1
|
Xiao K, Tan F, Zhang A, Zhou Y, Zhu W, Bao C, Zha D, Wu X. Fine Mapping of Candidate Gene Controlling Anthocyanin Biosynthesis for Purple Peel in Solanum melongena L. Int J Mol Sci 2024; 25:5241. [PMID: 38791283 PMCID: PMC11121509 DOI: 10.3390/ijms25105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.
Collapse
Affiliation(s)
- Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Feng Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Yaru Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| |
Collapse
|
2
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Ma Y, Xue M, Zhang X, Chen S. Genome-wide analysis of the metallothionein gene family in cassava reveals its role in response to physiological stress through the regulation of reactive oxygen species. BMC PLANT BIOLOGY 2023; 23:227. [PMID: 37118665 PMCID: PMC10142807 DOI: 10.1186/s12870-023-04174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is widely planted in tropical and several subtropical regions in which drought, high temperatures, and other abiotic stresses occur. Metallothionein (MT) is a group of conjugated proteins with small molecular weight and rich in cysteine. These proteins play a substantial role in response to physiological stress through the regulation of reactive oxygen species (ROS). However, the biological functions of MT genes in cassava are unknown. RESULTS A total of 10 MeMT genes were identified in the cassava genome. The MeMTs were divided into 3 groups (Types 2-4) based on the contents and distribution of Cys residues. The MeMTs exhibited tissue-specific expression and located on 7 chromosomes. The MeMT promoters contain some hormones regulatory and stresses responsiveness elements. MeMTs were upregulated under hydrogen peroxide (H2O2) treatment and in respond to post-harvest physiological deterioration (PPD). The results were consistent with defense-responsive cis-acting elements in the MeMT promoters. Further, four of MeMTs were selected and silenced by using the virus-induced gene silencing (VIGS) method to evaluate their functional characterization. The results of gene-silenced cassava suggest that MeMTs are involved in oxidative stress resistance, as ROS scavengers. CONCLUSION We identified the 10 MeMT genes, and explore their evolutionary relationship, conserved motif, and tissue-specific expression. The expression profiles of MeMTs under three kinds of abiotic stresses (wounding, low-temperature, and H2O2) and during PPD were analyzed. The tissue-specific expression and the response to abiotic stresses revealed the role of MT in plant growth and development. Furthermore, silenced expression of MeMTs in cassava leaves decreased its tolerance to ROS, consistent with its predicted role as ROS scavengers. In summary, our results suggest an important role of MeMTs in response to physiological stress as well as species adaptation via the regulation of ROS homeostasis.
Collapse
Affiliation(s)
- Yanyan Ma
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, 571101, China
| | - Maofu Xue
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, 571101, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and CIAT, Cali, 763537, Colombia
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, 571101, China.
| |
Collapse
|
4
|
Carvalho LC, Ramos MJN, Faísca-Silva D, Marreiros P, Fernandes JC, Egipto R, Lopes CM, Amâncio S. Modulation of the Berry Skin Transcriptome of cv. Tempranillo Induced by Water Stress Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:1778. [PMID: 37176836 PMCID: PMC10180983 DOI: 10.3390/plants12091778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Climate change in the Mediterranean area is making summers warmer and dryer. Grapevine (Vitis vinifera L.) is mostly important for wine production in Mediterranean countries, and the variety Tempranillo is one of the most cultivated in Spain and Portugal. Drought decreases yield and quality and causes important economic losses. As full irrigation has negative effects on quality and water is scarce in this region, deficit irrigation is often applied. In this research, we studied the effects of two deficit irrigation treatments, Sustained Deficit Irrigation (SDI) and Regulated Deficit Irrigation (RDI), on the transcriptome of grape berries at full maturation, through RNAseq. The expression of differentially regulated genes (DEGs) was also monitored through RT-qPCR along berry development. Most transcripts were regulated by water stress, with a similar distribution of up- and down-regulated transcripts within functional categories (FC). Primary metabolism was the more severely affected FC under water stress, followed by signaling and transport. Almost all DEGs monitored were significantly up-regulated by severe water stress at veraison. The modulation of an auxin response repression factor, AUX22D, by water stress indicates a role of this gene in the response to drought. Further, the expression of WRKY40, a TF that regulates anthocyanin biosynthesis, may be responsible for changes in grape quality under severe water stress.
Collapse
Affiliation(s)
- Luísa C. Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - Miguel J. N. Ramos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - David Faísca-Silva
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - Pedro Marreiros
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - João C. Fernandes
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - Ricardo Egipto
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal;
| | - Carlos M. Lopes
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal; (M.J.N.R.); (D.F.-S.); (P.M.); (J.C.F.); (C.M.L.)
| |
Collapse
|
5
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
6
|
Peng Y, Gu X, Zhou Q, Huang J, Liu Z, Zhou Y, Zheng Y. Molecular and physiologic mechanisms of advanced ripening by trunk girdling at early veraison of 'Summer Black' grape. FRONTIERS IN PLANT SCIENCE 2022; 13:1012741. [PMID: 36330263 PMCID: PMC9623158 DOI: 10.3389/fpls.2022.1012741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Although the effects of girdling on grape berry development have been widely studied, the underlying mechanisms are poorly understood, especially at the molecular level. This study investigated the effect of trunk girdling on grape (Vitis L.) berry maturation. Girdling was performed on 5-year-old 'Summer Black' grapevines at early veraison, and transcriptional and physiologic analyses were performed. Trunk girdling promoted sugar accumulation and color development in berries and accelerated berry ripening by 25 days. Genes related to sucrose cleavage and polysaccharide degradation were upregulated at the transcriptional level, which was associated with increased monosaccharide accumulation and berry softening. Anthocyanin biosynthesis and accumulation were also enhanced by trunk girdling through the upregulation of anthocyanin biosynthesis genes including phenylalanine ammonia-lyase and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT). The increased expression of two VvUFGT genes was accompanied by the upregulation of VvMYBA2 under girdling. The upregulation of genes involved in ethylene biosynthesis and hormone (abscisic acid and brassinosteroid) responses and downregulation of genes involved in indoleacetic acid biosynthesis and response may have also promoted berry ripening in the girdling group. A total of 120 differentially expressed transcription factor genes from 29 gene families including MYB, ERF, and MYB-related were identified in the girdling group, which may participate in the regulation of berry development and ripening. These results provide molecular-level insight into the positive effects of trunk girdling on berry development in grapes.
Collapse
Affiliation(s)
- Yanjie Peng
- College of Life Science, Leshan Normal University, Leshan, China
- Institution of Biodiversity Conservation and Utilization in Mount Emei, Leshan Normal University, Leshan, China
| | - Xingjia Gu
- College of Life Science, Leshan Normal University, Leshan, China
| | - Qi Zhou
- Justices, Equity, Diversity, and Inclusion Department, California Association of Resource Conservation Districts, Folsom, CA, United States
| | - Jiao Huang
- College of Life Science, Leshan Normal University, Leshan, China
- Institution of Biodiversity Conservation and Utilization in Mount Emei, Leshan Normal University, Leshan, China
| | - Zhong Liu
- College of Life Science, Leshan Normal University, Leshan, China
- Institution of Biodiversity Conservation and Utilization in Mount Emei, Leshan Normal University, Leshan, China
| | - Yong Zhou
- College of Life Science, Leshan Normal University, Leshan, China
- Institution of Biodiversity Conservation and Utilization in Mount Emei, Leshan Normal University, Leshan, China
- Academy of Mount Emei, Leshan Normal University, Leshan, China
| | - Ying Zheng
- Research Institution of Industrial Crop, Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
7
|
Teixeira A, Noronha H, Sebastiana M, Fortes AM, Gerós H. A proteomic analysis shows the stimulation of light reactions and inhibition of the Calvin cycle in the skin chloroplasts of ripe red grape berries. FRONTIERS IN PLANT SCIENCE 2022; 13:1014532. [PMID: 36388544 PMCID: PMC9641181 DOI: 10.3389/fpls.2022.1014532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 05/10/2023]
Abstract
The role of photosynthesis in fruits still challenges scientists. This is especially true in the case of mature grape berries of red varieties lined by an anthocyanin-enriched exocarp (skin) almost impermeable to gases. Although chlorophylls are degraded and replaced by carotenoids in several fruits, available evidence suggests that they may persist in red grapes at maturity. In the present study, chloroplasts were isolated from the skin of red grape berries (cv. Vinhão) to measure chlorophyll levels and the organelle proteome. The results showed that chloroplasts (and chlorophylls) are maintained in ripe berries masked by anthocyanin accumulation and that the proteome of chloroplasts from green and mature berries is distinct. Several proteins of the light reactions significantly accumulated in chloroplasts at the mature stage including those of light-harvesting complexes of photosystems I (PSI) and II (PSII), redox chain, and ATP synthase, while chloroplasts at the green stage accumulated more proteins involved in the Calvin cycle and the biosynthesis of amino acids, including precursors of secondary metabolism. Taken together, results suggest that although chloroplasts are more involved in biosynthetic reactions in green berries, at the mature stage, they may provide ATP for cell maintenance and metabolism or even O2 to feed the respiratory demand of inner tissues.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Mónica Sebastiana
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Margarida Fortes
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Garrido A, De Vos RCH, Conde A, Cunha A. Light Microclimate-Driven Changes at Transcriptional Level in Photosynthetic Grape Berry Tissues. PLANTS 2021; 10:plants10091769. [PMID: 34579302 PMCID: PMC8465639 DOI: 10.3390/plants10091769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Viticulture practices that change the light distribution in the grapevine canopy can interfere with several physiological mechanisms, such as grape berry photosynthesis and other metabolic pathways, and consequently impact the berry biochemical composition, which is key to the final wine quality. We previously showed that the photosynthetic activity of exocarp and seed tissues from a white cultivar (Alvarinho) was in fact responsive to the light microclimate in the canopy (low and high light, LL and HL, respectively), and that these different light microclimates also led to distinct metabolite profiles, suggesting a berry tissue-specific interlink between photosynthesis and metabolism. In the present work, we analyzed the transcript levels of key genes in exocarps and seed integuments of berries from the same cultivar collected from HL and LL microclimates at three developmental stages, using real-time qPCR. In exocarp, the expression levels of genes involved in carbohydrate metabolism (VvSuSy1), phenylpropanoid (VvPAL1), stilbenoid (VvSTS1), and flavan-3-ol synthesis (VvDFR, VvLAR2, and VvANR) were highest at the green stage. In seeds, the expression of several genes associated with both phenylpropanoid (VvCHS1 and VvCHS3) and flavan-3-ol synthesis (VvDFR and VvLAR2) showed a peak at the véraison stage, whereas that of RuBisCO was maintained up to the mature stage. Overall, the HL microclimate, compared to that of LL, resulted in a higher expression of genes encoding elements associated with both photosynthesis (VvChlSyn and VvRuBisCO), carbohydrate metabolism (VvSPS1), and photoprotection (carotenoid pathways genes) in both tissues. HL also induced the expression of the VvFLS1 gene, which was translated into a higher activity of the FLS enzyme producing flavonol-type flavonoids, whereas the expression of several other flavonoid pathway genes (e.g., VvCHS3, VvSTS1, VvDFR, and VvLDOX) was reduced, suggesting a specific role of flavonols in photoprotection of berries growing in the HL microclimate. This work suggests a possible link at the transcriptional level between berry photosynthesis and pathways of primary and secondary metabolism, and provides relevant information for improving the management of the light microenvironment at canopy level of the grapes.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| |
Collapse
|
9
|
Chitosan Application in Vineyards ( Vitis vinifera L. cv. Tinto Cão) Induces Accumulation of Anthocyanins and Other Phenolics in Berries, Mediated by Modifications in the Transcription of Secondary Metabolism Genes. Int J Mol Sci 2020; 21:ijms21010306. [PMID: 31906425 PMCID: PMC6981802 DOI: 10.3390/ijms21010306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the numerous beneficial properties and uses of chitosan in agriculture, the molecular mechanisms behind its elicitation potential are still unclear. This study aimed at understanding the effect of chitosan application in the levels of phenolic compounds of Vitis vinifera L. red grapes berry skin (cv. Tinto Cão) during veraison. Grapevines were treated with chitosan (0.01% in 0.01% acetic acid) while control grapevines were sprayed with 0.01% acetic acid. Results showed that several monomeric anthocyanins increased significantly in berry skins after treatment with chitosan. Additionally, Catechin, Rutin and Querecetin-3-O-galactoside were also recorded in higher amount upon chitosan treatment. Besides modulating the phenolic content, chitosan treatment also induced modifications in several target genes encoding key enzymes and transporters involved in secondary metabolic pathways. For instance, the genes PAL, CHS, F3H, ANR, UFGT, ABCC1, GST, MATE1 were upregulated in leaves and berry skins at veraison cessation in response to chitosan treatment. Overall, the results demonstrated that chitosan has a stimulatory effect on the accumulation of phenolic compounds, including anthocyanins, mediated by modifications in the transcription of key genes involved in their biosynthesis and transport in grape berries.
Collapse
|
10
|
iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta. Sci Rep 2017; 7:5670. [PMID: 28720800 PMCID: PMC5515984 DOI: 10.1038/s41598-017-06074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/02/2017] [Indexed: 11/10/2022] Open
Abstract
Actinidia arguta ‘Tianyuanhong’ is a new kiwifruit variety with an all-red pericarp and pulp, in contrast to the all-green pulp of A. arguta ‘Yongfengyihao’. Transcriptome profile analysis of fruit color has been reported, however, the metabolic mechanisms producing red flesh remain unknown, and it is unclear why the pulp of ‘Tianyuanhong’ is red rather than green. Herein, we identified differences between the proteomes of two A. arguta cultivars with different fruit color by using iTRAQ-based quantitative proteomic methods during the stage of color change. In total, 2310 differentially abundant proteins were detected between the two cultivars at 70 and 100 days after flowering, and the protein functions were analyzed based on KEGG and GO. The largest group of differentially expressed proteins were related to photosynthesis, glyoxylate metabolism, N metabolism, and anthocyanin biosynthesis. Finally, to verify the iTRAQ data, 12 representative genes encoding differentially expressed proteins were analyzed via quantitative real-time PCR, and these genes differed in transcriptional and translational expression levels. Our proteomic study contributes to understanding the metabolic pathways and biological processes involved in fruit color changes in different cultivars of A. arguta. These data and analyses will provide new insight into the development of kiwifruit flesh color.
Collapse
|
11
|
Albornos L, Martín I, Labrador E, Dopico B. Three members of Medicago truncatula ST family are ubiquitous during development and modulated by nutritional status (MtST1) and dehydration (MtST2 and MtST3). BMC PLANT BIOLOGY 2017; 17:117. [PMID: 28693485 PMCID: PMC5504553 DOI: 10.1186/s12870-017-1061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/22/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND ShooT specific/Specific Tissue (ST) belong to a protein family of unknown function characterized by the DUF2775 domain and produced in specific taxonomic plant families, mainly Fabaceae and Asteraceae, with the Medicago truncatula ST family being the largest. The putative roles proposed for this family are cell elongation, biotic interactions, abiotic stress and N reserve. The aim of this work was to go deeper into the role of three M. truncatula ST proteins, namely ST1, ST2 and ST3. Our starting hypothesis was that each member of the family could perform a specific role, and hence, each ST gene would be subjected to a different type of regulation. RESULTS The search for cis-acting regulatory elements (CREs) in silico in pST1, pST2 and pST3 promoters showed prevalence of tissue/organ specific motifs, especially root- and seed-specific ones. Light, hormone, biotic and abiotic related motifs were also present. None of these pSTs showed the same combination of CREs, or presented the same activity pattern. In general, pST activity was associated with the vascular cylinder, mainly in roots. Promoter activation was highly specific and dissimilar during reproductive development. The ST1, ST2 and ST3 transcripts accumulated in most of the organs and developmental stages analysed - decreasing with age - and expression was higher in the roots than in the aerial parts and more abundant in light-grown plants. The effect of the different treatments on transcript accumulation indicated that ST1 behaved differently from ST2 and ST3, mainly in response to several hormones and dehydration treatments (NaCl or mannitol), upon which ST1 transcript levels decreased and ST2 and ST3 levels increased. Finally, the ST1 protein was located in the cell wall whereas ST2 and ST3 were present both in the cytoplasm and in the cell wall. CONCLUSIONS The ST proteins studied are ubiquitous proteins that could perform distinct/complementary roles in plant biology as they are encoded by differentially regulated genes. Based on these differences we have established two functional groups among the three STs. ST1 would participate in processes affected by nutritional status, while ST2 and ST3 seem to act when plants are challenged with abiotic stresses related to water stress and in physiologically controlled desiccation processes such as the seed maturation.
Collapse
Affiliation(s)
- Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Zhu X, Zhang C, Wu W, Li X, Zhang C, Fang J. Enzyme activities and gene expression of starch metabolism provide insights into grape berry development. HORTICULTURE RESEARCH 2017; 4:17018. [PMID: 28529757 PMCID: PMC5424430 DOI: 10.1038/hortres.2017.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 05/07/2023]
Abstract
Grapes are categorized as a non-climacteric type of fruit which its ripening is not associated to important rises in respiration and ethylene synthesis. The starch metabolism shares a certain role in the carbohydrate metabolic pathways during grape berry development, and is regarded as an important transient pool in the pathway of sugar accumulation. However, the comprehensive role of starch and its contribution to the quality and flavor of grape berry have not been explored thoroughly. In this study, the expression levels of genes enzyme activities and carbohydrate concentrations related to starch metabolism, were analyzed to understand the molecular mechanism of starch accumulation during grape berry development. The results indicated that starch granules in grape berry were located at the chloroplast in the sub-epidermal tissues, acting as the temporary reserves of photosynthetic products to meet the needs for berry development, and relatively high starch contents could be detected at véraison stage. Moreover, both ADP-glucose pyrophosphorylase (EC 2.7.7.27) and sucrose phosphate synthase (EC 2.3.1.14) involved in starch synthesis displayed elevated gene expression and enzymes activities in the sub-epidermal tissue, while α- and β-amylases involved in its degradation were highly transcribed and active in the central flesh, explaining the absence of starch in this last tissue. Change in the gene expression and activities of ADP-glucose pyrophosphorylase, β-amylase and sucrose phosphate synthase revealed that they were regulated by the circadian rhythms in the fruitlets compared with those in the leaves. Both the morphological, enzymological and transcriptional data in this study provide advanced understandings on the function of starch during berry development and ripening that are so important for berry quality. This study will further facilitate our understanding of the sugar metabolism in grape berry as well as in other plant species.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, No 1 weigang, Nanjing 210095, China
| | - Chaobo Zhang
- College of Horticulture, Nanjing Agricultural University, No 1 weigang, Nanjing 210095, China
| | - Weimin Wu
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling road, Nanjing 210014, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, No 1 weigang, Nanjing 210095, China
| | - Chuan Zhang
- College of Horticulture, Nanjing Agricultural University, No 1 weigang, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, No 1 weigang, Nanjing 210095, China
- ()
| |
Collapse
|
13
|
Sun L, Fan X, Zhang Y, Jiang J, Sun H, Liu C. Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes ( Vitis davidii). Hereditas 2016; 153:17. [PMID: 28096779 PMCID: PMC5226110 DOI: 10.1186/s41065-016-0021-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Background The color of berry skin is an important economic trait for grape and is essentially determined by the components and content of anthocyanins. The fruit color of Chinese wild grapes is generally black, and the profile of anthocyanins in Chinese wild grapes is significantly different from that of Vitis vinifera. However, V. davidii is the only species that possesses white berry varieties among Chinese wild grape species. Thus, we performed a transcriptomic analysis to compare the difference of transcriptional level in black and white V. davidii, in order to find some key genes that are related to anthocyanins accumulation in V. davidii. Results The results of anthocyanins detection revealed that 3,5-O-diglucoside anthocyanins is the predominant anthocyanins in V. davidii. It showed obvious differences from V. vinifera in the profile of the composition of anthocyanins. The transcriptome sequencing by Illumina mRNA-Seq technology generated an average of 57 million 100-base pair clean reads from each sample. Differential gene expression analysis revealed thousands of differential expression genes (DEGs) in the pairwise comparison of different fruit developmental stages between and within black and white V. davidii. After the analysis of functional category enrichment and differential expression patterns of DEGs, 46 genes were selected as the candidate genes. Some genes have been reported as being related to anthocyanins accumulation, and some genes were newly found in our study as probably being related to anthocyanins accumulation. We inferred that 3AT (VIT_03s0017g00870) played an important role in anthocyanin acylation, GST4 (VIT_04s0079g00690) and AM2 (VIT_16s0050g00910) played important roles in anthocyanins transport in V. davidii. The expression of some selected DEGs was further confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The present study investigated the transcriptomic profiles of berry skin from black and white spine grapes at three fruit developmental stages by Illumina mRNA-Seq technology. It revealed the variety specificity of anthocyanins accumulation in V. davidi at the transcriptional level. The data reported here will provide a valuable resource for understanding anthocyanins accumulation in grapes, especially in V. davidii. Electronic supplementary material The online version of this article (doi:10.1186/s41065-016-0021-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Haisheng Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| |
Collapse
|
14
|
Xie X, Wang Y. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. PLANTA 2016; 244:1075-1094. [PMID: 27424038 DOI: 10.1007/s00425-016-2569-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The DUF642 gene VqDUF642 , isolated from the Chinese grape species V. quinquangularis accession Danfeng-2, participates in berry development and defense responses against Erysiphe necator and Botrytis cinerea. The proteins with domains of unknown function 642 (DUF642) comprise a large protein family according to cell wall proteomic analyses in plants. However, the works about functional characterization of DUF642s in plant development and resistance to pathogens are scarce. In this study, a gene encoding a DUF642 protein was isolated from Chinese grape V. quinquangularis accession Danfeng-2, and designated as VqDUF642. Its full-length cDNA contains a 1107-bp open reading frame corresponding to a deduced 368-amino acid protein. Multiple sequence alignments and phylogenetic analysis showed that VqDUF642 is highly homologous to one of the DUF642 proteins (VvDUF642) in V. vinifera. The VqDUF642 was localized to the cell wall of tobacco epidermal cells. Accumulation of VqDUF642 protein and VqDUF642 transcript abundance increased at the later stage of grape berry development in Danfeng-2. Overexpression of VqDUF642 in transgenic tomato plants accelerated plant growth and reduced susceptibility to Botrytis cinerea. Transgenic Thompson Seedless grapevine plants overexpressing VqDUF642 exhibited enhanced resistance to Erysiphe necator and B. cinerea. Moreover, VqDUF642 overexpression affected the expression of a couple of pathogenesis-related (PR) genes in transgenic tomato and grapevine upon pathogen inoculation. Taken together, these results suggest that VqDUF642 is involved in plant development and defense against pathogenic infections.
Collapse
Affiliation(s)
- Xiaoqing Xie
- College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, García-Caparrós N, Moyano-Cañete E, Caballero-Repullo JL, Muñoz-Blanco J, Rodríguez-Franco A. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics 2016; 16:671-692. [PMID: 27614432 DOI: 10.1007/s10142-016-0510-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Nicolás García-Caparrós
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Enriqueta Moyano-Cañete
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - José Luis Caballero-Repullo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
16
|
Negri AS, Prinsi B, Failla O, Scienza A, Espen L. Proteomic and metabolic traits of grape exocarp to explain different anthocyanin concentrations of the cultivars. FRONTIERS IN PLANT SCIENCE 2015; 6:603. [PMID: 26300900 PMCID: PMC4523781 DOI: 10.3389/fpls.2015.00603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 05/28/2023]
Abstract
The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.
Collapse
Affiliation(s)
| | | | | | | | - Luca Espen
- *Correspondence: Luca Espen, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria n.2, Milano 20133, Italy
| |
Collapse
|
17
|
Yang M, Zhang F, Wang F, Dong Z, Cao Q, Chen M. Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba. Int J Mol Sci 2015; 16:16750-62. [PMID: 26213917 PMCID: PMC4581167 DOI: 10.3390/ijms160816750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Plant metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, and metal-binding proteins, which play an important role in the detoxification of heavy metal ions, osmotic stresses, and hormone treatment. Sequence analysis revealed that the open-reading frame (ORF) of ZjMT was 225 bp, which encodes a protein composed of 75 amino acid residues with a calculated molecular mass of 7.376 kDa and a predicated isoelectric point (pI) of 4.83. ZjMT belongs to the type I MT, which consists of two highly conserved cysteine-rich terminal domains linked by a cysteine free region. Our studies showed that ZjMT was primarily localized in the cytoplasm and the nucleus of cells and ZjMT expression was up-regulated by NaCl, CdCl2 and polyethylene glycol (PEG) treatments. Constitutive expression of ZjMT in wild type Arabidopsis plants enhanced their tolerance to NaCl stress during the germination stage. Compared with the wild type, transgenic plants accumulate more Cd2+ in root, but less in leaf, suggesting that ZjMT may have a function in Cd2+ retension in roots and, therefore, decrease the toxicity of Cd2+.
Collapse
Affiliation(s)
- Mingxia Yang
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Pomology Institute of Shanxi Academy of Agricultural Sciences, Taigu 030815, China.
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fan Wang
- Jinguo Museum of Shanxi Province, Linfen 043400, China.
| | - Zhigang Dong
- Pomology Institute of Shanxi Academy of Agricultural Sciences, Taigu 030815, China.
| | - Qiufen Cao
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Biotechnology Research Center of Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Mingchang Chen
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Department of Agriculture Shanxi Province, Taiyuan 030002, China.
| |
Collapse
|
18
|
Fernandes JC, Cobb F, Tracana S, Costa GJ, Valente I, Goulao LF, Amâncio S. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3951-3961. [PMID: 25828510 DOI: 10.1021/jf505169z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell wall (CW) is a dynamic structure that responds to stress. Water shortage (WS) impacts grapevine berry composition and its sensorial quality. In the present work, berry texture, skin CW composition, and expression of remodeling genes were investigated in two V. vinifera varieties, Touriga Nacional (TN) and Trincadeira (TR), under two water regimes, Full Irrigation (FI) and No Irrigation (NI). The global results allowed an evident separation between both varieties and the water treatments. WS resulted in increased anthocyanin contents in both varieties, reduced amounts in cellulose and lignin at maturation, but an increase in arabinose-containing polysaccharides more tightly bound to the CW in TR. In response to WS, the majority of the CW related genes were down-regulated in a variety dependent pattern. The results support the assumption that WS affects grape berries by stiffening the CW through alteration in pectin structure, supporting its involvement in responses to environmental conditions.
Collapse
Affiliation(s)
- J C Fernandes
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - F Cobb
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - S Tracana
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - G J Costa
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - I Valente
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - L F Goulao
- ‡BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão - Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - S Amâncio
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
19
|
Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1769-85. [PMID: 25675955 PMCID: PMC4669548 DOI: 10.1093/jxb/eru517] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Teresa Nascimento
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Centro de Estatística e Aplicações da UL, Faculdade de Ciências de Lisboa, 1749-016 Lisboa, Portugal
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana Margarida Fortes
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
20
|
Wu BH, Cao YG, Guan L, Xin HP, Li JH, Li SH. Genome-wide transcriptional profiles of the berry skin of two red grape cultivars (Vitis vinifera) in which anthocyanin synthesis is sunlight-dependent or -independent. PLoS One 2014; 9:e105959. [PMID: 25158067 PMCID: PMC4144973 DOI: 10.1371/journal.pone.0105959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022] Open
Abstract
Global gene expression was analyzed in the berry skin of two red grape cultivars, which can ('Jingyan') or cannot ('Jingxiu') synthesize anthocyanins after sunlight exclusion from fruit set until maturity. Gene transcripts responding to sunlight exclusion in 'Jingyan' were less complex than in 'Jingxiu'; 528 genes were induced and 383 repressed in the former, whereas 2655 genes were induced and 205 suppressed in 'Jingxiu'. They were regulated either in the same or opposing manner in the two cultivars, or in only one cultivar. In addition to VvUFGT and VvMYBA1, some candidate genes (e.g. AOMT, GST, and ANP) were identified which are probably involved in the differential responses of 'Jingxiu' and 'Jingyan' to sunlight exclusion. In addition, 26 MYB, 14 bHLH and 23 WD40 genes responded differently to sunlight exclusion in the two cultivars. Interestingly, all of the 189 genes classified as being relevant to ubiquitin-dependent protein degradation were down-regulated by sunlight exclusion in 'Jingxiu', but the majority (162) remained unchanged in 'Jingyan' berry skin. It would be of interest to determine the precise role of the ubiquitin pathway following sunlight exclusion, particularly the role of COP9 signalosome, cullins, RING-Box 1, and COP1-interacting proteins. Only a few genes in the light signal system were found to be regulated by sunlight exclusion in either or both cultivars. This study provides a valuable overview of the transcriptome changes and gives insight into the genetic background that may be responsible for sunlight-dependent versus -independent anthocyanin biosynthesis in berry skin.
Collapse
Affiliation(s)
- Ben-Hong Wu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, P. R. China
| | - Yue-Gang Cao
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Le Guan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hai-Ping Xin
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ji-Hu Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, P. R. China
| | - Shao-Hua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, P. R. China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Plaschkes I, Batushansky A, Chalifa-Caspi V, Mattivi F, Delledonne M, Pezzotti M, Rachmilevitch S, Cramer GR, Fait A. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC PLANT BIOLOGY 2014; 14:188. [PMID: 25064275 PMCID: PMC4222437 DOI: 10.1186/s12870-014-0188-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. RESULTS The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes. CONCLUSIONS Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.
Collapse
Affiliation(s)
- Asfaw Degu
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Uri Hochberg
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Noga Sikron
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Luca Venturini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Genny Buson
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Inbar Plaschkes
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Albert Batushansky
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Massimo Delledonne
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Mario Pezzotti
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| |
Collapse
|
22
|
Albornos L, Cabrera J, Hernández-Nistal J, Martín I, Labrador E, Dopico B. Organ accumulation and subcellular location of Cicer arietinum ST1 protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:44-53. [PMID: 24908505 DOI: 10.1016/j.plantsci.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/06/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The ST (ShooT Specific) proteins are a new family of proteins characterized by a signal peptide, tandem repeats of 25/26 amino acids, and a domain of unknown function (DUF2775), whose presence is limited to a few families of dicotyledonous plants, mainly Fabaceae and Asteraceae. Their function remains unknown, although involvement in plant growth, fruit morphogenesis or in biotic and abiotic interactions have been suggested. This work is focused on ST1, a Cicer arietinum ST protein. We established the protein accumulation in different tissues and organs of chickpea seedlings and plants and its subcellular localization, which could indicate the possible function of ST1. The raising of specific antibodies against ST1 protein revealed that its accumulation in epicotyls and radicles was related to their elongation rate. Its pattern of tissue location in cotyledons during seed formation and early seed germination, as well as its localization in the perivascular fibres of epicotyls and radicles, indicated a possible involvement in seed germination and seedling growth. ST1 protein appears both inside the cell and in the cell wall. This double subcellular localization was found in every organ in which the ST1 protein was detected: seeds, cotyledons and seedling epicotyls and radicles.
Collapse
Affiliation(s)
- Lucía Albornos
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Javier Cabrera
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Josefina Hernández-Nistal
- Dpto de Fisiología Vegetal, Universidad de Santiago de Compostela, Campus de Lugo, Lugo 27002, Spain.
| | - Ignacio Martín
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Emilia Labrador
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Berta Dopico
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| |
Collapse
|
23
|
Wang X, Kayesh E, Han J, Liu C, Wang C, Song C, Ge A, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 2014; 41:4397-412. [PMID: 24728608 DOI: 10.1007/s11033-014-3311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Collapse
Affiliation(s)
- Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Collapse
Affiliation(s)
- Manoj K Rai
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| | - N S Shekhawat
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| |
Collapse
|
25
|
Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Guerreiro-Filho O, Maluf MP. Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics 2014; 15:66. [PMID: 24460833 PMCID: PMC3924705 DOI: 10.1186/1471-2164-15-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 01/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes. Plants have evolved complex mechanisms to recognize such attacks, and to trigger a defense response. To understand the transcriptional basis of this response, we compare gene expression profiles of two coffee genotypes, susceptible and resistant to leaf miner (Leucoptera coffella). A total of 22000 EST sequences from the Coffee Genome Database were selected for a microarray analysis. Fluorescence probes were synthesized using mRNA from the infested and non-infested coffee plants. Array hybridization, scanning and data normalization were performed using Nimble Scan® e ArrayStar® platforms. Genes with foldchange values +/-2 were considered differentially expressed. A validation of 18 differentially expressed genes was performed in infected plants using qRT-PCR approach. RESULTS The microarray analysis indicated that resistant plants differ in gene expression profile. We identified relevant transcriptional changes in defense strategies before insect attack. Expression changes (>2.00-fold) were found in resistant plants for 2137 genes (1266 up-regulated and 873 down-regulated). Up-regulated genes include those responsible for defense mechanisms, hypersensitive response and genes involved with cellular function and maintenance. Also, our analyses indicated that differential expression profiles between resistant and susceptible genotypes are observed in the absence of leaf-miner, indicating that defense is already build up in resistant plants, as a priming mechanism. Validation of selected genes pointed to four selected genes as suitable candidates for markers in assisted-selection of novel cultivars. CONCLUSIONS Our results show evidences that coffee defense responses against leaf-miner attack are balanced with other cellular functions. Also analyses suggest a major metabolic reconfiguration that highlights the complexity of this response.
Collapse
|
26
|
Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:141-55. [PMID: 24296250 DOI: 10.1016/j.plaphy.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| | - Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Young H Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Lisete Sousa
- Department of Statistics and Operational Research, CEAUL, FCUL, 1749-016 Lisboa, Portugal.
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Antonio F Tiburcio
- University of Barcelona, Pharmacy Faculty, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Ana M Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| |
Collapse
|
27
|
Naithani S, Raja R, Waddell EN, Elser J, Gouthu S, Deluc LG, Jaiswal P. VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera). FRONTIERS IN PLANT SCIENCE 2014; 5:644. [PMID: 25538713 PMCID: PMC4260676 DOI: 10.3389/fpls.2014.00644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/01/2014] [Indexed: 05/23/2023]
Abstract
We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera "Pinot Noir" cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Sushma Naithani, Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR-97331, USA e-mail:
| | - Rajani Raja
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Elijah N. Waddell
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | | | - Laurent G. Deluc
- Department of Horticulture, Oregon State UniversityCorvallis, OR, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
28
|
Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC PLANT BIOLOGY 2013; 13:184. [PMID: 24256338 PMCID: PMC4225576 DOI: 10.1186/1471-2229-13-184] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/06/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Grapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant. 147:443-453, 2012). RESULTS Progressive water deficit was found to effect changes in leaf water potentials accompanied by metabolic changes. In both cultivars, but more intensively in Shiraz than Cabernet Sauvignon, water deficit caused a shift to higher osmolality and lower C/N ratios, the latter of which was also reflected in marked increases in amino acids, e.g., Pro, Val, Leu, Thr and Trp, reductions of most organic acids, and changes in the phenylpropanoid pathway. PCA analysis showed that changes in primary metabolism were mostly associated with water stress, while diversification of specialized metabolism was mostly linked to the cultivars. In the phloem sap, drought was characterized by higher ABA concentration and major changes in benzoate levels coinciding with lower stomatal conductance and suberinization of vascular bundles. Enhanced suberin biosynthesis in Shiraz was reflected by the higher abundance of sap hydroxybenzoate derivatives. Correlation-based network analysis revealed that compared to Cabernet Sauvignon, Shiraz had considerably larger and highly coordinated stress-related changes, reflected in its increased metabolic network connectivity under stress. Network analysis also highlighted the structural role of major stress related metabolites, e.g., Pro, quercetin and ascorbate, which drastically altered their connectedness in the Shiraz network under water deficit. CONCLUSIONS Taken together, the results showed that Vitis vinifera cultivars possess a common metabolic response to water deficit. Central metabolism, and specifically N metabolism, plays a significant role in stress response in vine. At the cultivar level, Cabernet Sauvignon was characterized by milder metabolic perturbations, likely due to a tighter regulation of stomata upon stress induction. Network analysis was successfully implemented to characterize plant stress molecular response and to identify metabolites with a significant structural and biological role in vine stress response.
Collapse
Affiliation(s)
- Uri Hochberg
- Albert Katz International School, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Asfaw Degu
- Albert Katz International School, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - David Toubiana
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Tanya Gendler
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Shimon Rachmilevitch
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Aaron Fait
- the French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| |
Collapse
|
29
|
B Ttcher C, Harvey KE, Boss PK, Davies C. Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:566-581. [PMID: 32481131 DOI: 10.1071/fp12347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/23/2013] [Indexed: 05/08/2023]
Abstract
Grape (Vitis vinifera L.) berries are considered to be nonclimacteric fruit as they do not exhibit a large rise in ethylene production or respiration rate at the onset of ripening (veraison). However, ethylene may still play a role in berry development and in ripening in particular. (2-Chloroethyl)phosphonic acid (CEPA), an ethylene-releasing reagent, delayed ripening when applied early in berry development. In agreement with a role for ethylene in controlling the timing of ripening, the application of an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine (AVG), advanced ripening, as did abscisic acid, when applied during the preveraison period. Applications of CEPA nearer to the time of veraison enhanced berry colouration. Changes in the expression of ethylene biosynthesis and receptor genes were observed throughout berry development. Transcript levels of some of these genes were increased by CEPA and decreased by AVG, suggesting changes in ethylene synthesis and perception during the preveraison period that might contribute to the biphasic response to CEPA (ethylene). The significant delay of ripening in field-grown grapes through the application of CEPA also indicates that this may be useful in controlling the timing of veraison, and therefore harvest date, in warmer climates.
Collapse
Affiliation(s)
| | - Katie E Harvey
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | - Paul K Boss
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
30
|
Niu N, Cao Y, Duan W, Wu B, Li S. Proteomic analysis of grape berry skin responding to sunlight exclusion. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:748-57. [PMID: 23499453 DOI: 10.1016/j.jplph.2012.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 05/09/2023]
Abstract
The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes.
Collapse
Affiliation(s)
- Ning Niu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | | | | | |
Collapse
|
31
|
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5:1146-69. [DOI: 10.1039/c3mt00072a] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Sweetman C, Wong DC, Ford CM, Drew DP. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 2012; 13:691. [PMID: 23227855 PMCID: PMC3545830 DOI: 10.1186/1471-2164-13-691] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/04/2012] [Indexed: 11/21/2022] Open
Abstract
Background Vitis vinifera berry development is characterised by an initial phase where the fruit is small, hard and acidic, followed by a lag phase known as veraison. In the final phase, berries become larger, softer and sweeter and accumulate an array of organoleptic compounds. Since the physiological and biochemical makeup of grape berries at harvest has a profound impact on the characteristics of wine, there is great interest in characterising the molecular and biophysical changes that occur from flowering through veraison and ripening, including the coordination and temporal regulation of metabolic gene pathways. Advances in deep-sequencing technologies, combined with the availability of increasingly accurate V. vinifera genomic and transcriptomic data, have enabled us to carry out RNA-transcript expression analysis on a global scale at key points during berry development. Results A total of 162 million 100-base pair reads were generated from pooled Vitis vinifera (cv. Shiraz) berries sampled at 3-weeks post-anthesis, 10- and 11-weeks post-anthesis (corresponding to early and late veraison) and at 17-weeks post-anthesis (harvest). Mapping reads from each developmental stage (36-45 million) onto the NCBI RefSeq transcriptome of 23,720 V. vinifera mRNAs revealed that at least 75% of these transcripts were detected in each sample. RNA-Seq analysis uncovered 4,185 transcripts that were significantly upregulated at a single developmental stage, including 161 transcription factors. Clustering transcripts according to distinct patterns of transcription revealed coordination in metabolic pathways such as organic acid, stilbene and terpenoid metabolism. From the phenylpropanoid/stilbene biosynthetic pathway at least 46 transcripts were upregulated in ripe berries when compared to veraison and immature berries, and 12 terpene synthases were predominantly detected only in a single sample. Quantitative real-time PCR was used to validate the expression pattern of 12 differentially expressed genes from primary and secondary metabolic pathways. Conclusions In this study we report the global transcriptional profile of Shiraz grapes at key stages of development. We have undertaken a comprehensive analysis of gene families contributing to commercially important berry characteristics and present examples of co-regulation and differential gene expression. The data reported here will provide an invaluable resource for the on-going molecular investigation of wine grapes.
Collapse
Affiliation(s)
- Crystal Sweetman
- Wine Science and Business, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | | | | | | |
Collapse
|
33
|
Li X, Korir NK, Liu L, Shangguan L, Wang Y, Han J, Chen M, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1776-1788. [PMID: 23036314 DOI: 10.1016/j.jplph.2012.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
Microarray analysis is a technique that can be employed to provide expression profiles of single genes and new insights to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between Prunus mume and Prunus armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1418 ESTs were selected after quality control of microarray spots and analysis for differential gene expression patterns during fruit development of P. mume and P. Armeniaca. From these, 707 up-regulated and 711 down-regulated genes showing more than two-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate, galactose, and starch and sucrose metabolism as well as in biosynthesis of other secondary metabolites via KEGG. This could provide detailed information on the fruit quality differences during development and ripening of these two species. With the results obtained, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay a theoretical foundation for the cloning of genes regulating in a series of important rate-limiting enzymes involved in vital metabolic pathways during fruit development.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Albornos L, Martín I, Iglesias R, Jiménez T, Labrador E, Dopico B. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae. BMC PLANT BIOLOGY 2012; 12:207. [PMID: 23134664 PMCID: PMC3499167 DOI: 10.1186/1471-2229-12-207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. RESULTS ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. CONCLUSIONS We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.
Collapse
Affiliation(s)
- Lucía Albornos
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Ignacio Martín
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Rebeca Iglesias
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Teresa Jiménez
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Emilia Labrador
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Berta Dopico
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
35
|
Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC PLANT BIOLOGY 2012; 12:174. [PMID: 23016701 PMCID: PMC3497578 DOI: 10.1186/1471-2229-12-174] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. RESULTS We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. CONCLUSION The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs, antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the molecular basis for heat tolerance in grape leaves.
Collapse
Affiliation(s)
- Guo-Tian Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. of China
| | - Jun-Fang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. of China
| | - Grant Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | - Zhan-Wu Dai
- INRA, ISVV, UMR 1287 EGFV, Villenave d'Ornon, 33882, France
| | - Wei Duan
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Hong-Guo Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Ben-Hong Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Pei-Ge Fan
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Li-Jun Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Shao-Hua Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. of China
| |
Collapse
|
36
|
Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez- Zapater JM, Verpoorte R, Pais MS. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC PLANT BIOLOGY 2011; 11:149. [PMID: 22047180 PMCID: PMC3215662 DOI: 10.1186/1471-2229-11-149] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/02/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses. RESULTS Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. CONCLUSIONS Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.
Collapse
Affiliation(s)
- Ana M Fortes
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| | - Patricia Agudelo-Romero
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| | - Marta S Silva
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, FCUL, Lisbon, Portugal
| | - Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Lisete Sousa
- Department of Statistics and Operational Research, CEAUL (Centro de Estatística e Aplicações da UL), FCUL, Lisbon, Portugal
| | - Federica Maltese
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Young H Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jerome Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), CCT, C/Madre de Dios 51, 26006 Logroño, Spain
| | - José M Martinez- Zapater
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), CCT, C/Madre de Dios 51, 26006 Logroño, Spain
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maria S Pais
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| |
Collapse
|
37
|
Tillett RL, Ergül A, Albion RL, Schlauch KA, Cramer GR, Cushman JC. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC PLANT BIOLOGY 2011; 11:86. [PMID: 21592389 PMCID: PMC3224124 DOI: 10.1186/1471-2229-11-86] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/18/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. RESULTS A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. CONCLUSIONS The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods.
Collapse
Affiliation(s)
- Richard L Tillett
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Ali Ergül
- Biotechnology Institute, Ankara University, Merkez Laboratuvari, Rektorluk Binasi Arkasi, 06100 Ankara, Turkey
| | - Rebecca L Albion
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| |
Collapse
|
38
|
Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2521-69. [PMID: 21576399 DOI: 10.1093/jxb/erq434] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.
Collapse
Affiliation(s)
- Maria José Martínez-Esteso
- Grupo de Proteómica y Genómica Funcional de Plantas, Dept. Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | | | | | | | | |
Collapse
|
39
|
Palma JM, Corpas FJ, del Río LA. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 2011; 74:1230-43. [PMID: 21524723 DOI: 10.1016/j.jprot.2011.04.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022]
Abstract
Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages.
Collapse
Affiliation(s)
- José M Palma
- Departmento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain.
| | | | | |
Collapse
|
40
|
Negri AS, Robotti E, Prinsi B, Espen L, Marengo E. Proteins involved in biotic and abiotic stress responses as the most significant biomarkers in the ripening of Pinot Noir skins. Funct Integr Genomics 2011; 11:341-55. [PMID: 21234783 DOI: 10.1007/s10142-010-0205-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/14/2010] [Accepted: 12/18/2010] [Indexed: 12/30/2022]
Abstract
We propose an integrated approach, obtained by the combination of multivariate statistics and proteomics, useful to isolate candidate biomarkers for the evaluation of grape ripening. We carried out a comparative 2-DE analysis of grape skins collected in three moments of ripening and analyzed the spot volume dataset through the application of principal component analysis followed by forward stepwise-linear discriminant analysis. This technique allowed to discriminate véraison, quite mature and mature samples, and to sort the matched spots according to their significance. We identified 36 spots showing high discriminating coefficients through liquid chromatography - electrospray ionization - tandem mass spectrometry (LC-ESI-MS/MS). Most of them were involved in biotic and abiotic stress responses indicating these enzymes as good candidate markers of berry ripening. These evidences hint at a likely developmental role of these proteins, in addition to their reported activity in stress events. Restricting the same statistical analysis to the samples belonging to the two last stages, it was indicated that this approach can clearly distinguish these close and similar phases of berry development. Taken all together, these results bear out that the employment of the combination of 2-DE and multivariate statistics is a reliable tool in the identification of new protein markers for describing the ripening phases and to assess the overall quality of the fruit.
Collapse
Affiliation(s)
- Alfredo Simone Negri
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, via Celoria 2, Facoltà di Agraria, Milan, Italy
| | | | | | | | | |
Collapse
|
41
|
Falara V, Manganaris GA, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis AK. A ß-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Integr Genomics 2011; 11:357-68. [PMID: 21221699 DOI: 10.1007/s10142-010-0204-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/19/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify genes that might be involved in tolerance to extended low temperature storage. Peach fruit from 'Morettini No2' to 'Royal Glory', cultivars sensitive and tolerant to chilling injury (CI), respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (shelf-life, 25°C) or subjected to 4 and 6 weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. The use of μPEACH 1.0 microarray platform identified a number of genes that were differentially expressed in 'Morettini No2' and 'Royal Glory' fruit after the extended storage period. Based on their possible involvement in physiological processes related to cold storage and on their differential expression pattern, two heat shock proteins, a β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related (PR) protein were further selected for detailed analysis via RNA blot analysis. It is suggested that β-D: -xylosidase and PR-4B precursor genes could be related to the different tolerance to CI observed in the two peach cultivars since generally higher expression levels were observed in cv. 'Royal Glory', the tolerant one. These two genes could play a role in peach tolerance to chilling injury.
Collapse
|
42
|
Martínez-Esteso MJ, Casado-Vela J, Sellés-Marchart S, Elortza F, Pedreño MA, Bru-Martínez R. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. ACTA ACUST UNITED AC 2011; 7:749-65. [DOI: 10.1039/c0mb00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010; 15:9057-91. [PMID: 21150825 PMCID: PMC6259108 DOI: 10.3390/molecules15129057] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/07/2010] [Indexed: 01/21/2023] Open
Abstract
Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.
Collapse
Affiliation(s)
- Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Mu
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guo-Liang Yan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Na-Na Liang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Malcolm J. Reeves
- Faculty of Applied Science, Business and Computing, Eastern Institute of Technology, Napier 4142, New Zealand
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-62737136; Fax: +86-10-62737136
| |
Collapse
|
44
|
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME, Benvenuto E, Delledonne M, Pezzotti M. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. PLANT PHYSIOLOGY 2010; 154:1439-59. [PMID: 20826702 PMCID: PMC2971619 DOI: 10.1104/pp.110.160275] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/08/2010] [Indexed: 05/19/2023]
Abstract
The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed.
Collapse
|
45
|
Pandit SS, Kulkarni RS, Giri AP, Köllner TG, Degenhardt J, Gershenzon J, Gupta VS. Expression profiling of various genes during the fruit development and ripening of mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:426-33. [PMID: 20363641 DOI: 10.1016/j.plaphy.2010.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/20/2010] [Indexed: 05/04/2023]
Abstract
Mango (Mangifera indica L. cv. Alphonso) development and ripening are the programmed processes; conventional indices and volatile markers help to determine agronomically important stages of fruit life (fruit-setting, harvesting maturity and ripening climacteric). However, more and precise markers are required to understand this programming; apparently, fruit's transcriptome can be a good source of such markers. Therefore, we isolated 18 genes related to the physiology and biochemistry of the fruit and profiled their expression in developing and ripening fruits, flowers and leaves of mango using relative quantitation PCR. In most of the tissues, genes related to primary metabolism, abiotic stress, ethylene response and protein turnover showed high expression as compared to that of the genes related to flavor production. Metallothionin and/or ethylene-response transcription factor showed highest level of transcript abundance in all the tissues. Expressions of mono- and sesquiterpene synthases and 14-3-3 lowered during ripening; whereas, that of lipoxygenase, ethylene-response factor and ubiquitin-protein ligase increased during ripening. Based on these expression profiles, flower showed better positive correlation with developing and ripening fruits than leaf. Most of the genes showed their least expression on the second day of harvest, suggesting that harvesting signals significantly affect the fruit metabolism. Important stages in the fruit life were clearly indicated by the significant changes in the expression levels of various genes. These indications complemented those from the previous analyses of fruit development, ripening and volatile emission, revealing the harmony between physiological, biochemical and molecular activities of the fruit.
Collapse
Affiliation(s)
- Sagar S Pandit
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | | | | | | | |
Collapse
|
46
|
Giribaldi M, Gény L, Delrot S, Schubert A. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2447-58. [PMID: 20388747 PMCID: PMC2877898 DOI: 10.1093/jxb/erq079] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 05/19/2023]
Abstract
The control of ripening of the non-climacteric grapevine fruit is still a matter of debate, but several lines of evidence point to an important role for the hormone abscisic acid (ABA). The effects of ABA treatments on Cabernet Sauvignon berries before and at véraison were studied using a 2-DE proteomic approach. Proteins from whole deseeded berries (before véraison) and berry flesh and skin (at véraison) treated with 0.76 mM ABA and collected 24 h after treatment were separated and analysed. A total of 60 protein spots showed significant variations between treated and control berries, and 40 proteins, mainly related to general metabolism and cell defence, were identified by LC MS/MS. Our results show that ABA acts mainly through the regulation of mostly the same proteins which are involved in the ripening process, and that several of these changes share common elements with the ABA-induced responses in vegetative tissues.
Collapse
Affiliation(s)
- Marzia Giribaldi
- Università di Torino, Dipartimento Colture arboree, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy.
| | | | | | | |
Collapse
|
47
|
Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol Adv 2010; 28:94-107. [DOI: 10.1016/j.biotechadv.2009.10.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 01/16/2023]
|
48
|
Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, Fennell AY. VitisNet: "Omics" integration through grapevine molecular networks. PLoS One 2009; 4:e8365. [PMID: 20027228 PMCID: PMC2791446 DOI: 10.1371/journal.pone.0008365] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/24/2009] [Indexed: 11/25/2022] Open
Abstract
Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - Grant R. Cramer
- Department of Biochemistry, University of Nevada Reno, Reno, Nevada, United States of America
| | - Julie A. Dickerson
- Department of Electrical and Computer Engineering and Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
| | - Kathy Mathiason
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - John Van Hemert
- Department of Electrical and Computer Engineering and Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
| | - Anne Y. Fennell
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
49
|
Koyama K, Sadamatsu K, Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 2009; 10:367-81. [PMID: 19841954 DOI: 10.1007/s10142-009-0145-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/24/2009] [Accepted: 09/27/2009] [Indexed: 12/11/2022]
Abstract
We investigated the effect of exogenous abscisic acid (ABA) application on the transcriptome as well as the phenolic profiles in the skins of Vitis vinifera cv. Cabernet Sauvignon grape berries grown on the vine and cultured in vitro. ABA application rapidly induced the accumulation of anthocyanin and flavonol. Correlatively, the structural genes in the phenylpropanoid and flavonoid pathways, their transcriptional regulators, as well as genes considered to be involved in the acylation and transport of anthocyanin into the vacuole, were upregulated by ABA treatment. The Genechip analysis showed that the ABA treatment significantly up- or downregulated a total of 345 and 1,482 transcripts in the skins of berries grown on the vine and cultured in vitro, respectively. Exogenous ABA modulated the transcripts associated with osmotic responses, stress responses, cell wall modification, auxin and ethylene metabolism and responses, in addition to the induction of anthocyanin biosynthetic genes, and reduced those associated with photosynthesis; approximately half of these transcripts were identical to the previously reported ripening-specific genes.
Collapse
Affiliation(s)
- Kazuya Koyama
- Fundamental Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | | | | |
Collapse
|
50
|
Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009; 9:2503-28. [PMID: 19343710 DOI: 10.1002/pmic.200800158] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well-watered and water-deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2-D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post-transcriptional processes. About half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue-specific origins and the influence of water-deficit stress on the accumulation of key flavor and aroma compounds in wine.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557-0200, USA
| | | | | | | | | | | |
Collapse
|