1
|
Mayfield AB. Multi-macromolecular Extraction from Endosymbiotic Anthozoans. Methods Mol Biol 2023; 2625:17-56. [PMID: 36653630 DOI: 10.1007/978-1-0716-2966-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Obligately symbiotic associations between reef-building corals (anthozoan cnidarians) and photosynthetically active dinoflagellates of the family Symbiodiniaceae comprise the functional basis of all coral reef ecosystems. Given the existential threats of global climate change toward these thermo-sensitive entities, there is an urgent need to better understand the physiological implications of changes in the abiotic milieu of scleractinian corals and their mutualistic algal endosymbionts. Although initially slow to leverage the immense breakthroughs in molecular biotechnology that have benefited humankind, coral biologists are making up for lost time in exploiting an array of ever-advancing molecular tools for answering key questions pertaining to the survival of corals in an ever-changing world. In order to comprehensively characterize the multi-omic landscape of the coral holobiont-the cnidarian host, its intracellular dinoflagellates, and a plethora of other microbial constituents-I introduce a series of protocols herein that yield large quantities of high-quality RNA, DNA, protein, lipids, and polar metabolites from a diverse array of reef corals and endosymbiotic sea anemones. Although numerous published articles in the invertebrate zoology field feature protocols that lead to sufficiently high yield of intact host coral macromolecules, through using the approach outlined herein one may simultaneously acquire a rich, multi-compartmental biochemical pool that truly reflects the complex and dynamic nature of these animal-plant chimeras.
Collapse
|
2
|
Pang CZ, Ip YK, Chew SF. Ammonia transporter 2 as a molecular marker to elucidate the potentials of ammonia transport in phylotypes of Symbiodinium, Cladocopium and Durusdinium in the fluted giant clam, Tridacna squamosa. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111225. [PMID: 35460895 DOI: 10.1016/j.cbpa.2022.111225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022]
Abstract
Giant clams harbor coccoid Symbiodiniaceae dinoflagellates that are phototrophic. These dinoflagellates generally include multiple phylotypes (species) of Symbiodinium, Cladocopium, and Durusdinium in disparate proportions depending on the environmental conditions. The coccoid symbionts can share photosynthate with the clam host, which in return supply them with nutrients containing inorganic carbon, nitrogen and phosphorus. Symbionts can recycle nitrogen by absorbing and assimilating the endogenous ammonia produced by the host. This study aimed to use the transcript levels of ammonia transporter 2 (AMT2) in Symbiodinium (Symb-AMT2), Cladocopium (Clad-AMT2) and Durusdinium (Duru-AMT2) as molecular indicators to estimate the potential of ammonia transport in these three genera of Symbiodiniaceae dinoflagellates in different organs of the fluted giant clam, Tridacna squamosa, obtained from Vietnam. We also determined the transcript levels of form II ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcII) and nitrate transporter 2 (NRT2) in Symbiodinium (Symb-rbcII; Symb-NRT2), Cladocopium (Clad-rbcII; Clad-NRT2) and Durusdinium (Duru-rbcII; Duru-NRT2), in order to examine the potential of ammonia transport with reference to the potentials of phototrophy or NO3- uptake independent of the quantities and proportion of these Symbiodiniaceae phylotypes. Our results indicated for the first time that phylotypes of Symbiodinium and Cladocopium could have different potentials of ammonia transport, and that phylotypes of Symbiodinium might have higher potential of NO3- transport than ammonia transport. They also suggested that Symbiodiniaceae phylotypes residing in different organs of T. squamosa could have disparate potentials of ammonia transport, alluding to the functional diversity among phylotypes of coccoid Symbiodinium, Cladocopium, and Durusdinium.
Collapse
Affiliation(s)
- Caryn Z Pang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore.
| |
Collapse
|
3
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
4
|
Teng GC, Boo MV, Lam SH, Pang CZ, Chew SF, Ip YK. Molecular characterization and light-dependent expression of glycerol facilitator (GlpF) in coccoid Symbiodiniaceae dinoflagellates of the giant clam Tridacna squamosa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Insights into the Structure of Rubisco from Dinoflagellates-In Silico Studies. Int J Mol Sci 2021; 22:ijms22168524. [PMID: 34445230 PMCID: PMC8395205 DOI: 10.3390/ijms22168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is one of the best studied enzymes. It is crucial for photosynthesis, and thus for all of biosphere’s productivity. There are four isoforms of this enzyme, differing by amino acid sequence composition and quaternary structure. However, there is still a group of organisms, dinoflagellates, single-cell eukaryotes, that are confirmed to possess Rubisco, but no successful purification of the enzyme of such origin, and hence a generation of a crystal structure was reported to date. Here, we are using in silico tools to generate the possible structure of Rubisco from a dinoflagellate representative, Symbiodinium sp. We selected two templates: Rubisco from Rhodospirillum rubrum and Rhodopseudomonas palustris. Both enzymes are the so-called form II Rubiscos, but the first is exclusively a homodimer, while the second one forms homo-hexamers. Obtained models show no differences in amino acids crucial for Rubisco activity. The variation was found at two closely located inserts in the C-terminal domain, of which one extends a helix and the other forms a loop. These inserts most probably do not play a direct role in the enzyme’s activity, but may be responsible for interaction with an unknown protein partner, possibly a regulator or a chaperone. Analysis of the possible oligomerization interface indicated that Symbiodinium sp. Rubisco most likely forms a trimer of homodimers, not just a homodimer. This hypothesis was empowered by calculation of binding energies. Additionally, we found that the protein of study is significantly richer in cysteine residues, which may be the cause for its activity loss shortly after cell lysis. Furthermore, we evaluated the influence of the loop insert, identified exclusively in the Symbiodinium sp. protein, on the functionality of the recombinantly expressed R. rubrum Rubisco. All these findings shed new light onto dinoflagellate Rubisco and may help in future obtainment of a native, active enzyme.
Collapse
|
6
|
Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate. Processes (Basel) 2021. [DOI: 10.3390/pr9060983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.
Collapse
|
7
|
Opposite Growth Responses of Alexandrium minutum and Alexandrium catenella to Photoperiods and Temperatures. PLANTS 2021; 10:plants10061056. [PMID: 34070469 PMCID: PMC8229041 DOI: 10.3390/plants10061056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Shift of phytoplankton niches from low to high latitudes has altered their experienced light exposure durations and temperatures. To explore this interactive effect, the growth, physiology, and cell compositions of smaller Alexandrium minutum and larger A. catenella, globally distributed toxic red tide dinoflagellates, were studied under a matrix of photoperiods (light:dark cycles of 8:16, 16:8, and 24:0) and temperatures (18 °C, 22 °C, 25 °C, and 28 °C). Under continuous growth light condition (L:D 24:0), the growth rate (µ) of small A. minutum increased from low to medium temperature, then decreased to high temperature, while the µ of large A. catenella continuously decreased with increasing temperatures. Shortened photoperiods reduced the µ of A. minutum, but enhanced that of A. catenella. As temperature increased, cellular Chl a content increased in both A. minutum and A. catenella, while the temperature-induced effect on RubisCO content was limited. Shortened photoperiods enhanced the Chl a but reduced RubisCO contents across temperatures. Moreover, shortened photoperiods enhanced photosynthetic capacities of both A. minutum and A. catenella, i.e., promoting the PSII photochemical quantum yield (FV/FM, ΦPSII), saturation irradiance (EK), and maximum relative electron transfer rate (rETRmax). Shortened photoperiods also enhanced dark respiration of A. minutum across temperatures, but reduced that of A. catenella, as well as the antioxidant activities of both species. Overall, A. minutum and A. catenella showed differential growth responses to photoperiods across temperatures, probably with cell size.
Collapse
|
8
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
9
|
Peng SE, Moret A, Chang C, Mayfield AB, Ren YT, Chen WNU, Giordano M, Chen CS. A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association. PeerJ 2020; 8:e9745. [PMID: 33194344 PMCID: PMC7602683 DOI: 10.7717/peerj.9745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
The mutualistic symbiosis between anthozoans and intra-gastrodermal dinoflagellates of the family Symbiodiniaceae is the functional basis of all coral reef ecosystems, with the latter providing up to 95% of their fixed photosynthate to their hosts in exchange for nutrients. However, recent studies of sponges, jellyfish, and anemones have revealed the potential for this mutualistic relationship to shift to parasitism under stressful conditions. Over a period of eight weeks, we compared the physiological conditions of both inoculated and aposymbiotic anemones (Exaiptasia pallida) that were either fed or starved. By the sixth week, both fed groups of anemones were significantly larger than their starved counterparts. Moreover, inoculated and starved anemones tended to disintegrate into “tissue balls” within eight weeks, and 25% of the samples died; in contrast, starved aposymbiotic anemones required six months to form tissue balls, and no anemones from this group died. Our results show that the dinoflagellates within inoculated anemones may have posed a fatal metabolic burden on their hosts during starvation; this may be because of the need to prioritize their own metabolism and nourishment at the expense of their hosts. Collectively, our study reveals the potential of this dynamic symbiotic association to shift away from mutualism during food-deprived conditions.
Collapse
Affiliation(s)
- Shao-En Peng
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Alessandro Moret
- Dipatimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Cherilyn Chang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Anderson B. Mayfield
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Cooperative Institute for Marine and Atmospheric Sciences Studies, University of Miami, Miami, FL, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States of America
| | - Yu-Ting Ren
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Wan-Nan U. Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Mario Giordano
- Dipatimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
- Institute of Microbiology ASCR, Algatech, Trebon, Czech Republic
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| |
Collapse
|
10
|
In vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow around photosystem I on small coral fragments. Sci Rep 2020; 10:17514. [PMID: 33060749 PMCID: PMC7562913 DOI: 10.1038/s41598-020-74557-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
The mutualistic relationship existing between scleractinian corals and their photosynthetic endosymbionts involves a complex integration of the metabolic pathways within the holobiont. Respiration and photosynthesis are the most important of these processes and although they have been extensively studied, our understanding of their interactions and regulatory mechanisms is still limited. In this work we performed chlorophyll-a fluorescence, oxygen exchange and time-resolved absorption spectroscopy measurements on small and thin fragments (0.3 cm2) of the coral Stylophora pistillata. We showed that the capacity of mitochondrial alternative oxidase accounted for ca. 25% of total coral respiration, and that the high-light dependent oxygen uptake, commonly present in isolated Symbiodiniaceae, was negligible. The ratio between photosystem I (PSI) and photosystem II (PSII) active centers as well as their respective electron transport rates, indicated that PSI cyclic electron flow occurred in high light in S. pistillata and in some branching and lamellar coral species freshly collected in the field. Altogether, these results show the potential of applying advanced biophysical and spectroscopic methods on small coral fragments to understand the complex mechanisms of coral photosynthesis and respiration and their responses to environmental changes.
Collapse
|
11
|
Zaheri B, Dagenais-Bellefeuille S, Song B, Morse D. Assessing Transcriptional Responses to Light by the Dinoflagellate Symbiodinium. Microorganisms 2019; 7:microorganisms7080261. [PMID: 31416260 PMCID: PMC6723345 DOI: 10.3390/microorganisms7080261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
The control of transcription is poorly understood in dinoflagellates, a group of protists whose permanently condensed chromosomes are formed without histones. Furthermore, while transcriptomes contain a number of proteins annotated as transcription factors, the majority of these are cold shock domain proteins which are also known to bind RNA, meaning the number of true transcription factors is unknown. Here we have assessed the transcriptional response to light in the photosynthetic species Symbiodinium kawagutii. We find that three genes previously reported to respond to light using qPCR do not show differential expression using northern blots or RNA-Seq. Interestingly, global transcript profiling by RNA-Seq at LD 0 (dawn) and LD 12 (dusk) found only seven light-regulated genes (FDR = 0.1). qPCR using three randomly selected genes out of the seven was only able to validate differential expression of two. We conclude that there is likely to be less light regulation of gene expression in dinoflagellates than previously thought and suggest that transcriptional responses to other stimuli should also be more thoroughly evaluated in this class of organisms.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Steve Dagenais-Bellefeuille
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Bo Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
12
|
Zhang H, Liu J, He Y, Xie Z, Zhang S, Zhang Y, Lin L, Liu S, Wang D. Quantitative proteomics reveals the key molecular events occurring at different cell cycle phases of the in situ blooming dinoflagellate cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:62-71. [PMID: 31029901 DOI: 10.1016/j.scitotenv.2019.04.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 05/26/2023]
Abstract
Dinoflagellate blooms are the results of rapid cell proliferation governed by cell cycle, a highly-ordered series of events that culminates in cell division. However, little is known about cell cycle progression of the in situ bloom cells. Here, we compared proteomes of the in situ blooming cells of a dinoflagellate Prorocentrum donghaiense collected at different cell cycle phases. The blooming P. donghaiense cells completed a cell cycle within 24 h with a high synchronization rate of 82.7%. Proteins associated with photosynthesis, porphyrin and chlorophyll synthesis, carbon, nitrogen and amino acid metabolisms exhibited high expressions at the G1 phase; DNA replication and mismatch repair related proteins were more abundant at the S phase; while protein synthesis and oxidative phosphorylation were highly enriched at the G2/M phase. Cell cycle proteins presented similar periodic diel patterns to other eukaryotic cells, and higher expressions of proliferating cell nuclear antigen and cyclin dependent kinase 2 at the S phase ensured the smooth S-G2/M transition. Strikingly, four histones were first identified in P. donghaiense and highly expressed at the G2/M phase, indicating their potential roles in regulating cell cycle. This study presents the first quantitative survey, to our knowledge, of proteome changes at different cell cycle phases of the in situ blooming cells in natural environment and provides insights into cell cycle regulation of the blooming dinoflagellate cells.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Jiuling Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanbin He
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Shufei Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China.
| |
Collapse
|
13
|
Wang H, Zhang B, Song X, Jian X, Tang C, Campbell DA, Lin Q, Li G. High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. HARMFUL ALGAE 2019; 82:26-34. [PMID: 30928008 DOI: 10.1016/j.hal.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Light drives phytoplankton photosynthesis, so phytoplankton in their living habitats must exploit variable light levels and exposure durations, depending upon seasons, latitudes, depths and mixing events. Comparative growth, physiology and biochemical compositions were explored for the small Alexnadrium minutum (˜40 μm3 biovolume) and large Alexandrium catenella (˜9300 μm3 biovolume), globally wide spread coastal toxic red tide dinoflagellates, responding to a matrix of photoperiods (Light:Dark, 8:16, 16:8 and 24:0) and growth light irradiances. Smaller A. minutum grew faster under shorter photoperiods across growth light levels, while larger A. catenella grew fastest under longer photoperiods at the lowest applied light level. Photosystem II function responded largely to the instantaneous growth light level across photoperiod lengths, while the cell biovolume-based respiration, antioxidant capacity as well as cell composition responded more to photoperiod duration than to light level. These complex photophysiological responses resolved into linear correlations between growth rate versus cellular antioxidant activity and versus dark respiration, indicating that respiration energizes cellular antioxidant systems to benefit the growth of the cells. These results show the growth responses of Alexandrium species to light levels across photoperiods vary with species, and possibly with cell size. Together with previous results this puts a note of caution on meta-analytical extrapolations of physiological responses to light intensity derived from studies applying different photoperiods to different taxa, because different taxa show differential, even opposite growth responses to photoperiods and light intensities.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China; STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Bowen Zhang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China; STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaohui Jian
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Chengxi Tang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville NB, E4L 1G7, Canada
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
14
|
Morse D, Tse SPK, Lo SCL. Exploring dinoflagellate biology with high-throughput proteomics. HARMFUL ALGAE 2018; 75:16-26. [PMID: 29778222 DOI: 10.1016/j.hal.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates are notorious for their ability to form the harmful algal blooms known as "red tides," yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada.
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
15
|
Mayfield AB, Chen YJ, Lu CY, Chen CS. The proteomic response of the reef coral Pocillopora acuta to experimentally elevated temperatures. PLoS One 2018; 13:e0192001. [PMID: 29385204 PMCID: PMC5792016 DOI: 10.1371/journal.pone.0192001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Although most reef-building corals live near the upper threshold of their thermotolerance, some scleractinians are resilient to temperature increases. For instance, Pocillopora acuta specimens from an upwelling habitat in Southern Taiwan survived a nine-month experimental exposure to 30°C, a temperature hypothesized to induce stress. To gain a greater understanding of the molecular pathways underlying such high-temperature acclimation, the protein profiles of experimental controls incubated at 27°C were compared to those of conspecific P. acuta specimens exposed to 30°C for two, four, or eight weeks, and differentially concentrated proteins (DCPs) were removed from the gels and sequenced with mass spectrometry. Sixty unique DCPs were uncovered across both eukaryotic compartments of the P. acuta-dinoflagellate (genus Symbiodinium) mutualism, and Symbiodinium were more responsive to high temperature at the protein-level than the coral hosts in which they resided at the two-week sampling time. Furthermore, proteins involved in the stress response were more likely to be documented at different cellular concentrations across temperature treatments in Symbiodinium, whereas the temperature-sensitive host coral proteome featured numerous proteins involved in cytoskeletal structure, immunity, and metabolism. These proteome-scale data suggest that the coral host and its intracellular dinoflagellates have differing strategies for acclimating to elevated temperatures.
Collapse
Affiliation(s)
- Anderson B. Mayfield
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, United States of America
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- * E-mail:
| | - Yi-Jyun Chen
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chii-Shiarng Chen
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Checheng, Pingtung, Taiwan
| |
Collapse
|
16
|
Mayfield AB, Wang YB, Chen CS, Chen SH, Lin CY. Dual-compartmental transcriptomic + proteomic analysis of a marine endosymbiosis exposed to environmental change. Mol Ecol 2017; 25:5944-5958. [PMID: 27778414 DOI: 10.1111/mec.13896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022]
Abstract
As significant anthropogenic pressures are putting undue stress on the world's oceans, there has been a concerted effort to understand how marine organisms respond to environmental change. Transcriptomic approaches, in particular, have been readily employed to document the mRNA-level response of a plethora of marine invertebrates exposed to an array of simulated stress scenarios, with the tacit and untested assumption being that the respective proteins show a corresponding trend. To better understand the degree of congruency between mRNA and protein expression in an endosymbiotic marine invertebrate, mRNAs and proteins were sequenced from the same samples of the common, Indo-Pacific coral Seriatopora hystrix exposed to stable or upwelling-simulating conditions for 1 week. Of the 167 proteins downregulated at variable temperature, only two were associated with mRNAs that were also differentially expressed between treatments. Of the 378 differentially expressed genes, none were associated with a differentially expressed protein. Collectively, these results highlight the inherent risk of inferring cellular behaviour based on mRNA expression data alone and challenge the current, mRNA-focused approach taken by most marine and many molecular biologists.
Collapse
Affiliation(s)
- Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan.,Living Oceans Foundation, 130 Severn Avenue, Annapolis, MD, 21403, USA
| | - Yu-Bin Wang
- Graduate Institute of Zoology, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan.,Institute of Information Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nangang, Taipei, 115, Taiwan
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan.,Taiwan Coral Research Center, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan.,Graduate Institute of Marine Biotechnology, National Dong-Hwa University, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lianhai Road, Kaohsiung, 80424, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nangang, Taipei, 115, Taiwan
| | - Chung-Yen Lin
- Institute of Information Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nangang, Taipei, 115, Taiwan.,Institute of Fisheries Science, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, 5 Keyan Road, Zhunan, Miaoli, 350, Taiwan
| |
Collapse
|
17
|
Mayfield AB, Chen CS, Dempsey AC. Biomarker profiling in reef corals of Tonga's Ha'apai and Vava'u archipelagos. PLoS One 2017; 12:e0185857. [PMID: 29091723 PMCID: PMC5665425 DOI: 10.1371/journal.pone.0185857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023] Open
Abstract
Given the significant threats towards Earth's coral reefs, there is an urgent need to document the current physiological condition of the resident organisms, particularly the reef-building scleractinians themselves. Unfortunately, most of the planet's reefs are understudied, and some have yet to be seen. For instance, the Kingdom of Tonga possesses an extensive reef system, with thousands of hectares of unobserved reefs; little is known about their ecology, nor is there any information on the health of the resident corals. Given such knowledge deficiencies, 59 reefs across three Tongan archipelagos were surveyed herein, and pocilloporid corals were sampled from approximately half of these surveyed sites; 10 molecular-scale response variable were assessed in 88 of the sampled colonies, and 12 colonies were found to be outliers based on employment of a multivariate statistics-based aberrancy detection system. These outliers differed from the statistically normally behaving colonies in having not only higher RNA/DNA ratios but also elevated expression levels of three genes: 1) Symbiodinium zinc-induced facilitator-like 1-like, 2) host coral copper-zinc superoxide dismutase, and 3) host green fluorescent protein-like chromoprotein. Outliers were also characterized by significantly higher variation amongst the molecular response variables assessed, and the response variables that contributed most significantly to colonies being delineated as outliers differed between the two predominant reef coral species sampled, Pocillopora damicornis and P. acuta. These closely related species also displayed dissimilar temporal fluctuation patterns in their molecular physiologies, an observation that may have been driven by differences in their feeding strategies. Future works should attempt to determine whether corals displaying statistically aberrant molecular physiology, such as the 12 Tongan outliers identified herein, are indeed characterized by a diminished capacity for acclimating to the rapid changes in their abiotic milieu occurring as a result of global climate change.
Collapse
Affiliation(s)
- Anderson B. Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Khaled bin Sultan Living Oceans Foundation, Annapolis, Maryland, United States of America
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- * E-mail:
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Alexandra C. Dempsey
- Khaled bin Sultan Living Oceans Foundation, Annapolis, Maryland, United States of America
| |
Collapse
|
18
|
Mayfield AB, Chen CS, Dempsey AC. Identifying corals displaying aberrant behavior in Fiji's Lau Archipelago. PLoS One 2017; 12:e0177267. [PMID: 28542245 PMCID: PMC5443480 DOI: 10.1371/journal.pone.0177267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Given the numerous threats against Earth’s coral reefs, there is an urgent need to develop means of assessing reef coral health on a proactive timescale. Molecular biomarkers may prove useful in this endeavor because their expression should theoretically undergo changes prior to visible signs of health decline, such as the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis. Herein 13 molecular- and physiological-scale biomarkers spanning both eukaryotic compartments of the anthozoan-Symbiodinium mutualism were assessed across 70 pocilloporid coral colonies sampled from reefs of Fiji’s easternmost province, Lau. Eleven colonies were identified as outliers upon employment of a detection method based partially on the Mahalanobis distance; these corals were hypothesized to have been displaying aberrant sub-cellular behavior with respect to their gene expression signatures, as they were characterized not only by lower Symbiodinium densities, but also by higher levels of expression of several stress-targeted genes. Although these findings could suggest that the sampled colonies were physiologically compromised at the time of sampling, further studies are warranted to state conclusively whether these 11 scleractinian coral colonies are more stress-prone than nearby conspecifics that demonstrated statistically normal phenotypes.
Collapse
Affiliation(s)
- Anderson B. Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, United States of America
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- * E-mail:
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Alexandra C. Dempsey
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, United States of America
| |
Collapse
|
19
|
Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium. Sci Rep 2017; 7:39396. [PMID: 28067273 PMCID: PMC5220285 DOI: 10.1038/srep39396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Quantification by real-time RT-PCR requires a stable internal reference known as a housekeeping gene (HKG) for normalising the mRNA levels of target genes. The present study identified and validated stably expressed HKGs in post-thaw Symbiodinium clade G. Six potential HKGs, namely, pcna, gapdh, 18S rRNA, hsp90, rbcl, and ps1, were analysed using three different algorithms, namely, GeNorm, NormFinder, and BestKeeper. The GeNorm algorithm ranked the candidate genes as follows in the order of decreasing stability: pcna and gapdh > ps1 > 18S rRNA > hsp90 > rbcl. Results obtained using the NormFinder algorithm also showed that pcna was the most stable HKG and ps1 was the second most stable HKG. We found that the candidate HKGs examined in this study showed variable stability with respect to the three algorithms. These results indicated that both pcna and ps1 were suitable for normalising target gene expression determined by performing real-time RT-PCR in cryopreservation studies on Symbiodinium clade G. The results of the present study would help future studies to elucidate the effect of cryopreservation on gene expression in dinoflagellates.
Collapse
|
20
|
Uncovering Spatio-Temporal and Treatment-Derived Differences in the Molecular Physiology of a Model Coral-Dinoflagellate Mutualism with Multivariate Statistical Approaches. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK. Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 2015; 15:48. [PMID: 25887897 PMCID: PMC4416395 DOI: 10.1186/s12862-015-0326-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Background The diversity of the symbiotic dinoflagellate Symbiodinium sp., as assessed by genetic markers, is well established. To what extent this diversity is reflected on the amino acid level of functional genes such as enzymatic antioxidants that play an important role in thermal stress tolerance of the coral-Symbiodinium symbiosis is, however, unknown. Here we present a predicted structural analysis and phylogenetic characterization of the enzymatic antioxidant repertoire of the genus Symbiodinium. We also report gene expression and enzymatic activity under short-term thermal stress in Symbiodinium of the B1 genotype. Results Based on eight different ITS2 types, covering six clades, multiple protein isoforms for three of the four investigated antioxidants (ascorbate peroxidase [APX], catalase peroxidase [KatG], manganese superoxide dismutase [MnSOD]) are present in the genus Symbiodinium. Amino acid sequences of both SOD metalloforms (Fe/Mn), as well as KatG, exhibited a number of prokaryotic characteristics that were also supported by the protein phylogeny. In contrast to the bacterial form, KatG in Symbiodinium is characterized by extended functionally important loops and a shortened C-terminal domain. Intercladal sequence variations were found to be much higher in both peroxidases, compared to SODs. For APX, these variable residues involve binding sites for substrates and cofactors, and might therefore differentially affect the catalytic properties of this enzyme between clades. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between gene expression and protein activity due to high variability in expression between replicates, and little response in their enzymatic activity over the three-day experimental period. Conclusions The genus Symbiodinium has a diverse enzymatic antioxidant repertoire that has similarities to prokaryotes, potentially as a result of horizontal gene transfer or events of secondary endosymbiosis. Different degrees of sequence evolution between SODs and peroxidases might be the result of potential selective pressure on the conserved molecular function of SODs as the first line of defence. In contrast, genetic redundancy of hydrogen peroxide scavenging enzymes might permit the observed variations in peroxidase sequences. Our data and successful measurement of antioxidant gene expression in Symbiodinium will serve as basis for further studies of coral health. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0326-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Krueger
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,Laboratory for Biological Geochemistry, ENAC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| | - Paul L Fisher
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Susanne Becker
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Stefanie Pontasch
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Sophie Dove
- School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| | - William Leggat
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences & ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
22
|
Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci Rep 2015; 5:8779. [PMID: 25739995 PMCID: PMC4350107 DOI: 10.1038/srep08779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/03/2015] [Indexed: 11/23/2022] Open
Abstract
Contemporary cnidarian-algae symbioses are challenged by increasing CO2 concentrations (ocean warming and acidification) affecting organisms' biological performance. We examined the natural variability of carbon and nitrogen isotopes in the symbiotic sea anemone Anemonia viridis to investigate dietary shifts (autotrophy/heterotrophy) along a natural pCO2 gradient at the island of Vulcano, Italy. δ13C values for both algal symbionts (Symbiodinium) and host tissue of A. viridis became significantly lighter with increasing seawater pCO2. Together with a decrease in the difference between δ13C values of both fractions at the higher pCO2 sites, these results indicate there is a greater net autotrophic input to the A. viridis carbon budget under high pCO2 conditions. δ15N values and C/N ratios did not change in Symbiodinium and host tissue along the pCO2 gradient. Additional physiological parameters revealed anemone protein and Symbiodinium chlorophyll a remained unaltered among sites. Symbiodinium density was similar among sites yet their mitotic index increased in anemones under elevated pCO2. Overall, our findings show that A. viridis is characterized by a higher autotrophic/heterotrophic ratio as pCO2 increases. The unique trophic flexibility of this species may give it a competitive advantage and enable its potential acclimation and ecological success in the future under increased ocean acidification.
Collapse
|
23
|
Mayfield AB, Wang YB, Chen CS, Lin CY, Chen SH. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures. Mol Ecol 2015; 23:5816-30. [PMID: 25354956 PMCID: PMC4265203 DOI: 10.1111/mec.12982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral–dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ∼60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades.
Collapse
Affiliation(s)
- Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Living Oceans Foundation, 8181 Professional Place, Suite 215, Landover, MD, 20785, USA
| | | | | | | | | |
Collapse
|
24
|
Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M. The susceptibility of corals to thermal stress by analyzing Hsp60 expression. MARINE ENVIRONMENTAL RESEARCH 2014; 99:69-75. [PMID: 24999860 DOI: 10.1016/j.marenvres.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/23/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Due to the increasing frequency and severity of the coral bleaching events in the context of global warming, there is an urgent need to improve our understanding of the susceptibility of corals to thermal stresses, particularly at the sub-cellular level. In this context, we examined the modulation of the polyp mitochondrial Hsp60 in three scleractinian coral species (Seriatopora hystrix, Montipora monasteriata and Acropora echinata) under simulated heat shock bleaching at 34 °C during a time course of 36 h. All three species displayed a similar initial increase of Hsp60 level which accompanies the increasing paleness of coral tissue. Afterwards, each of them showed a specific pattern of Hsp60 down-regulation which can be indicative of a different threshold of resistance, although it proceeded in synchrony with the complete bleaching of tissues. The finely branched S. hystrix was the species most susceptible to heat stress while the plating M. monasteriata was the most tolerant one, as its Hsp60 down-regulation was less rapid than the branching corals. On the whole, the Hsp60 modulation appears useful for providing information about the susceptibility of the different coral taxa to environmental disturbances.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Giovanni Strona
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, I-21027 Ispra, Italy
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|