s40793-024-00556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood. Here, we investigated the microbiome composition of a common, low-microbial-abundance, Atlantic-Mediterranean sponge, Crambe crambe, throughout its ontogeny, including adult individuals, brooded larvae, lecithotrophic free-swimming larvae, newly settled juveniles still lacking osculum, and juveniles with a functional osculum for filter feeding. RESULTS Using 16S rRNA gene analysis, we detected distinct microbiome compositions in each ontogenetic stage, with variations in composition, relative abundance, and diversity of microbial species. However, a particular dominant symbiont, Candidatus Beroebacter blanensis, previously described as the main symbiont of C. crambe, consistently occurred throughout all stages, an omnipresence that suggests vertical transmission from parents to offspring. This symbiont fluctuated in relative abundance across developmental stages, with pronounced prevalence in lecithotrophic stages. A major shift in microbial composition occurred as new settlers completed osculum formation and acquired filter-feeding capacity. Candidatus Beroebacter blanensis decreased significatively at this point. Microbial diversity peaked in filter-feeding stages, contrasting with the lower diversity of lecithotrophic stages. Furthermore, individual specific transmission patterns were detected, with greater microbial similarity between larvae and their respective parents compared to non-parental conspecifics. CONCLUSIONS These findings suggest a putative vertical transmission of the dominant symbiont, which could provide some metabolic advantage to non-filtering developmental stages of C. crambe. The increase in microbiome diversity with the onset of filter-feeding stages likely reflects enhanced interaction with environmental microbes, facilitating horizontal transmission. Conversely, lower microbiome diversity in lecithotrophic stages, prior to filter feeding, suggests incomplete symbiont transfer or potential symbiont digestion. This research provides novel information on the dynamics of the microbiome through sponge ontogeny, on the strategies for symbiont acquisition at each ontogenetic stage, and on the potential importance of symbionts during larval development.
Collapse
Affiliation(s)
- Marta Turon
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Madeline Ford
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Manuel Maldonado
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Cèlia Sitjà
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Cristina Díez-Vives
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- Department of Systems Biology, Centro Nacional de Biotecnología, c/Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Restoration of Marine Sponges—What Can We Learn from over a Century of Experimental Cultivation? WATER 2022. [DOI: 10.3390/w14071055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Marine sponges are the driver of many critical biological processes throughout various ecosystems. But anthropogenic and environmental pressures are rapidly compromising the diversity and abundance of Porifera worldwide. In our study, we reviewed the main experiences made on their cultivation to provide a roadmap of the best methodologies that could be applied to restore coastal sponge populations. We synthesized the results of experimental trials between 1950 and today to facilitate information on promising methods and materials. We detected a strong geographical imbalance between different ecoregions, as well as a shift of scientific effort from the investigation of “bath sponge” mariculture towards the rearing of bioactive compounds from sponges. Although sponge cultivation is arguably highly species-dependent, we further found that skeletal consistency in combination with taxonomy may be used to decide on appropriate techniques for future restoration initiatives.
Collapse
|
3
|
de Caralt S, González J, Turon X, Uriz MJ. -Reproductive strategies of two common sympatric Mediterranean sponges: Dysidea avara (Dictyoceratida) and Phorbas tenacior (Poecilosclerida). PeerJ 2018; 6:e5458. [PMID: 30123723 PMCID: PMC6087620 DOI: 10.7717/peerj.5458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Despite their abundance in benthic ecosystems, life cycles and reproductive features of most sponge species remain unknown. We have studied the main reproductive features of two demosponges, Dysidea avara and Phorbas tenacior, belonging to phylogenetically distant groups: Orders Dictyoceratida and Poecilosclerida, respectively. Both sponges are abundant and share habitat in the Mediterranean rocky sublittoral. They brood parenchymella larvae with different morphology and behaviour. Sampling was conducted monthly over a two-year period in a locality where both species coexist. The two species reproduced in spring-summer, and presented species-specific reproductive features despite being subject to the same environmental conditions. D. avara has a shorter reproductive period than P. tenacior, ending before the peak of temperature in summer, while the reproductive period of P. tenacior lasts until beginning of autumn. Brooding larvae were present in June-July in D. avara, and in August-October in P. tenacior. Larval size, reproductive effort and number of larvae produced (measured the month with the maximum production) were significantly higher in D. avara than in P. tenacior. A higher reproductive effort and larval traits point to a more opportunistic life strategy in D. avara than in P. tenacior. A lack of overlap in the timing of larval release, as well as different reproductive traits, may reduce competition and facilitate the coexistence of these two sympatric and abundant sponges.
Collapse
Affiliation(s)
- Sonia de Caralt
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Girona, Spain.,GRMAR, Institut d'Ecologia Aquàtica, Universitat de Girona, Girona, Spain
| | - Janina González
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Girona, Spain
| | - Xavier Turon
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Girona, Spain
| | - María J Uriz
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Girona, Spain
| |
Collapse
|
4
|
Padiglia A, Ledda FD, Padedda BM, Pronzato R, Manconi R. Long-term experimental in situ farming of Crambe crambe (Demospongiae: Poecilosclerida). PeerJ 2018; 6:e4964. [PMID: 29915695 PMCID: PMC6004114 DOI: 10.7717/peerj.4964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Background The marine sponge Crambe crambe was chosen as an experimental model of sustainable shallow-water mariculture in the Sardinian Sea (Western Mediterranean) to provide biomass with high potential in applied research. Methods Explants were cultured in four long-term experiments (19 and 31 months at ca. 2.5 m depth), to determine the suitability of new culture techniques by testing substrata and seeding time (season), and monitoring survival and growth. Explants were excised and grown in an experimental plant close to the wild donor sponge population. Percentage growth rate (GR%) was measured in terms of surface cover area, and explant survival was monitored in situ by means of a digital photo camera. Results Explant survival was high throughout the trial, ranging from 78.57% to 92.85% on travertine tiles and from 50% to 71.42% on oyster shells. A few instances of sponge regression were observed. Explant cover area correlated positively with season on two substrata, i.e., tiles and shells. The surface cover area and GR% of explants were measured in the starting phase and monitored up to the end of the trial. High GR% values were observed both on tiles (>21%) and on oyster shells (>15%). Discussion The data on the behaviour and life-style of cultured fragments, together with an increase >2,400% in cover area, demonstrate that in situ aquaculture is a viable and sustainable method for the shallow-water biomass supply of Crambe crambe.
Collapse
Affiliation(s)
- Andrea Padiglia
- Department for Earth, Environment and Life Sciences, University of Genova, Genova, Italy.,Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fabio D Ledda
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Bachisio M Padedda
- Department of Architecture, Design and Urban Planning, University of Sassari, Sassari, Italy
| | - Roberto Pronzato
- Department for Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Renata Manconi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Pita L, Fraune S, Hentschel U. Emerging Sponge Models of Animal-Microbe Symbioses. Front Microbiol 2016; 7:2102. [PMID: 28066403 PMCID: PMC5179597 DOI: 10.3389/fmicb.2016.02102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022] Open
Abstract
Sponges have a significant impact on marine benthic communities, they are of biotechnological interest owing to their production of bioactive natural compounds, and they promise to provide insights into conserved mechanisms of host–microbe interactions in basal metazoans. The natural variability of sponge-microbe associations across species and environments provides a meaningful ecological and evolutionary framework to investigate animal-microbial symbiosis through experimentation in the field and also in aquaria. In addition, next-generation sequencing technologies have shed light on the genomic repertoire of the sponge host and revealed metabolic capacities and symbiotic lifestyle features of their microbiota. However, our understanding of symbiotic mechanisms is still in its infancy. Here, we discuss the potential and limitations of the sponge-microbe symbiosis as emerging models for animal-associated microbiota.
Collapse
Affiliation(s)
- Lucia Pita
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts-University of Kiel (CAU), Kiel Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean ResearchKiel, Germany; Christian-Albrechts-University of Kiel (CAU), KielGermany
| |
Collapse
|
6
|
Ribes M, Calvo E, Movilla J, Logares R, Coma R, Pelejero C. Restructuring of the sponge microbiome favors tolerance to ocean acidification. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:536-544. [PMID: 27264698 DOI: 10.1111/1758-2229.12430] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ocean acidification is increasing and affects many marine organisms. However, certain sponge species can withstand low-pH conditions. This may be related to their complex association with microbes. We hypothesized that species with greater microbial diversity may develop functional redundancy that could enable the holobiont to survive even if particular microbes are lost at low-pH conditions. We evaluated the effects of acidification on the growth and associated microbes of three ubiquitous Mediterranean sponges by exposing them to the present pH level and that predicted for the year 2100. We found marked differences among the species in the acquisition of new microbes, being high in Dysidea avara, moderate in Agelas oroides and null in Chondrosia reniformis; however, we did not observe variation in the overall microbiome abundance, richness or diversity. The relative abilities to alter the microbiomes contributes to survivorship in an OA scenario as demonstrated by lowered pH severely affecting the growth of C. reniformis, halving that of A. oroides, and unaffecting D. avara. Our results indicate that functional stability of the sponge holobiont to withstand future OA is species-specific and is linked to the species' ability to use horizontal transmission to modify the associated microbiome to adapt to environmental change.
Collapse
Affiliation(s)
- M Ribes
- Institut de Ciències del Mar, ICM-CSIC, Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalunya, 08003, Spain
| | - E Calvo
- Institut de Ciències del Mar, ICM-CSIC, Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalunya, 08003, Spain
| | - J Movilla
- Institut de Ciències del Mar, ICM-CSIC, Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalunya, 08003, Spain
| | - R Logares
- Institut de Ciències del Mar, ICM-CSIC, Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalunya, 08003, Spain
| | - R Coma
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accès Cala Sant Francesc 14, Blanes, Girona, Catalunya, 17300, Spain
| | - C Pelejero
- Institut de Ciències del Mar, ICM-CSIC, Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalunya, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Catalunya, 08010, Spain
| |
Collapse
|
7
|
Bautista-Guerrero E, Carballo JL, Aguilar-Camacho JM, Sifuentes-Romero I. Molecular and morphological differentiation of sympatric larvae of coral excavating sponges of genus Thoosa. ZOOMORPHOLOGY 2016. [DOI: 10.1007/s00435-016-0305-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pérez-López P, Ternon E, González-García S, Genta-Jouve G, Feijoo G, Thomas OP, Moreira MT. Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 475:71-82. [PMID: 24419288 DOI: 10.1016/j.scitotenv.2013.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Crambe crambe is a Mediterranean marine sponge known to produce original natural substances belonging to two families of guanidine alkaloids, namely crambescins and crambescidins, which exhibit cytotoxic and antiviral activities. These compounds are therefore considered as potential anticancer drugs. The present study focuses on the environmental assessment of a novel in vivo process for the production of pure crambescin and crambescidin using sponge specimens cultured in aquarium. The assessment was performed following the ISO 14040 standard and extended from the production of the different mass and energy flows to the system to the growth of the sponge in indoor aquarium and further periodic extraction and purification of the bioactive compounds. According to the results, the two stages that have a remarkable contribution to all impact categories are the purification of the bioactive molecules followed by the maintenance of the sponge culture in the aquarium. Among the involved activities, the production of the chemicals (particularly methanol) together with the electricity requirements (especially due to the aquarium lighting) are responsible for up to 90% of the impact in most of the assessed categories. However, the contributions of other stages to the environmental burdens, such as the collection of sponges, considerably depend on the assumptions made during the inventory stage. The simulation of alternative scenarios has led to propose improvement alternatives that may allow significant reductions ranging from 20% to 70%, mainly thanks to the reduction of electricity requirements as well as the partial reuse of methanol.
Collapse
Affiliation(s)
- Paula Pérez-López
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Eva Ternon
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Sara González-García
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Grégory Genta-Jouve
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Gumersindo Feijoo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Olivier P Thomas
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Ma Teresa Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
9
|
de Caralt S, Cebrian E. Impact of an invasive alga (Womersleyella setacea) on sponge assemblages: compromising the viability of future populations. Biol Invasions 2013. [DOI: 10.1007/s10530-012-0394-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH. Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. ADVANCES IN MARINE BIOLOGY 2012; 62:273-337. [PMID: 22664125 DOI: 10.1016/b978-0-12-394283-8.00006-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state of the art for cultivation of whole sponges, sponge cells and sponge symbionts. To date, cultivation of whole sponges has been most successful in situ; however, optimal conditions are species specific. The establishment of sponge cell lines has been limited by the inability to obtain an axenic inoculum as well as the lack of knowledge on nutritional requirements in vitro. Approaches to overcome these bottlenecks, including transformation of sponge cells and using media based on yolk, are elaborated. Although a number of bioactive metabolite-producing microorganisms have been isolated from sponges, and it has been suggested that the source of most sponge-derived bioactive compounds is microbial symbionts, cultivation of sponge-specific microorganisms has had limited success. The current genomics revolution provides novel approaches to cultivate these microorganisms.
Collapse
Affiliation(s)
- Klaske J Schippers
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the northwestern Mediterranean. Mar Drugs 2010; 8:1731-42. [PMID: 20631865 PMCID: PMC2901820 DOI: 10.3390/md8061731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/14/2010] [Accepted: 05/24/2010] [Indexed: 11/17/2022] Open
Abstract
Marine sponges produce secondary metabolites that can be used as a natural source for the design of new drugs and cosmetics. There is, however, a supply problem with these natural substances for research and eventual commercialisation of the products. In situ sponge aquaculture is nowadays one of the most reliable methods to supply pharmaceutical companies with sufficient quantities of the target compound. In this study, we focus on the aquaculture of the sponge Dysidea avara (Schmidt, 1862), which produces avarol, a sterol with interesting pharmaceutical attributes. The soft consistency of this species makes the traditional culture method based on holding explants on ropes unsuitable. We have tested alternative culture methods for D. avara and optimized the underwater structures to hold the sponges to be used in aquaculture. Explants of this sponge were mounted on horizontal ropes, inside small cages or glued to substrates. Culture efficiency was evaluated by determination of sponge survival, growth rates, and bioactivity (as an indication of production of the target metabolite). While the cage method was the best method for explant survival, the glue method was the best one for explant growth and the rope method for bioactivity.
Collapse
|
12
|
Duckworth A. Farming sponges to supply bioactive metabolites and bath sponges: a review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:669-679. [PMID: 19585169 DOI: 10.1007/s10126-009-9213-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
Sponges have been experimentally farmed for over 100 years, with early attempts done in the sea to supply "bath sponges". During the last 20 years, sponges have also been experimentally cultured both in the sea and in tanks on land for their biologically active metabolites, some of which have pharmaceutical potential. Sea-based farming studies have focused on developing good farming structures and identifying the optimal environmental conditions that promote production of bath sponges or bioactive metabolites. The ideal farming structure will vary between species and regions, but will generally involve threading sponges on rope or placing them inside mesh. For land-based sponge culture, most research has focused on determining the feeding requirements that promote growth. Many sea- and land-based studies have shown that sponges grow quickly, often doubling in size every few months. Other favorable results and interesting developments include partially harvesting farmed sponges to increase biomass yields, seeding sexually reproduced larvae on farming structures, using sponge farms as large biofilters to control microbial populations, and manipulating culture conditions to promote metabolite biosynthesis. Even though some results are promising, land-based culture needs further research and is not likely to be commercially feasible in the near future. Sea-based culture still holds great promise, with several small-scale farming operations producing bath sponges or metabolites. The greatest potential for commercial bath sponge culture is probably for underdeveloped coastal communities, where it can provide an alternative and environmentally friendly source of income.
Collapse
Affiliation(s)
- Alan Duckworth
- Blue Ocean Institute, P. O. Box 250, East Norwich, NY, 11732, USA.
| |
Collapse
|
13
|
Xue L, Zhang W. Growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis (Demospongiae) under controlled conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:640-649. [PMID: 19221840 DOI: 10.1007/s10126-009-9180-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/12/2009] [Indexed: 05/27/2023]
Abstract
To resolve "the supply problem" in sponge-derived drug development and other biotechnological applications, current research is exploring the possibility of obtaining an alternative sustainable supply of sponge biomass through intensive aquaculture of sponges utilizing artificial seed rearing. This study aimed to investigate the technology of early juvenile sponge cultivation under controlled conditions. The effects of food, temperature, water flow, and light on the growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis were examined. The concentrations of four types of food elements [microalgae (Isochrysis galbana), photosynthetic bacteria (Rhodopseudomonas), Fe(3+) (FeCl(3)), and Si (Na(2)SiO(3))] were investigated for early H. perlevis juvenile growth. Interestingly, temperature changes have striking effects on juvenile growth. Juvenile sponges grow faster when they are shifted to higher temperatures (18 degrees C to 23 degrees C) than when they are shifted to lower temperatures (18 degrees C to 4 degrees C to 23 degrees C) or kept at a constant temperature (18 degrees C). Periodic water flow and light cycles favor early juvenile sponge growth. Light was found to be a key factor in the color loss of early H. perlevis juveniles. Overall, size (area) increased as much as 29 times for H. perlevis juveniles under the tested controlled conditions.
Collapse
Affiliation(s)
- Lingyun Xue
- Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | | |
Collapse
|
14
|
Wijffels RH. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 2007; 26:26-31. [PMID: 18037175 DOI: 10.1016/j.tibtech.2007.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 11/18/2022]
Abstract
Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals and biofuels. Many sponges produce bioactive compounds with important potential applications as medical drugs. Recent developments in metagenomics, in the culturing of associated microorganisms from sponges and in the development of sponge cell-lines have the potential to solve the issue of supply, which is the main limitation for sponge exploitation. For the production of microalgal products at larger scales and the production of biofuels, major technological breakthroughs need to be realized to increase the product yield.
Collapse
Affiliation(s)
- René H Wijffels
- Wageningen University, Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Bomenweg 2, 6703 HD Wageningen, The Netherlands.
| |
Collapse
|