1
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
2
|
Gilthead Seabream Liver Integrative Proteomics and Metabolomics Analysis Reveals Regulation by Different Prosurvival Pathways in the Metabolic Adaptation to Stress. Int J Mol Sci 2022; 23:ijms232315395. [PMID: 36499720 PMCID: PMC9741202 DOI: 10.3390/ijms232315395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The study of the molecular mechanisms of stress appraisal on farmed fish is paramount to ensuring a sustainable aquaculture. Stress exposure can either culminate in the organism's adaptation or aggravate into a metabolic shutdown, characterized by irreversible cellular damage and deleterious effects on fish performance, welfare, and survival. Multiomics can improve our understanding of the complex stressed phenotype in fish and the molecular mediators that regulate the underlying processes of the molecular stress response. We profiled the stress proteome and metabolome of Sparus aurata responding to different challenges common to aquaculture production, characterizing the disturbed pathways in the fish liver, i.e., the central organ in mounting the stress response. Label-free shotgun proteomics and untargeted metabolomics analyses identified 1738 proteins and 120 metabolites, separately. Mass spectrometry data have been made fully accessible via ProteomeXchange, with the identifier PXD036392, and via MetaboLights, with the identifier MTBLS5940. Integrative multivariate statistical analysis, performed with data integration analysis for biomarker discovery using latent components (DIABLO), depicted the 10 most-relevant features. Functional analysis of these selected features revealed an intricate network of regulatory components, modulating different signaling pathways related to cellular stress, e.g., the mTORC1 pathway, the unfolded protein response, endocytosis, and autophagy to different extents according to the stress nature. These results shed light on the dynamics and extent of this species' metabolic reprogramming under chronic stress, supporting future studies on stress markers' discovery and fish welfare research.
Collapse
|
3
|
Vázquez-Salgado L, Olveira JG, Dopazo CP, Bandín I. Effect of rearing density on nervous necrosis virus infection in Senegalese sole (Solea senegalensis). JOURNAL OF FISH DISEASES 2021; 44:2003-2012. [PMID: 34460955 DOI: 10.1111/jfd.13514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Intensive fish farming at high densities results in a wide range of adverse consequences on fish welfare, including pathogen spreading, stress and increased mortality rates. In this work, we have assessed whether the survival of Senegalese sole infected with the nervous necrosis virus (NNV), a pathogen responsible for severe disease outbreaks, is affected by rearing density. Based on the different fish ratios per surface area (g cm-2 ) and water volume (g L-1 ), our research showed an earlier mortality onset in the tanks containing NNV-infected fish reared at medium density (MD: 0.071 g cm-2 /5 g L-1 ) and high density (HD: 0.142 g cm-2 /10 g L-1 ), as well as higher cumulative mortality values. However, transcription analysis of hsp70, gr1 and pepck genes, well-known stress biomarkers, seems to indicate that none of the challenged fish were under high stress conditions. NNV load was slightly higher both in dead and in sampled fish from MD and HD groups, and especially in the rearing water from these groups, where peaks in mortality seemed to correlate with increasing NNV load in the water. In conclusion, our results suggest that rearing NNV-infected Senegalese sole at high densities resulted in an earlier mortality onset and higher cumulative values and viral load.
Collapse
Affiliation(s)
- Lucía Vázquez-Salgado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose G Olveira
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Salimi Khorshidi N, Salati AP, Keyvanshokooh S. The effects of bisphenol A on liver proteome and mucus vitellogenin in comparison to plasma as a non-invasive biomarker in immature Siberian sturgeons (Acipenser baerii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100795. [PMID: 33540188 DOI: 10.1016/j.cbd.2021.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
This study was done to evaluate the effects of Bisphenol A (BPA) on Siberian sturgeon (Acipenser baerii). As liver is the main organ in the homeostatic adjustments to stress, we used a proteomics method to address molecular response in this tissue. Also, we compared the levels of vitellogenin in plasma and mucus to propose that the last one be a non-invasive method to analyze this biomarker. The fish received 1, 10, and 100 μg g-1 week-1 BPA intraperitoneally for two weeks. The samples were taken on days 0, 7, and 14. Plasma vitellogenin level increased as the highest value was recorded in the group with 100 μg g-1 week-1 of BPA. Changes in the mucus and blood vitellogenin showed a similar pattern, suggesting that mucus could be used for evaluating the changes in blood vitellogenin. Comparative proteomics was used to determine the proteome of the liver of A. baerii in the highest dose of BPA in comparison with the control. Sixteen proteins were identified that their expression changed at least twice between the studied groups. The proteomic results showed that BPA increased the expression of proteins involved in the detoxification and metabolism, activated glycolysis, and produced necrosis in the liver.
Collapse
Affiliation(s)
- Naeemeh Salimi Khorshidi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
5
|
Sun Q, Li N, Jia L, Guo W, Jiang H, Liu B, Bao C, Liu M, Huang J, Lei L. Ribosomal Protein SA-Positive Neutrophil Elicits Stronger Phagocytosis and Neutrophil Extracellular Trap Formation and Subdues Pro-Inflammatory Cytokine Secretion Against Streptococcus suis Serotype 2 Infection. Front Immunol 2021; 11:585399. [PMID: 33603733 PMCID: PMC7884477 DOI: 10.3389/fimmu.2020.585399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2), an important zoonotic pathogen that causes septicemia, arthritis, and irreversible meningitis in pigs and humans, can be transmitted to humans from pigs. S. suis causes huge economic losses to the swine industry and poses a serious threat to public health. Previously, we found that the brain tissues of mice with SS2-induced meningitis showed disrupted structural integrity and significantly enhanced polymorphonuclear neutrophil (PMN) infiltration. We showed that the brain tissues of SS2-infected mice had increased ribosomal protein SA (RPSA)-positive PMN counts. However, the inflammatory responses of RPSA+ PMNs to SS2 and their effects on the blood-brain barrier (BBB) remain unclear. Therefore, in studying the pathogenesis of SS2-induced meningitis, it is essential that we explore the functions of RPSA+ PMNs and their effects on the BBB. Herein, using flow cytometry and immunofluorescence microscopy analyses, we found that RPSA expression enhances PMN-induced phagocytosis and PMN-induced formation of neutrophil extracellular traps (NETs), which facilitate further elimination of bacteria. PMN surface expression of RPSA also alleviates local inflammation and tissue injuries by inhibiting secretion of the pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the single-cell BBB model showed that RPSA disrupts BBB integrity by downregulating expression of tight junction-associated membrane proteins on PMNs. Taken together, our data suggest that PMN-surface expression of RPSA is a double-edged sword. RPSA+ PMN owns a stronger ability of bacterial cleaning and weakens inflammatory cytokines release which are useful to anti-infection, but does hurt BBB. Partly, RPSA+ PMN may be extremely useful to control the infection as a therapeutic cellular population, following novel insights into the special PMN population.
Collapse
Affiliation(s)
- Qiang Sun
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Na Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenfei Guo
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengmeng Liu
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Jing Huang
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Raposo de Magalhães C, Schrama D, Farinha AP, Revets D, Kuehn A, Planchon S, Rodrigues PM, Cerqueira M. Protein changes as robust signatures of fish chronic stress: a proteomics approach to fish welfare research. BMC Genomics 2020; 21:309. [PMID: 32306896 PMCID: PMC7168993 DOI: 10.1186/s12864-020-6728-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aquaculture is a fast-growing industry and therefore welfare and environmental impact have become of utmost importance. Preventing stress associated to common aquaculture practices and optimizing the fish stress response by quantification of the stress level, are important steps towards the improvement of welfare standards. Stress is characterized by a cascade of physiological responses that, in-turn, induce further changes at the whole-animal level. These can either increase fitness or impair welfare. Nevertheless, monitorization of this dynamic process has, up until now, relied on indicators that are only a snapshot of the stress level experienced. Promising technological tools, such as proteomics, allow an unbiased approach for the discovery of potential biomarkers for stress monitoring. Within this scope, using Gilthead seabream (Sparus aurata) as a model, three chronic stress conditions, namely overcrowding, handling and hypoxia, were employed to evaluate the potential of the fish protein-based adaptations as reliable signatures of chronic stress, in contrast with the commonly used hormonal and metabolic indicators. RESULTS A broad spectrum of biological variation regarding cortisol and glucose levels was observed, the values of which rose higher in net-handled fish. In this sense, a potential pattern of stressor-specificity was clear, as the level of response varied markedly between a persistent (crowding) and a repetitive stressor (handling). Gel-based proteomics analysis of the plasma proteome also revealed that net-handled fish had the highest number of differential proteins, compared to the other trials. Mass spectrometric analysis, followed by gene ontology enrichment and protein-protein interaction analyses, characterized those as humoral components of the innate immune system and key elements of the response to stimulus. CONCLUSIONS Overall, this study represents the first screening of more reliable signatures of physiological adaptation to chronic stress in fish, allowing the future development of novel biomarker models to monitor fish welfare.
Collapse
Affiliation(s)
- Cláudia Raposo de Magalhães
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Ana Paula Farinha
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Dominique Revets
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, 5, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Pedro Miguel Rodrigues
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal.
| |
Collapse
|
7
|
The mechanism for improving the flesh quality of grass carp (Ctenopharyngodon idella) following the micro-flowing water treatment using a UPLC-QTOF/MS based metabolomics method. Food Chem 2020; 327:126777. [PMID: 32446027 DOI: 10.1016/j.foodchem.2020.126777] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/15/2023]
Abstract
The micro-flowing water system can improve the flesh quality of freshwater fish using the traditional pond farming method. However, the mechanism of this phenomenon has not yet been explored. This study intends to examine the changes of metabolites in freshwater fish after treatment with the micro-flowing purification system (MFPS). The UPLC-QTOF/MS based metabolomics method was utilized to screen the metabolites and predict the major possible metabolic pathways after MFPS treatment. There were 377 types of metabolites identified in the fish muscle, of which 54-71 represented significant different metabolites identified during different stages of MFPS treatments. The main mechanism of MFPS treatment in improving the quality of grass carp fish muscle was investigated, and the MFPS treatment was shown to improve the flesh quality and the flavor of grass carp fish muscle. This study could provide the theoretical basis for improving the quality of aquatic products.
Collapse
|
8
|
Abstract
Amyloodiniosis is a disease that represents a major bottleneck for semi-intensive aquaculture, especially in Southern Europe. The inefficacy of many of the treatments for this disease on marine fish produced in semi-intensive aquaculture has led to a new welfare approach to amyloodiniosis. There is already some knowledge of several welfare issues that lead to amyloodiniosis as well as the stress, physiological, and immunological responses to the parasite by the host, but no work is available about the influence of fish age on the progression of amyloodiniosis. The objective of this work was to determine if stress, hematological, and histopathological responses are age dependent. For that purpose, we determined the mortality rate, histopathological lesions, hematological indexes, and stress responses (cortisol, glucose, lactate, and total protein) in “Small” (total weight: 50 ± 5.1 g, age: 273 days after eclosion (DAE)) and “Big” (total weight: 101.3 ± 10.4 g, age: 571 DAE) white seabream (Diplodus sargus) subjected to an Amyloodinium ocellatum infestation (8000 dinospores mL−1) during a 24-h period. The results demonstrated a strong stress response to A. ocellatum, with marked differences in histopathological alterations, glucose levels, and some hematological indexes between the fish of the two treatments. This work elucidates the need to take in account the size and age of the fish in the development and establishment of adequate mitigating measures and treatment protocols for amyloodiniosis.
Collapse
|
9
|
Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. AQUACULTURE 2018; 495:106-114. [DOI: 10.1016/j.aquaculture.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Naour S, Espinoza BM, Aedo JE, Zuloaga R, Maldonado J, Bastias-Molina M, Silva H, Meneses C, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic analysis of the hepatic response to stress in the red cusk-eel (Genypterus chilensis): Insights into lipid metabolism, oxidative stress and liver steatosis. PLoS One 2017; 12:e0176447. [PMID: 28448552 PMCID: PMC5407771 DOI: 10.1371/journal.pone.0176447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the magnitude, duration, and frequency of stressors and the species receiving the stimulus. We have previously reported that the red cusk-eel (Genypterus chilensis), an important marine farmed fish, shows a physiological response to stress that results in increased skeletal muscle atrophy mediated by over-expression of components of the ubiquitin proteasome and autophagy-lysosomal systems. To better understand the systemic effects of stress on the red cusk-eel metabolism, the present study assessed the transcriptomic hepatic response to repetitive handling-stress. Using high-throughput RNA-seq, 259 up-regulated transcripts were found, mostly associated with angiogenesis, gluconeogenesis, and triacylglyceride catabolism. Conversely, 293 transcripts were down-regulated, associated to cholesterol biosynthesis, PPARα signaling, fatty acid biosynthesis, and glycolysis. This gene signature was concordant with hepatic metabolite levels and hepatic oxidative damage. Moreover, the increased plasmatic levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase) and AP (alkaline phosphatase), as well as liver histology suggest stress-induced liver steatosis. This study offers an integrative molecular and biochemical analysis of the hepatic response to handling-stress, and reveals unknown aspects of lipid metabolism in a non-model teleost.
Collapse
Affiliation(s)
- Sebastian Naour
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Brisa M. Espinoza
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jorge E. Aedo
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jonathan Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Macarena Bastias-Molina
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Herman Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Claudio Meneses
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, Laboratory of Biotechnology and Aquatic Genomics, Concepción, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| |
Collapse
|
11
|
Richard N, Silva TS, Wulff T, Schrama D, Dias JP, Rodrigues PML, Conceição LEC. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state. J Proteomics 2016; 142:1-14. [PMID: 27126605 DOI: 10.1016/j.jprot.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 01/15/2023]
Abstract
A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. SIGNIFICANCE Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed with diet WF, by undertaking a comparative analysis of fish liver proteome at the end of winter. This study brings information relative to biological processes that are involved in gilthead seabream winter thermal stress and shows that these can be mitigated through a nutritional strategy, assisting gilthead seabream to deal better with winter thermal conditions. Furthermore, the results show that proteomic information not only clearly distinguishes the two dietary groups from each other, but also captures heterogeneities that reflect intra-group differences in nutritional state. This was exploited in this work to refine the variable selection strategy so that protein spots displaying a stronger correlation with “nutritional state” could be identified as possible indicators of gilthead seabream metabolic and nutritional state. Finally, this study shows that gel-based proteomics seems to provide more reliable information than transmissive FT-IR spectroscopy, for the purposes of nutritional and metabolic profiling.
Collapse
Affiliation(s)
- Nadège Richard
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Tomé S Silva
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Denise Schrama
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge P Dias
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Pedro M L Rodrigues
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
12
|
Understanding the Heat Shock Response in the Sea Cucumber Apostichopus japonicus, Using iTRAQ-Based Proteomics. Int J Mol Sci 2016; 17:150. [PMID: 26861288 PMCID: PMC4783884 DOI: 10.3390/ijms17020150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The sea cucumber Apostichopus japonicus is exploited as a commercial species owing to their high nutritive and medicinal value. Recent high summer temperatures have caused high mortality rates in A. japonicus. In this study, we applied the isobaric tag for relative and absolute quantitation (iTRAQ) technique to investigate the global protein expression profile under an acute short-term (48 h) heat stress. In total, 3432 proteins were identified, and 127 proteins showed significant heat stress responses, with 61 upregulated proteins and 66 downregulated proteins. Our results suggest that heat stress influenced the expression of proteins involved in various biological processes, such as tissue protection and detoxification, lipid and amino acid metabolism, energy production and usage, transcription and translation, cell apoptosis, and cell proliferation. These findings provide a better understanding about the response and thermo-tolerance mechanisms of A. japonicus under heat stress.
Collapse
|
13
|
Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. MOLECULAR BIOSYSTEMS 2016; 12:2024-35. [DOI: 10.1039/c5mb00788g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public.
Collapse
Affiliation(s)
- A. Marco-Ramell
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| | - A. M. de Almeida
- Instituto de Biologia Experimental e Tecnologica
- Oeiras
- Portugal
- CIISA/FMV – Centro Interdisciplinar de Investigação em Sanidade Animal
- Faculdade de Medicina Veterinária
| | - S. Cristobal
- Department of Clinical and Experimental Medicine
- Cell Biology
- Faculty of Medicine
- Linköping University
- Linköping
| | - P. Rodrigues
- CCMAR
- Center of Marine Science
- University of Algarve
- 8005-139 Faro
- Portugal
| | - P. Roncada
- Istituto Sperimentale Italiano L. Spallanzani
- Milano
- Italy
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| |
Collapse
|
14
|
Aedo JE, Maldonado J, Aballai V, Estrada JM, Bastias-Molina M, Meneses C, Gallardo-Escarate C, Silva H, Molina A, Valdés JA. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis). BMC Genomics 2015; 16:1024. [PMID: 26626593 PMCID: PMC4667402 DOI: 10.1186/s12864-015-2232-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
Background Fish reared under intensive conditions are repeatedly exposed to stress, which negatively impacts growth. Although most fish follow a conserved pattern of stress response, with increased concentrations of cortisol, each species presents specificities in the cell response and stress tolerance. Therefore, culturing new species requires a detailed knowledge of these specific responses. The red cusk-eel (Genypterus chilensis) is a new economically important marine species for the Chilean aquaculture industry. However, there is no information on the stress- and cortisol-induced mechanisms that decrease skeletal muscle growth in this teleost. Results Using Illumina RNA-seq technology, skeletal muscle sequence reads for G. chilensis were generated under control and handling stress conditions. Reads were mapped onto a reference transcriptome, resulting in the in silico identification of 785 up-regulated and 167 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of catabolic genes associated with skeletal muscle atrophy. These results were validated by RT-qPCR analysis for ten candidates genes involved in ubiquitin-mediated proteolysis, autophagy and skeletal muscle growth. Additionally, using a primary culture of fish skeletal muscle cells, the effect of cortisol was evaluated in relation to red cusk-eel skeletal muscle atrophy. Conclusions The present data demonstrated that handling stress promotes skeletal muscle atrophy in the marine teleost G. chilensis through the expression of components of the ubiquitin-proteasome and autophagy-lysosome systems. Furthermore, cortisol was a powerful inductor of skeletal muscle atrophy in fish myotubes. This study is an important step towards understanding the atrophy system in non-model teleost species and provides novel insights on the cellular and molecular mechanisms that control skeletal muscle growth in early vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2232-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Jonathan Maldonado
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Víctor Aballai
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan M Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Macarena Bastias-Molina
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Herman Silva
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile. .,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile. .,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile.
| |
Collapse
|
15
|
Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J Proteomics 2015; 132:41-50. [PMID: 26617323 DOI: 10.1016/j.jprot.2015.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Gilthead seabream (Sparus aurata L.) is the major cultured fish species in the Mediterranean area. High density stocking causes stress and increases the impact of diseases leading to economic losses. Probiotics could represent a solution to prevent diseases through several mechanisms such as improving the immune status and/or mucosal microbiota or competing with pathogens. The probiotic Shewanella putrefaciens, also known as Pdp11, was firstly isolated from the skin of healthy gilthead seabream. Our study focuses on the skin mucus proteome after dietary probiotic Pdp11 intake in fish maintained under normal or overcrowding conditions. 2-DE of skin mucus followed by LC-MS/MS analysis was done for each experimental group and differentially expressed proteins were identified. The results showed differentially expressed proteins especially involved in immune processes, such as lysozyme, complement C3, natural killer cell enhancing factor and nonspecific cytotoxic cell receptor protein 1, whose transcript profiles were studied by qPCR. A consistency between lysozyme protein levels in the mucus and lysozyme mRNA levels in skin was found. Further research is necessary to unravel the implications of skin mucosal immunity on fish welfare and disease. BIOLOGICAL SIGNIFICANCE The present work reveals the proteomic changes, which are taking place in the skin mucus of stressed and non-stressed gilthead seabream after Pdp11 probiotic intake. The study contributes to improving the knowledge on skin mucosal immunology of this relevant farmed fish species. Furthermore, the paper shows for the first time how a suitable proteomic methodology, in this case 2-DE followed by LC-MS/MS is useful to perform a comparative study with a non-invasive technique of skin mucus of gilthead seabream.
Collapse
|
16
|
Carneiro M, Gutiérrez-Praena D, Osório H, Vasconcelos V, Carvalho AP, Campos A. Proteomic analysis of anatoxin-a acute toxicity in zebrafish reveals gender specific responses and additional mechanisms of cell stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:93-101. [PMID: 26046835 DOI: 10.1016/j.ecoenv.2015.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 05/23/2023]
Abstract
Anatoxin-a is a potent neurotoxin produced by several genera of cyanobacteria. Deaths of wild and domestic animals due to anatoxin-a exposure have been reported following a toxic response that is driven by the inhibition of the acetylcholine receptors at neuromuscular junctions. The consequent neuron depolarization results in an overstimulation of the muscle cells. In order to unravel further molecular events implicated in the toxicity of anatoxin-a, a proteomic investigation was conducted. Applying two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry, we report early proteome changes in brain and muscle of zebrafish (Danio rerio) caused by acute exposure to anatoxin-a. In this regard, the test group of male and female zebrafish received an intraperitoneal (i.p.) injection of an anatoxin-a dose of 0.8µgg(-1) of fish body weight (bw) in phosphate buffered saline solution (PBS), while the control received an i.p. injection of PBS only. Five minutes after i.p. injection, brain and muscle tissues were collected, processed and analyzed with 2DE. Qualitative and quantitative analyzes of protein abundance allowed the detection of differences in the proteome of control and exposed fish groups, and between male and female fish (gender specific responses). The altered proteins play functions in carbohydrate metabolism and energy production, ATP synthesis, cell structure maintenance, cellular transport, protein folding, stress response, detoxification and protease inhibition. These changes provide additional insights relative to the toxicity of anatoxin-a in fish. Taking into account the short time of response considered (5min of response to the toxin), the changes in the proteome observed in this work are more likely to derive from fast occurring reactions in the cells. These could occur by protein activity regulation through degradation (proteolysis) and/or post-translational modifications, than from a differential regulation of gene expression, which may require more time for proteins to be synthesized and to produce changes at the proteomic level.
Collapse
Affiliation(s)
- Mariana Carneiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, 41012 Seville, Spain
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Vítor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - António Paulo Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
17
|
Cocci P, Mosconi G, Arukwe A, Mozzicafreddo M, Angeletti M, Aretusi G, Palermo FA. Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Gene Expression Pathways in Sea Bream Hepatocytes. Chem Res Toxicol 2015; 28:935-47. [PMID: 25825955 DOI: 10.1021/tx500529x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish.
Collapse
Affiliation(s)
- Paolo Cocci
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Gilberto Mosconi
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Augustine Arukwe
- ‡Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Matteo Mozzicafreddo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Mauro Angeletti
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Graziano Aretusi
- §Controllo Statistico, Pescara, Italy.,⊥Marine Protected Area Torre del Cerrano, 64025 Pineto (TE), Italy
| | - Francesco Alessandro Palermo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| |
Collapse
|
18
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Ahmed AA, Balogun KA, Bykova NV, Cheema SK. Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach. Nutr Metab (Lond) 2014; 11:6. [PMID: 24438320 PMCID: PMC3898484 DOI: 10.1186/1743-7075-11-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to alleviate the symptoms of metabolic disorders, such as heart disease, diabetes, obesity and insulin resistance. Several putative mechanisms by which n-3 PUFA elicit beneficial health effects have been proposed; however, there is still a shortage of knowledge on the proteins and pathways that are regulated by n-3 PUFA. Methods Using two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we investigated the effects of diets high or low in n-3 PUFA on hepatic proteomic profile of C57BL/6 mice. Results The findings show for the first time that high dietary n-3 PUFA reduced the expression of regucalcin, adenosine kinase and aldehyde dehydrogenase. On the other hand, diets high in n-3 PUFA increased the expression of apolipoprotein A-I, S-adenosylmethionine synthase, fructose-1, 6-bisphosphatase, ketohexokinase, malate dehydrogenase, GTP-specific succinyl CoA synthase, ornithine aminotransferase and protein disulfide isomerase-A3. Conclusions Our findings revealed for the first time that n-3 PUFA causes alterations in several novel functional proteins involved in regulating lipid, carbohydrate, one-carbon, citric acid cycle and protein metabolism, suggesting integrated regulation of metabolic pathways. These novel proteins are potential targets to develop therapeutic strategies against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Sukhinder K Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St, John's, NL, A1B 3X9, Canada.
| |
Collapse
|
20
|
Abstract
In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies.
Collapse
|
21
|
Yamashita M, Yamashita Y, Suzuki T, Kani Y, Mizusawa N, Imamura S, Takemoto K, Hara T, Hossain MA, Yabu T, Touhata K. Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:559-70. [PMID: 23709046 PMCID: PMC3742965 DOI: 10.1007/s10126-013-9508-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/19/2013] [Indexed: 05/15/2023]
Abstract
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-L-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg-cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.
Collapse
Affiliation(s)
- Michiaki Yamashita
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Yokohama, Kanagawa, 236-8648, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
King AM, Toxopeus J, MacRae TH. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 2013; 280:4761-72. [PMID: 23879561 DOI: 10.1111/febs.12442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/03/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023]
Abstract
Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
23
|
Dhanasiri AKS, Fernandes JMO, Kiron V. Liver transcriptome changes in zebrafish during acclimation to transport-associated stress. PLoS One 2013; 8:e65028. [PMID: 23762281 PMCID: PMC3677916 DOI: 10.1371/journal.pone.0065028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Liver plays a key role during the stress acclimation, and liver transcriptome analysis of shipped zebrafish could reveal the molecular adjustments that occur in the organ. Transcriptional changes in liver were analyzed with a 44 K oligo array using total RNA from fish prior to transport and during a mock transport process--immediately after packing (0 h), at 48 and 72 h. Large numbers of genes related to a variety of biological processes and pathways were regulated, mainly during transport (at 48/72 h). Immediately after packing, transcripts of genes related to both gluconeogenesis and glycolysis were induced. During transport, induction of gluconeogenesis-linked genes and reduction of glycolysis-related genes may be supporting the increase in blood glucose levels. Inhibition of genes involved in fatty acid beta-oxidation may be pointing to the poor ability of fish to utilize energy from fatty acids, under transport conditions. Genes involved in some of the mechanisms that regulate body ammonia were also affected. Even though genes associated with certain transaminases were inhibited in liver, sustained glutamate deamination may have led to high ammonia accumulation in liver/body. Enhanced levels of gene transcripts in ubiquitination and MAPK signalling cascade and reduced levels of gene transcripts related to ROS generation via peroxisomal enzymes as well as xenobiotic metabolism may be signifying the importance of such cellular and tissue responses to maintain homeostasis. Furthermore, transcripts connected with stress and thyroid hormones were also regulated. Moreover, suppression of genes related to specific immune components may be denoting the deleterious impact of transport on fish health. Thus, this study has revealed the complex molecular adjustments that occur in zebrafish when they are transported.
Collapse
Affiliation(s)
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
24
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|