1
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
2
|
Diwan AD, Harke SN, Panche AN. Application of proteomics in shrimp and shrimp aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101015. [PMID: 35870418 DOI: 10.1016/j.cbd.2022.101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Since proteins play an important role in the life of an organism, many researchers are now looking at how genes and proteins interact to form different proteins. It is anticipated that the creation of adequate tools for rapid analysis of proteins will accelerate the determination of functional aspects of these biomolecules and develop new biomarkers and therapeutic targets for the diagnosis and treatment of various diseases. Though shrimp contains high-quality marine proteins, there are reports about the heavy losses to the shrimp industry due to the poor quality of shrimp production and many times due to mass mortality also. Frequent outbreaks of diseases, water pollution, and quality of feed are some of the most recognized reasons for such losses. In the seafood export market, shrimp occupies the top position in currency earnings and strengthens the economy of many developing nations. Therefore, it is vital for shrimp-producing companies they produce healthy shrimp with high-quality protein. Though aquaculture is a very competitive market, global awareness regarding the use of scientific knowledge and emerging technologies to obtain better-farmed organisms through sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful tool, has therefore been increasingly used to address several issues in shrimp aquaculture. In the present paper, efforts have been made to address some of them, particularly the role of proteomics in reproduction, breeding and spawning, immunological responses and disease resistance capacity, nutrition and health, microbiome and probiotics, quality and safety of shrimp production, bioinformatics applications in proteomics, the discovery of protein biomarkers, and mitigating biotic and abiotic stresses. Future challenges and research directions on proteomics in shrimp aquaculture have also been discussed.
Collapse
Affiliation(s)
- A D Diwan
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - S N Harke
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
3
|
Lin S, Zhang L, Wang G, Huang S, Wang Y. Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100977. [PMID: 35247793 DOI: 10.1016/j.cbd.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Aquaria species are characterized by their amazing colors and patterns. Research on the breeding molecular genetics of ornamental shrimps is surprisingly limited. We conducted a transcriptome analysis to investigate the expression of encoding genes in the integument of the strains Neocaridina denticulate sinensis. After assembled and filtered, 19,992 unigenes were annotated by aligning with public functional databases (NR, Swiss-Prot, KEGG, COG). 14,915 unigenes with significantly different expressions were found by comparing three strains integument transcriptomes. Ribosomal protein genes, ABC transporter families, calmodulin, carotenoid proteins and crustacyanin may play roles in the cytological process of pigment migration and chromatophore maintenance. Numerous color genes associated with multiple pathways including melanin, ommochrome and pteridines pathways were identified. The expression patterns of 25 candidate genes were analysis by qPCR in red, yellow, transparent and glass strains. The qPCR results in red, yellow and transparent were consistent with the level of RPKM values in the transcriptomes. The above results will advance our knowledge of integument color varieties in N. denticulate sinensis and help the genetic selection of crustaceans with consumer-favored colors. Furthermore, it also provides some candidate pigmentation genes to investigate the correlation between coloration and sympatric speciation in crustaceans.
Collapse
Affiliation(s)
- Shi Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
4
|
Huang CW, Chu PY, Wu YF, Chan WR, Wang YH. Identification of Functional SSR Markers in Freshwater Ornamental Shrimps Neocaridina denticulata Using Transcriptome Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:772-785. [PMID: 32529453 DOI: 10.1007/s10126-020-09979-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The amazing colors and patterns are fascinating characteristics in all of the aquarium species. However, genetic and breeding molecular investigations of ornamental shrimps are rather limited. Here, we present the first transcriptomic analysis and application of microsatellites based on the chromatophore-encoded genes of Neocaridina denticulata to assist freshwater ornamental shrimp germplasm enhancement and its extensive applications. A total of 65,402 unigenes were annotated, and 4706 differentially expressed genes were screened and identified between super red shrimp and chocolate shrimp strains. Several gene ratios were examined to put in perspective possible genetic markers for the different strains of normal pigmentation development, including flotillin-2-like, keratin, the G protein-coupled receptor Mth2-like, annexin A7, and unconventional myosin-IXb-like. Five simple sequence repeat markers were effective for colored shrimps and were used to develop a marker-assisted selection platform for systematic breeding management program to maintain genetic diversity of the species. These markers could also be used to assist the identification of pure strains and increase the genetic stability of ornamental shrimp color phenotypes. Consequently, our results of microsatellite marker development are valuable for assisting shrimp genetic and selection breeding studies on freshwater ornamental shrimp and related crystal shrimp species.
Collapse
Affiliation(s)
- Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yu-Fang Wu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Wei-Ren Chan
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yeh-Hao Wang
- Larmax International Co., Ltd. No.9, Yuanxi 2nd Rd., Changzhi, Pingtung, Taiwan
| |
Collapse
|
5
|
Boonchuen P, Maralit BA, Jaree P, Tassanakajon A, Somboonwiwat K. MicroRNA and mRNA interactions coordinate the immune response in non-lethal heat stressed Litopenaeus vannamei against AHPND-causing Vibrio parahaemolyticus. Sci Rep 2020; 10:787. [PMID: 31964916 PMCID: PMC6972907 DOI: 10.1038/s41598-019-57409-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
While Vibrio parahaemolyticus (VPAHPND) has been identified as the cause of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, mechanisms of host response remain unknown. Understanding these processes is important to improve farming practices because this understanding will help to develop methods to enhance shrimp immunity. Pre-treatment of shrimp with 5-minute chronic non-lethal heat stress (NLHS) for 7 days was found to significantly increase Litopenaeus vannamei survival against VPAHPND infection. To elucidate the mechanism involved, mRNA and miRNA expression profiles from the hemocyte of L. vannamei challenged with VPAHPND after NLHS with corresponding control conditions were determined by RNA-Seq. A total of 2,664 mRNAs and 41 miRNAs were differentially expressed after the NLHS treatment and VPAHPND challenge. A miRNA-mRNA regulatory network of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) was subsequently constructed and the interactions of DEMs in regulating the NLHS-induced immune-related pathways were identified. Transcriptomic data revealed that miRNA and mRNA interactions contribute to the modulation of NLHS-induced immune responses, such as the prophenoloxidase-activating system, hemocyte homeostasis, and antimicrobial peptide production, and these responses enhance VPAHPND resistance in L. vannamei.
Collapse
Affiliation(s)
- Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Benedict A Maralit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines.,National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Zeng D, Chen X, Peng J, Yang C, Peng M, Zhu W, Xie D, He P, Wei P, Lin Y, Zhao Y, Chen X. Single-molecule long-read sequencing facilitates shrimp transcriptome research. Sci Rep 2018; 8:16920. [PMID: 30446694 PMCID: PMC6240054 DOI: 10.1038/s41598-018-35066-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Although shrimp are of great economic importance, few full-length shrimp transcriptomes are available. Here, we used Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology to generate transcripts from the Pacific white shrimp (Litopenaeus vannamei). We obtained 322,600 full-length non-chimeric reads, from which we generated 51,367 high-quality unique full-length transcripts. We corrected errors in the SMRT sequences by comparison with Illumina-produced short reads. We successfully annotated 81.72% of all unique SMRT transcripts against the NCBI non-redundant database, 58.63% against Swiss-Prot, 45.38% against Gene Ontology, 32.57% against Clusters of Orthologous Groups of proteins (COG), and 47.83% against Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Across all transcripts, we identified 3,958 long non-coding RNAs (lncRNAs) and 80,650 simple sequence repeats (SSRs). Our study provides a rich set of full-length cDNA sequences for L. vannamei, which will greatly facilitate shrimp transcriptome research.
Collapse
Affiliation(s)
- Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Daxiang Xie
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China.
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China.
| |
Collapse
|
8
|
Maralit BA, Jaree P, Boonchuen P, Tassanakajon A, Somboonwiwat K. Differentially expressed genes in hemocytes of Litopenaeus vannamei challenged with Vibrio parahaemolyticus AHPND (VP AHPND) and VP AHPND toxin. FISH & SHELLFISH IMMUNOLOGY 2018; 81:284-296. [PMID: 29966688 DOI: 10.1016/j.fsi.2018.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
While toxin-harboring Vibrio parahaemolyticus has been previously established as the causative agent of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, information on the mechanistic processes that happen in the host during infection is still lacking. Here, we examined the expression responses of the shrimp hemocyte transcriptome to V. parahaemolyticus AHPND (VPAHPND) by RNA sequencing (RNA-seq). Using libraries (SRA accession number SRP137285) prepared from shrimp hemocytes under experimental conditions, a reference library was de novo assembled for gene expression analysis of VPAHPND-challenged samples at 0, 3/6, and 48 h post infection (hpi). Using the library from 0-hpi as the control, 359 transcripts were found to be differentially expressed in the 3/6-hpi library, while 429 were differentially expressed in the 48-hpi library. The expression patterns reported in the RNA-seq of 9 representative genes such as anti-lipopolysaccharide factor (LvALF), crustin p (CRU), serpin 3 (SER), C-type lectin 3 (CTL), clottable protein 2 (CLO), mitogen-activated protein kinase kinase 4 (MKK4), P38 mitogen-activated protein kinase (P38), protein kinase A regulatory subunit 1 (PKA) and DNAJ homolog subfamily C member 1-like (DNJ) were validated by qRT-PCR. The expression of these genes was also analyzed in shrimp that were injected with the partially purified VPAHPND toxin. A VPAHPND toxin-responsive gene, LvALF was identified, and its function was characterized by RNA interference. LvALF knockdown resulted in significantly rapid increase of shrimp mortality caused by toxin injection. Protein-protein interaction analysis by molecular docking suggested that LvALF possibly neutralizes VPAHPND toxin through its LPS-binding domain. The data generated in this study provide preliminary insights into the differences in the immune response of shrimp to the bacterial and toxic aspect of VPAHPND as a disease.
Collapse
Affiliation(s)
- Benedict A Maralit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Thailand
| | - Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand.
| |
Collapse
|
9
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
10
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
11
|
Pinsino A, Bonaventura R, Costa C, Russo R, Zito F, Guarrasi V, Matranga V. The 70-kDa Heat-shock Protein as a Potential Biomarker of Quality of the Parapenaeus longirostris Shrimp Flesh. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1410507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| | - Valeria Guarrasi
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Palermo, Italy
| |
Collapse
|
12
|
Liu PF, Liu QH, Wu Y, Huang J. Increased nucleoside diphosphate kinase activity induces white spot syndrome virus infection in Litopenaeus vannamei. PLoS One 2017; 12:e0175741. [PMID: 28505172 PMCID: PMC5432163 DOI: 10.1371/journal.pone.0175741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/30/2017] [Indexed: 12/02/2022] Open
Abstract
Nucleoside diphosphate kinase (NDK), which has the same sequence as oncoprotein (OP) in humans, can induce nucleoside triphosphates in DNA replication by maintenance of the deoxynucleotide triphosphate (dNTP’s) and is known to be regulated by viral infection in the shrimp Litopenaeus vannamei. This paper describes the relationship between NDK and white spot syndrome virus (WSSV) infection. The recombinant NDK was produced by a prokaryotic expression system. WSSV copy numbers and mRNA levels of IE1 and VP28 were significantly increased in shrimp injected with recombinant NDK at 72 h after WSSV infection. After synthesizing dsRNA-NDK and confirming the efficacy of NDK silencing, we recorded the cumulative mortality of WSSV-infected shrimp injected with NDK and dsRNA-NDK. A comparison between the results demonstrated that silencing NDK delayed the death of shrimps. These findings indicate that NDK has an important role influencing the replication of WSSV replication in shrimp. Furthermore, NDK may have potential target as a new therapeutic strategy against WSSV infection in shrimp.
Collapse
Affiliation(s)
- Peng-fei Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Dalian Ocean University, Dalian, China
| | - Qing-hui Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| | - Yin Wu
- Dalian Ocean University, Dalian, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Koiwai K, Alenton RRR, Shiomi R, Nozaki R, Kondo H, Hirono I. Two hemocyte sub-populations of kuruma shrimp Marsupenaeus japonicus. Mol Immunol 2017; 85:1-8. [PMID: 28167202 DOI: 10.1016/j.molimm.2017.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Hemocytes in the circulating hemolymph play important roles for immune responses in shrimp. Previous studies on immune responses by hemocytes in penaeid shrimp were based on gene expression analyses of the entire population of hemocytes and thus may have missed different immune responses of different hemocyte sub-populations. In this study, we separated hemocytes into two sub-populations by Percoll gradient centrifugation, morphological characteristics of each population were then analyzed by May-Giemsa staining, flow cytometry, and FACSCalibur. Results showed hemocytes were divided into an upper layer basophilic, and lower layer of eosinophilic hemocytes. Basophilic hemocytes were larger in size compared to eosinophilic hemocytes, which were more granulated than the basophilic hemocytes. Transcriptome analysis was then conducted through RNA-seq analysis by Miseq, which revealed 16 differentially-expressed transcripts between the two sub-populations. In the upper-layer, the highly expressed transcripts that were homologous to immune-related genes that suggest hemocytes from this layer may play as the regulator of immune system and control the action of other cells to eliminate pathogen. On the other hand, transcripts that were highly expressed in the lower-layer were homologous to the antimicrobial peptide (AMP) crustin, which supports that hemocytes on this layer have granules as crustins are normally secreted from hemocyte granules. The high expression of crustin in the lower-layer also provides insight on the mechanism of the anti-microbial function, where hemocytes produce and store AMPs in its granules. These differentially expressed genes are potential hemocyte molecular markers, and among them we identified one of the highly expressed genes in the hemocytes from the upper-layer (c11736_g1) to be a promising candidate molecular marker predicted to be a surface molecule, which is a common characteristic for molecular markers.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Rod Russel R Alenton
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reina Shiomi
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
14
|
Soonthornchai W, Chaiyapechara S, Klinbunga S, Thongda W, Tangphatsornruang S, Yoocha T, Jarayabhand P, Jiravanichpaisal P. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:53-63. [PMID: 27339467 DOI: 10.1016/j.dci.2016.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND) is an emerging disease in aquacultured shrimp caused by a pathogenic strain of Vibrio parahaemolyticus. As with several pathogenic bacteria, colonization of the stomach appeared to be the initial step of the infection for AHPND-causing Vibrio. To understand the immune responses in the stomach of black tiger shrimp (Penaeus monodon), differentially expressed transcripts (DETs) in the stomach during V. parahaemolyticus strain 3HP (VP3HP) infection was examined using Ion Torrent sequencing. From the total 42,998 contigs obtained, 1585 contigs representing 1513 unigenes were significantly differentially expressed with 1122 and 391 unigenes up- and down-regulated, respectively. Among the DETs, there were 141 immune-related unigenes in 10 functional categories: antimicrobial peptide, signal transduction pathway, proPO system, oxidative stress, proteinases/proteinase inhibitors, apoptotic tumor-related protein, pathogen recognition immune regulator, blood clotting system, adhesive protein and heat shock protein. Expression profiles of 20 of 22 genes inferred from RNA sequencing were confirmed with the results from qRT-PCR. Additionally, a novel isoform of anti-lipopolysaccharide factor, PmALF7 whose transcript was induced in the stomach after challenge with VP3HP was discovered. This study provided a fundamental information on the molecular response in the shrimp stomach during the AHPND infection that would be beneficial for future research.
Collapse
Affiliation(s)
- Wipasiri Soonthornchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sage Chaiyapechara
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Sithichoke Tangphatsornruang
- Genomic Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Thippawan Yoocha
- Genomic Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Padermsak Jarayabhand
- Interdisciplinary Graduate Program on Maritime Administration, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pikul Jiravanichpaisal
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
15
|
Shi XZ, Feng XW, Sun JJ, Yang MC, Lan JF, Zhao XF, Wang JX. Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 54:489-498. [PMID: 27142936 DOI: 10.1016/j.fsi.2016.04.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Lysin motif (LysM) is a peptidoglycan and chitin-binding motif with multiple functions in bacteria, plants, and animals. In this study, a novel LysM and putative peptidoglycan-binding domain-containing protein was cloned from kuruma shrimp (Marsupenaeus japonicus) and named as MjLPBP. The cDNA of MjLPBP contained 1010 nucleotides with an open reading frame of 834 nucleotides encoding a protein of 277 amino acid residues. The deduced protein contained a Lysin motif and a transmembrane region, with a calculated molecular mass of 31.54 kDa and isoelectric point of 8.61. MjLPBP was ubiquitously distributed in different tissues of shrimp at the mRNA level. Time course expression assay showed that MjLPBP was upregulated in hemocytes of shrimp challenged with Vibrio anguillarum or Staphylococcus aureus. MjLPBP was also upregulated in hepatopancreas after white spot syndrome virus and bacteria challenge. The recombinant protein of MjLPBP could bind to some Gram-positive and Gram-negative bacteria and yeast. Further study found that rMjLPBP bound to bacterial cell wall components, including peptidoglycans, lipoteichoic acid, lipopolysaccharide, and chitin. The induction of several antimicrobial peptide genes and phagocytosis-related gene, such as anti-lipopolysaccharide factors and myosin, was depressed after knockdown of MjLPBP. MjLPBP could facilitate V. anguillarum clearance in vivo. All the results indicated that MjLPBP might play an important role in the innate immunity of shrimp.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Wu Feng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
16
|
Rao R, Bhassu S, Bing RZY, Alinejad T, Hassan SS, Wang J. A transcriptome study on Macrobrachium rosenbergii hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). J Invertebr Pathol 2016; 136:10-22. [PMID: 26880158 DOI: 10.1016/j.jip.2016.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
Collapse
Affiliation(s)
- Rama Rao
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Subha Bhassu
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Robin Zhu Ya Bing
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen 518083, China.
| | - Tahereh Alinejad
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Building 3, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Jun Wang
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Duan Y, Li J, Zhang Z, Li J, Ge Q, Liu P. The role of oncoprotein NM23 gene from Exopalaemon carinicauda is response to pathogens challenge and ammonia-N stress. FISH & SHELLFISH IMMUNOLOGY 2015; 47:1067-1074. [PMID: 26314522 DOI: 10.1016/j.fsi.2015.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Oncoprotein NM23, as a family of genes encoding the nucleoside diphosphate (NDP) kinase, plays important roles in bioenergetics, DNA replication, differentiation and tumor metastasis. In this study, a full-length cDNA of NM23 (designated EcNM23) was cloned from Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcNM23 was 755 bp, which contains an open reading frame (ORF) of 518 bp, encoding a 175 amino-acid polypeptide with the predicted molecular weight of 19.60 kDa and estimated isoelectric point of 7.67. The deduced amino acid sequence of EcNM23 shared high identity (86%-93%) with that of other crustaceans. a NDP kinase super family signature was identified in E. carinicauda EcNM23. Quantitative real-time RT-qPCR analysis indicated that EcNM23 was expressed in all the examined tissues with the high expression level in hemocytes and ovary. The EcNM23 expression in immune-related tissues changed rapidly and reached peak at different time after pathogens (Vibrio parahaemolyticus and WSSV) challenge and ammonia-N stress treatment. The results suggested that EcNM23 might be associated with the immune defenses to pathogens infection and ammonia-N stress in E. carinicauda.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China
| | - Qianqian Ge
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China.
| |
Collapse
|
18
|
Rao R, Bing Zhu Y, Alinejad T, Tiruvayipati S, Lin Thong K, Wang J, Bhassu S. RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection. Gut Pathog 2015; 7:6. [PMID: 25922623 PMCID: PMC4411767 DOI: 10.1186/s13099-015-0052-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Background The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species’ immune response to this pathogenic bacteria. Result A total of 59,122,940 raw reads were obtained from the control group, and 58,385,094 reads from the Vibrio-infected group. Via de novo assembly by Trinity assembler, 59,050 control unigenes and 73,946 Vibrio-infected group unigenes were obtained. By clustering unigenes from both libraries, a total of 64,411 standard unigenes were produced. The standard unigenes were annotated against the NCBI non-redundant, Swiss-Prot, Kyoto Encyclopaedia of Genes and Genome pathway (KEGG) and Orthologous Groups of Proteins (COG) databases, with 19,799 (30.73%), 16,832 (26.13%), 14,706 (22.83%) and 7,856 (12.19%) hits respectively, giving a final total of 22,455 significant hits (34.86% of all unigenes). A Gene Ontology (GO) analysis search using the Blast2GO program resulted in 6,007 unigenes (9.32%) being categorized into 55 functional groups. A differential gene expression analysis produced a total of 14,569 unigenes aberrantly expressed, with 11,446 unigenes significantly up-regulated and 3,103 unigenes significantly down-regulated. The differentially expressed immune genes fall under various processes of the animal immune system. Conclusion This study provided an insight into the antibacterial mechanism in M. rosenbergii and the role of differentially expressed immune genes in response to V. parahaemolyticus infection. Furthermore, this study has generated an abundant list of transcript from M.rosenbergii which will provide a fundamental basis for future genomics research in this field. Electronic supplementary material The online version of this article (doi:10.1186/s13099-015-0052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rama Rao
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ya Bing Zhu
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Tahereh Alinejad
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Microbiology Unit, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jun Wang
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Subha Bhassu
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Manivannan SN, Lai LB, Gopalan V, Simcox A. Transcriptional control of an essential ribozyme in Drosophila reveals an ancient evolutionary divide in animals. PLoS Genet 2015; 11:e1004893. [PMID: 25569672 PMCID: PMC4287351 DOI: 10.1371/journal.pgen.1004893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential enzyme required for 5'-maturation of tRNA. While an RNA-free, protein-based form of RNase P exists in eukaryotes, the ribonucleoprotein (RNP) form is found in all domains of life. The catalytic component of the RNP is an RNA known as RNase P RNA (RPR). Eukaryotic RPR genes are typically transcribed by RNA polymerase III (pol III). Here we showed that the RPR gene in Drosophila, which is annotated in the intron of a pol II-transcribed protein-coding gene, lacks signals for transcription by pol III. Using reporter gene constructs that include the RPR-coding intron from Drosophila, we found that the intron contains all the sequences necessary for production of mature RPR but is dependent on the promoter of the recipient gene for expression. We also demonstrated that the intron-coded RPR copurifies with RNase P and is required for its activity. Analysis of RPR genes in various animal genomes revealed a striking divide in the animal kingdom that separates insects and crustaceans into a single group in which RPR genes lack signals for independent transcription and are embedded in different protein-coding genes. Our findings provide evidence for a genetic event that occurred approximately 500 million years ago in the arthropod lineage, which switched the control of the transcription of RPR from pol III to pol II.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
| | - Lien B. Lai
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Venkat Gopalan
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (AS)
| | - Amanda Simcox
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (AS)
| |
Collapse
|
20
|
Kornthong N, Cummins SF, Chotwiwatthanakun C, Khornchatri K, Engsusophon A, Hanna PJ, Sobhon P. Identification of genes associated with reproduction in the Mud Crab (Scylla olivacea) and their differential expression following serotonin stimulation. PLoS One 2014; 9:e115867. [PMID: 25542017 PMCID: PMC4277393 DOI: 10.1371/journal.pone.0115867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) is often intimately involved in reproduction control and is therefore a target organ for transcriptomic investigations to identify reproduction-associated genes. In this study, 454 transcriptome sequencing was performed on pooled brain and ventral nerve cord of the female mud crab (Scylla olivacea) following serotonin injection (5 µg/g BW). A total of 197,468 sequence reads was obtained with an average length of 828 bp. Approximately 38.7% of 2,183 isotigs matched with significant similarity (E value < 1e−4) to sequences within the Genbank non-redundant (nr) database, with most significant matches being to crustacean and insect sequences. Approximately 32 putative neuropeptide genes were identified from nonmatching blast sequences. In addition, we identified full-length transcripts for crustacean reproductive-related genes, namely farnesoic acid o-methyltransferase (FAMeT), estrogen sulfotransferase (ESULT) and prostaglandin F synthase (PGFS). Following serotonin injection, which would normally initiate reproductive processes, we found up-regulation of FAMeT, ESULT and PGFS expression in the female CNS and ovary. Our data here provides an invaluable new resource for understanding the molecular role of the CNS on reproduction in S. olivacea.
Collapse
Affiliation(s)
- Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
- * E-mail: (SFC); (PS)
| | - Charoonroj Chotwiwatthanakun
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | - Kanjana Khornchatri
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Attakorn Engsusophon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Pro Vice-Chancellor's Office, Faculty of Science, Engineering and Built Environment, Deakin University, Locked Bag 20000, Geelong, Victoria, 3220, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- * E-mail: (SFC); (PS)
| |
Collapse
|
21
|
López-Zavala AA, Quintero-Reyes IE, Carrasco-Miranda JS, Stojanoff V, Weichsel A, Rudiño-Piñera E, Sotelo-Mundo RR. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates. Acta Crystallogr F Struct Biol Commun 2014; 70:1150-4. [PMID: 25195883 PMCID: PMC4157410 DOI: 10.1107/s2053230x1401557x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.
Collapse
Affiliation(s)
- Alonso A. López-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Idania E. Quintero-Reyes
- Universidad de Sonora, Blvd Bordo Nuevo s/n, Ejido Providencia, 85039 Cd Obregón, Sonora, Mexico
| | - Jesús S. Carrasco-Miranda
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Vivian Stojanoff
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrzej Weichsel
- Macromolecular Crystallography Core, The University of Arizona, Biological Sciences West, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos, Mexico
| | - Rogerio R. Sotelo-Mundo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| |
Collapse
|
22
|
Korshkari P, Vaiwsri S, Flegel TW, Ngamsuriyaroj S, Sonthayanon B, Prachumwat A. ShrimpGPAT: a gene and protein annotation tool for knowledge sharing and gene discovery in shrimp. BMC Genomics 2014; 15:506. [PMID: 24952385 PMCID: PMC4094775 DOI: 10.1186/1471-2164-15-506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Although captured and cultivated marine shrimp constitute highly important seafood in terms of both economic value and production quantity, biologists have little knowledge of the shrimp genome and this partly hinders their ability to improve shrimp aquaculture. To help improve this situation, the Shrimp Gene and Protein Annotation Tool (ShrimpGPAT) was conceived as a community-based annotation platform for the acquisition and updating of full-length complementary DNAs (cDNAs), Expressed Sequence Tags (ESTs), transcript contigs and protein sequences of penaeid shrimp and their decapod relatives and for in-silico functional annotation and sequence analysis. DESCRIPTION ShrimpGPAT currently holds quality-filtered, molecular sequences of 14 decapod species (~500,000 records for six penaeid shrimp and eight other decapods). The database predominantly comprises transcript sequences derived by both traditional EST Sanger sequencing and more recently by massive-parallel sequencing technologies. The analysis pipeline provides putative functions in terms of sequence homologs, gene ontologies and protein-protein interactions. Data retrieval can be conducted easily either by a keyword text search or by a sequence query via BLAST, and users can save records of interest for later investigation using tools such as multiple sequence alignment and BLAST searches against pre-defined databases. In addition, ShrimpGPAT provides space for community insights by allowing functional annotation with tags and comments on sequences. Community-contributed information will allow for continuous database enrichment, for improvement of functions and for other aspects of sequence analysis. CONCLUSIONS ShrimpGPAT is a new, free and easily accessed service for the shrimp research community that provides a comprehensive and up-to-date database of quality-filtered decapod gene and protein sequences together with putative functional prediction and sequence analysis tools. An important feature is its community-based functional annotation capability that allows the research community to contribute knowledge and insights about the properties of molecular sequences for better, shared, functional characterization of shrimp genes. Regularly updated and expanded with data on more decapods, ShrimpGPAT is publicly available at http://shrimpgpat.sc.mahidol.ac.th/.
Collapse
Affiliation(s)
- Parpakron Korshkari
- />Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
- />Faculty of Information and Communication Technology, Mahidol University, Salaya Campus, Phutthamonthon District, Nakhon Pathom, 73170 Thailand
| | - Sirintra Vaiwsri
- />Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
- />Faculty of Information and Communication Technology, Mahidol University, Salaya Campus, Phutthamonthon District, Nakhon Pathom, 73170 Thailand
| | - Timothy W Flegel
- />Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
- />National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, 113 Paholyothin Road, Tambon Khlong 1, Amphoe Khlong Luang, Pathum Thani, 12120 Thailand
| | - Sudsanguan Ngamsuriyaroj
- />Faculty of Information and Communication Technology, Mahidol University, Salaya Campus, Phutthamonthon District, Nakhon Pathom, 73170 Thailand
| | - Burachai Sonthayanon
- />Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
- />National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, 113 Paholyothin Road, Tambon Khlong 1, Amphoe Khlong Luang, Pathum Thani, 12120 Thailand
| | - Anuphap Prachumwat
- />Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
- />National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, 113 Paholyothin Road, Tambon Khlong 1, Amphoe Khlong Luang, Pathum Thani, 12120 Thailand
- />Shrimp-Virus Interaction Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, 113 Paholyothin Road, Tambon Khlong 1, Amphoe Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|
23
|
Transcriptome analysis of the Portunus trituberculatus: de novo assembly, growth-related gene identification and marker discovery. PLoS One 2014; 9:e94055. [PMID: 24722690 PMCID: PMC3983128 DOI: 10.1371/journal.pone.0094055] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background The swimming crab, Portunus trituberculatus, is an important farmed species in China, has been attracting extensive studies, which require more and more genome background knowledge. To date, the sequencing of its whole genome is unavailable and transcriptomic information is also scarce for this species. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for major tissues of Portunus trituberculatus by the Illumina paired-end sequencing technology. Results Total RNA was isolated from eyestalk, gill, heart, hepatopancreas and muscle. Equal quantities of RNA from each tissue were pooled to construct a cDNA library. Using the Illumina paired-end sequencing technology, we generated a total of 120,137 transcripts with an average length of 1037 bp. Further assembly analysis showed that all contigs contributed to 87,100 unigenes, of these, 16,029 unigenes (18.40% of the total) can be matched in the GenBank non-redundant database. Potential genes and their functions were predicted by GO, KEGG pathway mapping and COG analysis. Based on our sequence analysis and published literature, many putative genes with fundamental roles in growth and muscle development, including actin, myosin, tropomyosin, troponin and other potentially important candidate genes were identified for the first time in this specie. Furthermore, 22,673 SSRs and 66,191 high-confidence SNPs were identified in this EST dataset. Conclusion The transcriptome provides an invaluable new data for a functional genomics resource and future biological research in Portunus trituberculatus. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs. The molecular markers identified in this study will provide a material basis for future genetic linkage and quantitative trait loci analyses, and will be essential for accelerating aquaculture breeding programs with this species.
Collapse
|
24
|
Jiang H, Li F, Zhang J, Zhang J, Huang B, Yu Y, Xiang J. Comparison of protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis challenged with heat-inactivated Vibrio anguillarum and white spot syndrome virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:111-123. [PMID: 24057166 DOI: 10.1007/s10126-013-9538-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Fenneropenaeus chinensis (Chinese shrimp) culture industry, like other Penaeidae culture, has been seriously affected by the shrimp diseases caused by bacteria and virus. To better understand the mechanism of immune response of shrimp to different pathogens, proteome research approach was utilized in this study. Firstly, the soluble hepatopancreas protein samples in adult Chinese shrimp among control, heat-inactivated Vibrio-challenged and white spot syndrome virus-infected groups were separated by 2-DE (pH range, 4-7; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and pH range, 3-10; tricine-SDS-PAGE). Then the differentially expressed protein spots (≥1.5-fold or ≤0.67-fold averagely of controls) were analyzed by LC-ESI-MS/MS. Using Mascot online database searching algorithm and SEQUEST searching program, 48 and 49 differentially expressed protein spots were successfully identified in response to Vibrio and white spot syndrome virus infection, respectively. Based on these results, we discussed the mechanism of immune response of the shrimp and shed light on the differences between immune response of shrimp toward Vibrio and white spot syndrome virus. This study also set a basis for further analyses of some key genes in immune response of Chinese shrimp.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Yu Y, Wei J, Zhang X, Liu J, Liu C, Li F, Xiang J. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing. PLoS One 2014; 9:e87218. [PMID: 24498047 PMCID: PMC3907553 DOI: 10.1371/journal.pone.0087218] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiankai Wei
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jingwen Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
26
|
Baranski M, Gopikrishna G, Robinson NA, Katneni VK, Shekhar MS, Shanmugakarthik J, Jothivel S, Gopal C, Ravichandran P, Kent M, Arnyasi M, Ponniah AG. The development of a high density linkage map for black tiger shrimp (Penaeus monodon) based on cSNPs. PLoS One 2014; 9:e85413. [PMID: 24465553 PMCID: PMC3894980 DOI: 10.1371/journal.pone.0085413] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Transcriptome sequencing using Illumina RNA-seq was performed on populations of black tiger shrimp from India. Samples were collected from (i) four landing centres around the east coastline (EC) of India, (ii) survivors of a severe WSSV infection during pond culture (SUR) and (iii) the Andaman Islands (AI) in the Bay of Bengal. Equal quantities of purified total RNA from homogenates of hepatopancreas, muscle, nervous tissue, intestinal tract, heart, gonad, gills, pleopod and lymphoid organs were combined to create AI, EC and SUR pools for RNA sequencing. De novo transcriptome assembly resulted in 136,223 contigs (minimum size 100 base pairs, bp) with a total length 61 Mb, an average length of 446 bp and an average coverage of 163× across all pools. Approximately 16% of contigs were annotated with BLAST hit information and gene ontology annotations. A total of 473,620 putative SNPs/indels were identified. An Illumina iSelect genotyping array containing 6,000 SNPs was developed and used to genotype 1024 offspring belonging to seven full-sibling families. A total of 3959 SNPs were mapped to 44 linkage groups. The linkage groups consisted of between 16-129 and 13-130 markers, of length between 139-10.8 and 109.1-10.5 cM and with intervals averaging between 1.2 and 0.9 cM for the female and male maps respectively. The female map was 28% longer than the male map (4060 and 2917 cM respectively) with a 1.6 higher recombination rate observed for female compared to male meioses. This approach has substantially increased expressed sequence and DNA marker resources for tiger shrimp and is a useful resource for QTL mapping and association studies for evolutionarily and commercially important traits.
Collapse
Affiliation(s)
| | - Gopalapillay Gopikrishna
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | | | - Vinaya Kumar Katneni
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | - Mudagandur S. Shekhar
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | - Jayakani Shanmugakarthik
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | - Sarangapani Jothivel
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | - Chavali Gopal
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| | | | - Matthew Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mariann Arnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Alphis G. Ponniah
- Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Guo H, Ye CX, Wang AL, Xian JA, Liao SA, Miao YT, Zhang SP. Trascriptome analysis of the Pacific white shrimp Litopenaeus vannamei exposed to nitrite by RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2013; 35:2008-16. [PMID: 24055647 DOI: 10.1016/j.fsi.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 05/26/2023]
Abstract
In the present study, transcriptome of nitrite-exposed Litopenaeus vannamei was performed using a newly developed high-throughput sequencing technology (Illumina RNA-seq). As many as 42,336 unigenes were generated with 561 bp of average length and 736 bp of unigene N50 after filtering and assembly. These unigenes from the de novo assembly were further annotated using BLAST and BLAST2GO softwares. A total of 23,532 unigenes were unambiguous alignments to the reference when BLAST against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases available at NCBI. Numerous candidate genes associated with immune response, detoxification, apoptosis pathway were identified. Ten candidate genes related to immune responses and apoptosis were selected for validating the results of assembly and annotation by real-time quantitative PCR. Results revealed that the expressions of all these ten genes were up-regulated after nitrite exposure. Combining to our previous study, we speculate that all these selected genes may be involved in the response to nitrite stress. The study shows a systematic overview of the transcriptome analysis in L. vannamei, and provides valuable gene information for studying molecular mechanisms under nitrite exposure.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Sookruksawong S, Sun F, Liu Z, Tassanakajon A. RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:523-533. [PMID: 23921257 DOI: 10.1016/j.dci.2013.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Outbreak of Taura syndrome virus (TSV) is one of the major pathogens of the Pacific white shrimp Litopenaeus vannamei. Although selective breeding for improvement of TSV resistance in L. vannamei has been successfully developed and has led to a great benefit to the shrimp farming industry worldwide. The molecular mechanisms underlying the viral resistance in shrimp remain largely unknown. In the present study, we conducted the first transcriptomic profiling of host responses in hemolymph and hemocytes in order to identify the differentially expressed genes associated with resistance to TSV in L. vannamei. High-throughput RNA-Seq was employed, obtaining 193.6 and 171.2 million high-quality Illumina reads from TSV-resistant and susceptible L. vannamei lines respectively. A total of 61,937 contigs were generated with an average length of 546.26 bp. BLASTX-based gene annotation (E-value < 10(-5)) allowed the identification of 12,398 unique proteins against the NCBI non-redundant NR database. In addition, comparison of digital gene expression between resistant and susceptible strains revealed 1374 significantly differentially expressed contigs (representing 697 unigenes). Gene pathway analysis of the differentially expressed gene set highlighted several putative genes involved in the immune response activity including (1) pathogen/antigen recognition including immune regulator, adhesive protein and signal transducer; (2) coagulation; (3) proPO pathway cascade; (4) antioxidation; and (5) protease. The expression patterns of 22 differentially expressed genes involving immune response were validated by quantitative real-time RT-PCR (average correlation coefficients 0.94, p-value < 0.001). Our results provide valuable information on gene functions associated with resistance to TSV in L. vannamei.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
29
|
Andriantahina F, Liu X, Feng T, Xiang J. Current status of genetics and genomics of reared penaeid shrimp: information relevant to access and benefit sharing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:399-412. [PMID: 23529408 DOI: 10.1007/s10126-013-9500-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/16/2013] [Indexed: 06/02/2023]
Abstract
At present, research and progress in shrimp genomics and genetics show significant developments. Shrimp genetics and genomics also show immense potential for an increased production in a way that meets shrimp culture progress goals for the third millennium. This review article aims to provide an overview of its current status and future direction, discusses questions that need focused research to address them, and summarizes areas where genetics and genomics knowledge can make a positive difference to shrimp culture sustainability. Sustainable progress of penaeid shrimps will depend upon feasible solutions for environmental, research, economic, consumer problems, proper development, and planning policy enforcement. It is recommended that increased funding for biotechnology research and progress be directed to expand worldwide commercial shrimp culture and address environmental and public health issues. For any researcher or shrimp company member who has attempted to or whom would like to thoroughly search the literature to gain a complete understanding of the current state of shrimp genetics and genomics, this publication will be an invaluable source of reference materials, some of which is reported here for the first time.
Collapse
Affiliation(s)
- Farafidy Andriantahina
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | | | | | | |
Collapse
|
30
|
Mohd-Shamsudin MI, Kang Y, Lili Z, Tan TT, Kwong QB, Liu H, Zhang G, Othman RY, Bhassu S. In-depth tanscriptomic analysis on giant freshwater prawns. PLoS One 2013; 8:e60839. [PMID: 23734171 PMCID: PMC3667022 DOI: 10.1371/journal.pone.0060839] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/05/2013] [Indexed: 11/30/2022] Open
Abstract
Gene discovery in the Malaysian giant freshwater prawn (Macrobrachium rosenbergii) has been limited to small scale data collection, despite great interest in various research fields related to the commercial significance of this species. Next generation sequencing technologies that have been developed recently and enabled whole transcriptome sequencing (RNA-seq), have allowed generation of large scale functional genomics data sets in a shorter time than was previously possible. Using this technology, transcriptome sequencing of three tissue types: hepatopancreas, gill and muscle, has been undertaken to generate functional genomics data for M. rosenbergii at a massive scale. De novo assembly of 75-bp paired end Ilumina reads has generated 102,230 unigenes. Sequence homology search and in silico prediction have identified known and novel protein coding candidate genes (∼24%), non-coding RNA, and repetitive elements in the transcriptome. Potential markers consisting of simple sequence repeats associated with known protein coding genes have been successfully identified. Using KEGG pathway enrichment, differentially expressed genes in different tissues were systematically represented. The functions of gill and hepatopancreas in the context of neuroactive regulation, metabolism, reproduction, environmental stress and disease responses are described and support relevant experimental studies conducted previously in M. rosenbergii and other crustaceans. This large scale gene discovery represents the most extensive transcriptome data for freshwater prawn. Comparison with model organisms has paved the path to address the possible conserved biological entities shared between vertebrates and crustaceans. The functional genomics resources generated from this study provide the basis for constructing hypotheses for future molecular research in the freshwater shrimp.
Collapse
Affiliation(s)
- Maizatul Izzah Mohd-Shamsudin
- Genomics and Evolutionary Biology Lab, Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tassanakajon A, Somboonwiwat K, Supungul P, Tang S. Discovery of immune molecules and their crucial functions in shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:954-967. [PMID: 23059654 DOI: 10.1016/j.fsi.2012.09.021] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Several immune-related molecules in penaeid shrimps have been discovered, most of these via the analysis of expressed sequence tag libraries, microarray studies and proteomic approaches. These immune molecules include antimicrobial peptides, serine proteinases and inhibitors, phenoloxidases, oxidative enzymes, clottable protein, pattern recognition proteins, lectins, Toll receptors, and other humoral factors that might participate in the innate immune system of shrimps. These molecules have mainly been found in the hemolymph and hemocytes, which are the main sites where immune reactions take place, while some are found in other immune organs/tissues, such as the lymphoid organs, gills and intestines. Although the participation of some of these immune molecules in the shrimp innate immune defense against invading pathogens has been demonstrated, the functions of many molecules remain unclear. This review summarizes the current status of our knowledge concerning the discovery and functional characterization of the immune molecules in penaeid shrimps.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
32
|
Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:973-980. [PMID: 22967763 DOI: 10.1016/j.fsi.2012.08.023] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
The first line of defense against microbial infections in animals is innate immune response which triggers diverse humoral and cellular activities via signal transduction pathways. Toll, IMD and JAK/STAT pathways are regarded as the main pathways regulating the immune response of invertebrates. This paper reviews the main progress of the investigation on the immune response to pathogen's infection in shrimp and supposes that these three signal pathways exist in shrimp. Most of the components (proteins or genes) involved in Toll pathway of Drosophila have been cloned also in shrimp which suggested the existence of Toll pathway in shrimp. The data update shows that the Toll pathway of shrimp is responsive not only to Gram-positive bacteria, Gram-negative bacteria, but also to WSSV. Challenge of WSSV can lead to the variation of transcription level of all identified components in shrimp Toll pathway, which supported that Toll pathway in shrimp played important roles during WSSV infection. Two major homologs to the components of IMD pathway of Drosophila, IMD and Relish, have been identified in shrimp, which indicated that IMD pathway should be existed in shrimp and might play important roles in regulating the immune response of shrimp to bacteria and virus infection. Relish in IMD pathway and dorsal in Toll pathway of shrimp were both involved in the immune response of shrimp to bacteria and virus infection, which implied that these two pathways are not completely separated during the immune response of shrimp. The transcription of STAT in shrimp was modulated after WSSV infection, which suggested that a putative JAK/STAT pathway might exist in shrimp and be very important to virus infection. Study on the signaling pathway regulating the immune response in shrimp could help us to understand the innate immune system, and would provide instructions to shrimp disease control. Obviously, to get more clear ideas about the innate immunological pathways in shrimp, more solid functional studies should be done in the future.
Collapse
Affiliation(s)
- Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | |
Collapse
|
33
|
Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:11-26. [PMID: 22484214 DOI: 10.1016/j.dci.2012.03.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 05/26/2023]
Abstract
The annual production of shrimp culture in mainland of China has been over one million tons for several years. The major cultivated penaeidae species are Litopenaeus vannamei, Fenneropenaeus chinensis, Penaeus monodon and Marsupenaeus japonicus. Due to the importance of shrimp aquaculture in China, researchers have paid more attention to the molecular mechanism of shrimp disease occurrence and tried to develop an efficient control strategy for disease. This paper summarizes the research progress related to innate immunity of penaeid shrimp made in the last decade in Mainland China. Several pattern recognition receptors, such as lectin, toll, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and tetraspanin were identified. The major signal transduction pathways, including Toll pathway, IMD pathway, which might be involved in the immune response of shrimp, were focused on and most of the components in Toll pathway were identified. Also, cellular immune responses such as phagocytosis and apoptosis were regarded playing very important roles in anti-WSSV infection to shrimp. The molecules involved in the maintenance of the immune homeostasis of shrimp and the progress on molecular structure and pathogenic mechanism of WSSV were summarized. Therefore, the brief outline about the immune system of shrimp is drawn based on the recent data which will help us to understand the immune responses of shrimp to different pathogens.
Collapse
Affiliation(s)
- Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
34
|
Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yañez FJ, Sotelo-Mundo RR. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase. J Bioenerg Biomembr 2012; 44:325-31. [PMID: 22528393 DOI: 10.1007/s10863-012-9436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/19/2012] [Indexed: 11/27/2022]
Abstract
Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.
Collapse
Affiliation(s)
- Idania E Quintero-Reyes
- Aquatic Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Ejido la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | | | | | | | | | | | | |
Collapse
|
35
|
Navajas-Pérez R, Robles F, Molina-Luzón MJ, De La Herrán R, Alvarez-Dios JA, Pardo BG, Vera M, Bouza C, Martínez P. Exploitation of a turbot (Scophthalmus maximus L.) immune-related expressed sequence tag (EST) database for microsatellite screening and validation. Mol Ecol Resour 2012; 12:706-16. [PMID: 22385869 DOI: 10.1111/j.1755-0998.2012.03126.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we identified and characterized 160 microsatellite loci from an expressed sequence tag (EST) database generated from immune-related organs of turbot (Scophthalmus maximus). A final set of 83 new polymorphic microsatellites were validated after the analysis of 40 individuals of Atlantic origin including both wild and farmed individuals. The allele number and the expected heterozygosity ranged from 2 to 18 and from 0.021 to 0.951, respectively. Evidences of null alleles at moderate-high frequencies were detected at six loci using population data. None of the analysed loci showed deviations from Mendelian segregation after the analysis of five full-sib families including approximately 92 individuals/family. The markers are used to consolidate the turbot genetic map, and because they are mostly EST-derived, they will be very useful for comparative genomic studies within flatfishes and with model fish species. Using an in silico approach, we detected significant homologies of microsatellite sequences with the EST databases of the flatfish species with highest genomic resources (Senegalese sole, Atlantic halibut, bastard halibut) in 31% of these turbot markers. The conservation of these microsatellites within Pleuronectiformes will pave the way for anchoring genetic maps of different species and identifying genomic regions related to productive traits.
Collapse
Affiliation(s)
- R Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S, Mather PB. Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly, annotation and marker discovery. PLoS One 2011; 6:e27938. [PMID: 22174756 PMCID: PMC3234237 DOI: 10.1371/journal.pone.0027938] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/28/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Giant freshwater prawn (Macrobrachium rosenbergii or GFP), is the most economically important freshwater crustacean species. However, as little is known about its genome, 454 pyrosequencing of cDNA was undertaken to characterise its transcriptome and identify genes important for growth. METHODOLOGY AND PRINCIPAL FINDINGS A collection of 787,731 sequence reads (244.37 Mb) obtained from 454 pyrosequencing analysis of cDNA prepared from muscle, ovary and testis tissues taken from 18 adult prawns was assembled into 123,534 expressed sequence tags (ESTs). Of these, 46% of the 8,411 contigs and 19% of 115,123 singletons possessed high similarity to sequences in the GenBank non-redundant database, with most significant (E value < 1e(-5)) contig (80%) and singleton (84%) matches occurring with crustacean and insect sequences. KEGG analysis of the contig open reading frames identified putative members of several biological pathways potentially important for growth. The top InterProScan domains detected included RNA recognition motifs, serine/threonine-protein kinase-like domains, actin-like families, and zinc finger domains. Transcripts derived from genes such as actin, myosin heavy and light chain, tropomyosin and troponin with fundamental roles in muscle development and construction were abundant. Amongst the contigs, 834 single nucleotide polymorphisms, 1198 indels and 658 simple sequence repeats motifs were also identified. CONCLUSIONS The M. rosenbergii transcriptome data reported here should provide an invaluable resource for improving our understanding of this species' genome structure and biology. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Biogeosciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Zhi B, Tang W, Zhang X. Enhancement of shrimp antiviral immune response through caspase-dependent apoptosis by small molecules. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:575-583. [PMID: 20936319 DOI: 10.1007/s10126-010-9328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Epidemic diseases cost large amount of economic loss in the shrimp aquaculture. To control the epidemic diseases, it is a very efficient approach to enhance the shrimp immunity by immunostimulants. In aquaculture, however, the applications of the available immunostimulants are very limited due to the lack of information about the roles of these immunostimulants in animal immunity. In the present study, a caspase protein (PjCaspase), required in shrimp antiviral apoptosis, was used as the target protein to screen for small molecules which would enhance the shrimp immunity. Based on screening using the EGFP-PjCaspase fusion protein in insect cells, four small molecules could enhance the activity of PjCaspase protein. Among them, IL-2 and evodiamine were further evidenced to enhance the apoptotic activity of shrimp hemocytes in vivo, suggesting that the small molecules improved the activity of apoptosis through the activation of the PjCaspase protein. The results indicated that the enhancement of apoptotic activity effectively inhibited the white spot syndrome virus (WSSV) infection in shrimp, which further led to the decrease of mortalities of WSSV-infected shrimp. Therefore, our study, for the first time, presented that the strategy using the key proteins in immune responses of aquatic organisms as the target proteins was a very efficient approach for the screening of immunostimulants to prevent the aquatic organisms from pathogen infections.
Collapse
Affiliation(s)
- Bin Zhi
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | | | | |
Collapse
|
38
|
Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon. BMC Genomics 2011; 12:242. [PMID: 21575266 PMCID: PMC3124438 DOI: 10.1186/1471-2164-12-242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 11/28/2022] Open
Abstract
Background The black tiger shrimp (Penaeus monodon) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the P. monodon genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the P. monodon genome were obtained for repetitive and protein-coding sequence analyses. Results We found that microsatellite sequences were highly abundant in the P. monodon genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, via self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, i.e., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the P. monodon genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the P. monodon genome. Conclusions The redundancy of various repeat types in the P. monodon genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.
Collapse
|
39
|
Chen SH, Lo CZ, Su SY, Kuo BH, Hsiung CA, Lin CY. UPS 2.0: unique probe selector for probe design and oligonucleotide microarrays at the pangenomic/genomic level. BMC Genomics 2010; 11 Suppl 4:S6. [PMID: 21143815 PMCID: PMC3005932 DOI: 10.1186/1471-2164-11-s4-s6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Nucleic acid hybridization is an extensively adopted principle in biomedical research, in which the performance of any hybridization-based method depends on the specificity of probes to their targets. To determine the optimal probe(s) for detecting target(s) from a sample cocktail, we developed a novel algorithm, which has been implemented into a web platform for probe designing. This probe design workflow is now upgraded to satisfy experiments that require a probe designing tool to take the increasing volume of sequence datasets. Results Algorithms and probe parameters applied in UPS 2.0 include GC content, the secondary structure, melting temperature (Tm), the stability of the probe-target duplex estimated by the thermodynamic model, sequence complexity, similarity of probes to non-target sequences, and other empirical parameters used in the laboratory. Several probe background options,Unique probe within a group,Unique probe in a specific Unigene set,Unique probe based onthe pangenomic level, and Unique Probe in the user-defined genome/transcriptome, are available to meet the scenarios that the experiments will be conducted. Parameters, such as salt concentration and the lower-bound Tm of probes, are available for users to optimize their probe design query. Output files are available for download on the result page. Probes designed by the UPS algorithm are suitable for generating microarrays, and the performance of UPS-designed probes has been validated by experiments. Conclusions The UPS 2.0 evaluates probe-to-target hybridization under a user-defined condition to ensure high-performance hybridization with minimal chance of non-specific binding at the pangenomic and genomic levels. The UPS algorithm mimics the target/non-target mixture in an experiment and is very useful in developing diagnostic kits and microarrays. The UPS 2.0 website has had more than 1,300 visits and 360,000 sequences performed the probe designing task in the last 30 months. It is freely accessible at http://array.iis.sinica.edu.tw/ups/. Screen cast: http://array.iis.sinica.edu.tw/ups/demo/demo.htm
Collapse
Affiliation(s)
- Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|