1
|
Su LY, Liu ZT, Wang XL, Chen PY, Liu H, Xiong JS, Xiong AS. Evolutionary trajectories and subfunctionalization of 2 key methyltransferase regulator subfamilies in plants. PLANT PHYSIOLOGY 2025; 198:kiaf191. [PMID: 40331371 DOI: 10.1093/plphys/kiaf191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methylation, a conserved epigenetic mark in both plants and animals, plays a critical role in growth, development, and adaptability. This study explores the origin, evolution, and functional diversification of 2 key methyltransferase regulators, DNAJ-domain-containing protein 1/2/3 (DNAJ1/2/3) and SU(VAR)3-9 HOMOLOG 1/3 (SUVH1/3), in plants. By analyzing genomic data from 21 algae and 86 land plants, we discovered that DNAJ1/2/3 originated within Magnoliopsida, while SUVH1/3 emerged in ferns and evolved through retrotransposition. Both protein families have undergone multiple duplication events and positive selection throughout plant evolution, resulting in their expansion and functional divergence. In dicotyledons, DNAJ1/2/3 diverged into 3 subclades, whereas SUVH1/3 underwent a common duplication event in its ancestral lineage, resulting in 2 subgroups. Structural domain analysis revealed that the evolution of PHD fingers in DNAJ1/2/3 and AT domains in SUVH1/3, under selective pressure, enhanced their interaction capabilities and contributed to the formation of complexes involved in DNA methylation and demethylation regulation. Expression profile analysis across various plant taxa demonstrated tissue-specific expression patterns, with higher expression levels observed in meristematic tissues and active cell regions. These findings elucidate the evolutionary patterns of DNAJ1/2/3 and SUVH1/3 and offer insights into their functional diversification in plants.
Collapse
Affiliation(s)
- Li-Yao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zheng-Tai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xi-Liang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Pei-Yan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jin-Song Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
2
|
Zhang C, Lan HJ, Liao LN, Huang MJ, Xu W, Zhang H, Ma Q, Li F, Cheng N, Nakata PA, Whitham SA, Liu JZ. GmHSP40.1, a nuclear-localized soybean J domain protein, participates in regulation of flowering time through interacting with EMF1 and JMJ14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112342. [PMID: 39622386 DOI: 10.1016/j.plantsci.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Heat shock protein 40s (HSP40s) are a group of J domain proteins (JDPs), which serve as co-chaperones for heat shock protein 70s. We previously reported that over-expression of a soybean class C JDP, GmHSP40.1, in Arabidopsis activated defense responses. Surprisingly, a significantly delayed flowering phenotype was also observed for the GmHSP40.1-overexpressing (OE) lines. We provided evidence that the late-flowering phenotype observed in the GmHSP40.1-OE lines was not due to impaired pri-miRNA processing and pre-mRNA splicing. Instead, we found that GmHSP40.1 interacted and co-localized with both EMF1 and JMJ14, two major components in the EMF1 complex (EMF1c), which plays a key role in depositing and maintaining the H3K27me3 modification in the FT locus. Consistent with these interactions, the H3K27me3 modification at FT chromatin was significantly increased, whereas the H3K27me3 modification at FLC locus was significantly decreased in the GmHSP40.1-OE line compared with the wde-type Col-0. Interestingly, the H3K4me3 modification was just opposite to H3K27me3 modification at FT and FLC loci, suggesting an antagonistic relationship between these two modifications. Accordingly, the expression of FT and FLC was significantly reduced and increased, respectively, in the GmHSP40.1-OE line compared with that of Col-0. Lastly, we showed that both EMF1 and JMJ14 are genetically epistatic to GmHSP40.1-overexpression. Together, our results revealed that GmHSP40.1 negatively regulates flowering time through promoting the function of EMF1c via interacting with both EMF1 and JMJ14.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Na Liao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hui Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Ma
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ninghui Cheng
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paul A Nakata
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Chen C, Wang Y, Wu K, Ding Y, Tang M, Zhang X, Pan Y, Wu L, Su C, Hong Z, Zhang J, Li J. The DnaJ1 heat shock protein interacts with the flavanone 3-hydroxylase-like protein F3HL to synergistically enhance drought tolerance by scavenging reactive oxygen species in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70097. [PMID: 40089906 DOI: 10.1111/tpj.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
The widely distributed heat shock protein DnaJ is renowned for its pivotal role in enhancing thermal tolerance in plants; however, its involvement in drought tolerance remains elusive. In this study, genes encoding DnaJ1 were cloned from drought-resistant wild tomato (Solanum pennellii) and drought-sensitive cultivated tomato (Solanum lycopersicum). SpDnaJ1 and SlDnaJ1 from both tomato species were localized in the chloroplast, and their gene expression was induced by various abiotic stresses. SpDnaJ1 was found to be a more potent regulator than SlDnaJ1 in oxidative stress tolerance when expressed in yeast cells. Overexpression of SpDnaJ1 was demonstrated to confer drought tolerance in transgenic plants of cultivated tomato. These transgenic plants exhibited reduced relative conductivity, leaf water loss rate, and malondialdehyde content as compared to the wild-type plants following drought treatment. RNA-seq analysis revealed that overexpression of SpDnaJ1 primarily affects the expression of genes associated with antioxidants, protease inhibitors, and MAPK signaling in response to drought stress. Screening of a tomato cDNA library in the yeast two-hybrid system identified a flavanone 3-hydroxylase-like protein (F3HL) as an interacting protein of DnaJ1. Subsequent findings revealed that F3HL enhances drought tolerance in tomato by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. These findings demonstrate a pivotal role of DnaJ1-F3HL interaction in enhancing drought tolerance, unveiling a novel molecular mechanism in drought tolerance in plants.
Collapse
Affiliation(s)
- Chunrui Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yaling Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Ke Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yin Ding
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Min Tang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Xingguo Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yu Pan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Lang Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Chenggang Su
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jinhua Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|
4
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
5
|
Liu J, Yuan X, Tian M, Chen J, Chen C, Luo Z, Guo T, Huo X, Xiao W. OsNAL11 and OsGASR9 Regulate the Low-Temperature Germination of Rice Seeds by Affecting GA Content. Int J Mol Sci 2024; 25:11291. [PMID: 39457073 PMCID: PMC11508740 DOI: 10.3390/ijms252011291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Low temperatures cause serious threat to rice seed emergence, which has become one of the main limiting factors in the production of direct seeding rice. It is of great importance to study the genes controlling low-temperature tolerance during seed germination and to mine the possible regulatory mechanism for developing new rice varieties with immense low-temperature germination ability. In the current research study, two types of mutants of nal11 and gasr9, derived from the WT (wild type) ZH11, were used for the analysis of low-temperature germinability. The results showed that the nal11 and gasr9 mutants displayed no significant difference in germination rate with ZH11 at room temperature, but the mutants showed significantly lower germination rates, germination potential and germination index, and slowed seedling growth in the simulated direct seeding experiments at low temperatures compared to ZH11. Additionally, the activity of POD, SOD, CAT, and anti-superoxide anion radial activity were significantly reduced, but the levels of MDA and H2O2 were significantly higher in the nal11 and gasr9 mutant seeds that were germinated at low temperatures compared to ZH11. Further analysis revealed that the levels of total active GA, especially GA4 and GA7, were significantly lower in the nal11 and gasr9 mutants than that in ZH11 during low-temperature germination. Based on qRT-PCR analysis, the expression levels of some GA synthesis-related genes were higher, whereas some were lower in the nal11 and gasr9 mutants than those in ZH11, however, the GA metabolism-related genes OsGA2ox8 and OsGA2ox10 and the GA signaling negative regulator gene SLR1 were significantly up-regulated in both nal11 and gasr9 mutants at several time points during low-temperature germination. This may explain the lower GA levels in the nal11 and gasr9 mutants. Furthermore, the interaction between the OsNAL11 and OsGASR9 proteins was confirmed by Y2H, LUC, and Co-IP assays. This study provides preliminary insights into the regulatory mechanism of the OsNAL11 and OsGASR9 genes, which control the low-temperature germination of rice seeds by affecting the GA pathway. Our study will provide the basis for further mining the molecular mechanisms of low-temperature germination in rice and valuable theoretical reference for breeding varieties with strong low-temperature germinability.
Collapse
Affiliation(s)
- Jinzhao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Xi Yuan
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Mengqing Tian
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Jialing Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Zengtong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Xing Huo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| |
Collapse
|
6
|
Liu M, Bian Z, Shao M, Feng Y, Ma W, Liang G, Mao J. Expression analysis of the apple HSP70 gene family in abiotic stress and phytohormones and expression validation of candidate MdHSP70 genes. Sci Rep 2024; 14:23975. [PMID: 39402100 PMCID: PMC11473515 DOI: 10.1038/s41598-024-73368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/17/2024] Open
Abstract
Heat shock protein 70 (HSP70) is one kind of molecular chaperones which are widely found in organisms, and its members are highly conserved among each other, with important roles in plant growth and development. In this study, 56 HSP70 genes were identified from the apple genome database. Analysis of gene duplication events showed that tandem and segmental duplication events play an important role in promoting the amplification of the MdHSP70 gene family. Collinearity analysis showed that HSP70 family members of apple were more closely related to HSP70 family members of Arabidopsis, tomato and soybean. The promoter region of the apple HSP70 genes contains a large number of cis-acting elements in response to hormones and stress. Tissue-specific expression analysis showed that some of the genes were associated with various stages of the apple growth process. Codon preference analysis showed small differences between codon bases 1 and 3 in the apple HSP70 genome, and the codon base composition had a small effect on codon usage preference. The multiple expression patterns of the MdHSP70 gene suggested that MdHSP70 gene members play important roles in growth and development and in response to hormonal and abiotic stresses. The yeast two-hybrid (Y2H) demonstrated that MdHSP70-53 interacts with MdDVH24_032563. The qRT-PCR analysis showed that most MdHSP70 members' hormonal and abiotic stresses (MdHSP70-6, MdHSP70-26 and MdHSP70-45) appeared to be highly expressed. To further elucidate the function of MdHSP70 (6, 26, 45), we introduced them into tobacco to confirm subcellular locations and noted that these genes are located in the cytoplasm and cell membrane. This study serves as a theoretical basis for further studies of the MdHSP70 gene and helps to further investigate the functional characterization of MdHSP70 gene.
Collapse
Affiliation(s)
- Ming Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyuan Bian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Li G, Chen Z, Guo X, Tian D, Li C, Lin M, Hu C, Yan J. Genome-Wide Identification and Analysis of Maize DnaJ Family Genes in Response to Salt, Heat, and Cold at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2488. [PMID: 39273972 PMCID: PMC11396969 DOI: 10.3390/plants13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which are likely distributed in the chloroplast, nucleus, and cytoplasm. Our analysis revealed that ZmDnaJs were classified into three types, with conserved protein motifs and gene structures within the same type, particularly among members of the same subfamily. Gene duplication events have likely contributed to the expansion of the ZmDnaJ family in maize. Analysis of cis-regulatory elements in ZmDnaJ promoters suggested involvement in stress responses, growth and development, and phytohormone sensitivity in maize. Specifically, four cis-acting regulatory elements associated with stress responses and phytohormone regulation indicated a role in adaptation. RNA-seq analysis showed constitutive expression of most ZmDnaJ genes, some specifically in pollen and endosperm. More importantly, certain genes also responded to salt, heat, and cold stresses, indicating potential interaction between stress regulatory networks. Furthermore, early responses to heat stress varied among five inbred lines, with upregulation of almost tested ZmDnaJ genes in B73 and B104 after 6 h, and fewer genes upregulated in QB1314, MD108, and Zheng58. After 72 h, most ZmDnaJ genes in the heat-sensitive inbred lines (B73 and B104) returned to normal levels, while many genes, including ZmDnaJ55, 79, 88, 90, and 91, remained upregulated in the heat-tolerant inbred lines (QB1314, MD108, and Zheng58) suggesting a synergistic function for prolonged protection against heat stress. In conclusion, our study provides a comprehensive analysis of the ZmDnaJ family in maize and demonstrates a correlation between heat stress tolerance and the regulation of gene expression within this family. These offer a theoretical basis for future functional validation of these genes.
Collapse
Affiliation(s)
- Gang Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Chenchen Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Min Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jingwan Yan
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
8
|
Qin J, Hou X, Wang H, Yuan T, Wei H, Liu G, Chen Y, Lian B, Zhong F, Zhang J, Yu C. Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress. Genetica 2024; 152:101-117. [PMID: 38724749 DOI: 10.1007/s10709-024-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/18/2024] [Indexed: 06/26/2024]
Abstract
DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.
Collapse
Affiliation(s)
- Jin Qin
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xiaoyu Hou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Huanzhe Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tianyi Yuan
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
9
|
Wang J, Long W, Pan J, Zhang X, Luo L, Qian M, Chen W, Luo L, Xu W, Li Y, Cai Y, Xie H. DNAL7, a new allele of NAL11, has major pleiotropic effects on rice architecture. PLANTA 2024; 259:93. [PMID: 38509429 DOI: 10.1007/s00425-024-04376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.
Collapse
Affiliation(s)
- Jie Wang
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Weixiong Long
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Jintao Pan
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Xiaolin Zhang
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Lihua Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Mingjuan Qian
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Laiyang Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Weibiao Xu
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yonghui Li
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
10
|
Gao H, Lin X, Yuan X, Zou J, Zhang H, Zhang Y, Liu Z. The salivary chaperone protein NlDNAJB9 of Nilaparvata lugens activates plant immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6874-6888. [PMID: 37103882 DOI: 10.1093/jxb/erad154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) is a main pest on rice. It secretes saliva to regulate plant defense responses, when penetrating rice plant and sucking phloem sap through its stylet. However, the molecular mechanisms of BPH salivary proteins regulating plant defense responses remain poorly understood. A N. lugens DNAJ protein (NlDNAJB9) gene was highly expressed in salivary glands, and the knock down of NlDNAJB9 significantly enhanced honeydew excretion and fecundity of the BPH. NlDNAJB9 could induce plant cell death, and the overexpression of NlDNAJB9 gene in Nicotiana benthamiana induced calcium signaling, mitogen-activated protein kinase (MAPK) cascades, reactive oxygen species (ROS) accumulation, jasmonic acid (JA) hormone signaling and callose deposition. The results from different NlDNAJB9 deletion mutants indicated that the nuclear localization of NlDNAJB9 was not necessary to induce cell death. The DNAJ domain was the key region to induce cell death, and the overexpression of DNAJ domain in N. benthamiana significantly inhibited insect feeding and pathogenic infection. NlDNAJB9 might interact indirectly with NlHSC70-3 to regulate plant defense responses. NlDNAJB9 and its orthologs were highly conserved in three planthopper species, and could induce ROS burst and cell death in plants. Our study provides new insights into the molecular mechanisms of insect-plant interactions.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
11
|
Chen D, Li D, Li Z, Song Y, Li Q, Wang L, Zhou D, Xie F, Li Y. Legume nodulation and nitrogen fixation require interaction of DnaJ-like protein and lipid transfer protein. PLANT PHYSIOLOGY 2023; 193:2164-2179. [PMID: 37610417 DOI: 10.1093/plphys/kiad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 08/24/2023]
Abstract
The lipid transport protein (LTP) product of the AsE246 gene of Chinese milk vetch (Astragalus sinicus) contributes to the transport of plant-synthesized lipids to the symbiosome membranes (SMs) that are required for nodule organogenesis in this legume. However, the mechanisms used by nodule-specific LTPs remain unknown. In this study, a functional protein in the DnaJ-like family, designated AsDJL1, was identified and shown to interact with AsE246. Immunofluorescence showed that AsDJL1 was expressed in infection threads (ITs) and in nodule cells and that it co-localized with rhizobium, and an immunoelectron microscopy assay localized the protein to SMs. Via co-transformation into Nicotiana benthamiana cells, AsDJL1 and AsE246 displayed subcellular co-localization in the cells of this heterologous host. Co-immunoprecipitation assays confirmed that AsDJL1 interacted with AsE246 in nodules. The essential interacting region of AsDJL1 was determined to be the zinc finger domain at its C-terminus. Chinese milk vetch plants transfected with AsDJL1-RNAi had significantly decreased numbers of ITs, nodule primordia and nodules as well as reduced (by 83%) nodule nitrogenase activity compared with the controls. By contrast, AsDJL1 overexpression led to increased nodule fresh weight and nitrogenase activity. RNAi-AsDJL1 also significantly affected the abundance of lipids, especially digalactosyldiacylglycerol, in early-infected roots and transgenic nodules. Taken together, the results of this study provide insights into the symbiotic functions of AsDJL1, which may participate in lipid transport to SMs and play an essential role in rhizobial infection and nodule organogenesis.
Collapse
Affiliation(s)
- Dasong Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongzhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingsong Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Donglai Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuli Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Zhai X, Bai J, Xu W, Yang X, Jia Z, Xia W, Wu X, Liang Q, Li B, Jia N. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1677-1698. [PMID: 37294615 DOI: 10.1111/tpj.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Arabidopsis mitochondria-targeted heat shock protein 70 (mtHSC70-1) plays important roles in the establishment of cytochrome c oxidase-dependent respiration and redox homeostasis during the vegetative growth of plants. Here, we report that knocking out the mtHSC70-1 gene led to a decrease in plant fertility; the fertility defect of the mutant was completely rescued by introducing the mtHSC70-1 gene. mtHSC70-1 mutants also showed defects in female gametophyte (FG) development, including delayed mitosis, abnormal nuclear position, and ectopic gene expression in the embryo sacs. In addition, we found that an Arabidopsis mitochondrial J-protein gene (DjA30) mutant, j30+/- , had defects in FG development and fertility similar to those of mtHSC70-1 mutant. mtHSC70-1 and DjA30 had similar expression patterns in FGs and interacted in vivo, suggesting that these two proteins might cooperate during female gametogenesis. Further, respiratory chain complex IV activity in mtHSC70-1 and DjA30 mutant embryo sacs was markedly downregulated; this led to the accumulation of mitochondrial reactive oxygen species (ROS). Scavenging excess ROS by introducing Mn-superoxide dismutase 1 or catalase 1 gene into the mtHSC70-1 mutant rescued FG development and fertility. Altogether, our results suggest that mtHSC70-1 and DjA30 are essential for the maintenance of ROS homeostasis in the embryo sacs and provide direct evidence for the roles of ROS homeostasis in embryo sac maturation and nuclear patterning, which might determine the fate of gametic and accessory cells.
Collapse
Affiliation(s)
- Xiaoting Zhai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenyan Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiujuan Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zichao Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxuan Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqing Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
13
|
Liu S, Mo X, Sun L, Gao L, Su L, An Y, Zhou P. MsDjB4, a HSP40 Chaperone in Alfalfa ( Medicago sativa L.), Improves Alfalfa Hairy Root Tolerance to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2808. [PMID: 37570962 PMCID: PMC10421020 DOI: 10.3390/plants12152808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
The toxicity of aluminum (Al) in acidic soils poses a significant limitation to crop productivity. In this study, we found a notable increase in DnaJ (HSP40) expression in the roots of Al-tolerant alfalfa (WL-525HQ), which we named MsDjB4. Transient conversion assays of tobacco leaf epidermal cells showed that MsDjB4 was targeted to the membrane system including Endoplasmic Reticulum (ER), Golgi, and plasma membrane. We overexpressed (MsDjB4-OE) and suppressed (MsDjB4-RNAi) MsDjB4 in alfalfa hairy roots and found that MsDjB4-OE lines exhibited significantly better tolerance to Al stress compared to wild-type and RNAi hairy roots. Specifically, MsDjB4-OE lines had longer root length, more lateral roots, and lower Al content compared to wild-type and RNAi lines. Furthermore, MsDjB4-OE lines showed lower levels of lipid peroxidation and ROS, as well as higher activity of antioxidant enzymes SOD, CAT, and POD compared to wild-type and RNAi lines under Al stress. Moreover, MsDjB4-OE lines had higher soluble protein content compared to wild-type and RNAi lines after Al treatment. These findings provide evidence that MsDjB4 contributes to the improved tolerance of alfalfa to Al stress by facilitating protein synthesis and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Siyan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Xin Mo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Linjie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| |
Collapse
|
14
|
Razzaq MK, Rani R, Xing G, Xu Y, Raza G, Aleem M, Iqbal S, Arif M, Mukhtar Z, Nguyen HT, Varshney RK, Siddique KHM, Gai J. Genome-Wide Identification and Analysis of the Hsp40/J-Protein Family Reveals Its Role in Soybean ( Glycine max) Growth and Development. Genes (Basel) 2023; 14:1254. [PMID: 37372434 DOI: 10.3390/genes14061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I-XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Reena Rani
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Guangnan Xing
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Xu
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Muqadas Aleem
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan
| | - Shahid Iqbal
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Muhammad Arif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zahid Mukhtar
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Junyi Gai
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Liang C, Li L, Zhao H, Lan M, Tang Y, Zhang M, Qin D, Wu G, Gao X. Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress. Cell Stress Chaperones 2023; 28:303-320. [PMID: 37071342 PMCID: PMC10167091 DOI: 10.1007/s12192-023-01338-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Heat shock proteins (HSP) are molecular chaperones involved in many normal cellular processes and environmental stresses. At the genome-wide level, there were no reports on the diversity and phylogeny of the heat shock protein family in Procecidochares utilis. In this study, 43 HSPs were identified from the genome of P. utilis, including 12 small heat shock proteins (sHSPs), 23 heat shock protein 40 (DNAJs), 6 heat shock protein 70 (HSP70s), and 2 heat shock protein 90 (HSP90s). The characteristics of these candidates HSP genes were analyzed by BLAST, and then phylogenetic analysis was carried out. Quantitative real-time PCR (qRT-PCR) was used to analyze the spatiotemporal expression patterns of sHSPs and HSP70s in P. utilis after temperature stress. Results showed that most sHSPs could be induced under heat stress during the adult stage of P. utilis, while a few HSP70s could be induced at the larval stage. This study provides an information framework for the HSP family of P. utilis. Moreover, it lays an important foundation for a better understanding of the role of HSP in the adaptability of P. utilis to various environments.
Collapse
Affiliation(s)
- Chen Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Lifang Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Hang Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Mingxian Lan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Yongyu Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| |
Collapse
|
16
|
Zhen Z, Dongying F, Yue S, Lipeng Z, Jingjing L, Minying L, Yuanyuan X, Juan H, Shiren S, Yi R, Bin H, Chao M. Translational profile of coding and non-coding RNAs revealed by genome wide profiling of ribosome footprints in grapevine. FRONTIERS IN PLANT SCIENCE 2023; 14:1097846. [PMID: 36844052 PMCID: PMC9944039 DOI: 10.3389/fpls.2023.1097846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Translation is a crucial process during plant growth and morphogenesis. In grapevine (Vitis vinifera L.), many transcripts can be detected by RNA sequencing; however, their translational regulation is still largely unknown, and a great number of translation products have not yet been identified. Here, ribosome footprint sequencing was carried out to reveal the translational profile of RNAs in grapevine. A total of 8291 detected transcripts were divided into four parts, including the coding, untranslated regions (UTR), intron, and intergenic regions, and the 26 nt ribosome-protected fragments (RPFs) showed a 3 nt periodic distribution. Furthermore, the predicted proteins were identified and classified by GO analysis. More importantly, 7 heat shock-binding proteins were found to be involved in molecular chaperone DNA J families participating in abiotic stress responses. These 7 proteins have different expression patterns in grape tissues; one of them was significantly upregulated by heat stress according to bioinformatics research and was identified as DNA JA6. The subcellular localization results showed that VvDNA JA6 and VvHSP70 were both localized on the cell membrane. Therefore, we speculate that DNA JA6 may interact with HSP70. In addition, overexpression of VvDNA JA6 and VvHSP70, reduced the malondialdehyde (MDA) content, improved the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), increased the content of proline, an osmolyte substance, and affected the expression of the high-temperature marker genes VvHsfB1, VvHsfB2A, VvHsfC and VvHSP100. In summary, our study proved that VvDNA JA6 and the heat shock protein VvHSP70 play a positive role in the response to heat stress. This study lays a foundation for further exploring the balance between gene expression and protein translation in grapevine under heat stress.
Collapse
Affiliation(s)
- Zhang Zhen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Dongying
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Song Yue
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Lipeng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Liu Jingjing
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Liu Minying
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yuanyuan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - He Juan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Song Shiren
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren Yi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei, China
| | - Ma Chao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Liu Y, Li M, Yu J, Ma A, Wang J, Yun DJ, Xu ZY. Plasma membrane-localized Hsp40/DNAJ chaperone protein facilitates OsSUVH7-OsBAG4-OsMYB106 transcriptional complex formation for OsHKT1;5 activation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:265-279. [PMID: 36349953 DOI: 10.1111/jipb.13403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The salinization of irrigated land affects agricultural productivity. HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER 1;5 (OsHKT1;5)-dependent sodium (Na+ ) transport is a key salt tolerance mechanism during rice growth and development. Using a previously generated high-throughput activation tagging-based T-DNA insertion mutant pool, we isolated a mutant exhibiting salt stress-sensitive phenotype, caused by a reduction in OsHKT1;5 transcripts. The salt stress-sensitive phenotype of this mutant results from the loss of function of OsDNAJ15, which encodes plasma membrane-localized heat shock protein 40 (Hsp40). osdnaj15 loss-of-function mutants show decreased plant height, increased leaf angle, and reduced grain number caused by shorter panicle length and fewer branches. On the other h'and, OsDNAJ15-overexpression plants showed salt stress-tolerant phenotypes. Intriguingly, salt stress facilitates the nuclear relocation of OsDNAJ15 so that it can interact with OsBAG4, and OsDNAJ15 and OsBAG4 synergistically facilitate the DNA-binding activity of OsMYB106 to positively regulate the expression of OsHKT1;5. Overall, our results reveal a novel function of plasma membrane-localized Hsp40 protein in modulating, alongside chaperon regulator OsBAG4, transcriptional regulation under salinity stress tolerance.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
18
|
Cai G, Xu Y, Zhang S, Chen T, Liu G, Li Z, Zhu Y, Wang G. A tomato chloroplast-targeted DnaJ protein, SlDnaJ20 maintains the stability of photosystem I/II under chilling stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2139116. [PMID: 36408837 PMCID: PMC9683050 DOI: 10.1080/15592324.2022.2139116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
DnaJ proteins are key molecular chaperones that act as a part of the stress response to stabilize plant proteins, thereby maintaining protein homeostasis under stressful conditions. Herein we used transgenic plants to explore the role of the tomato (Solanum lycopersicum) SlDnaJ20 chloroplast DnaJ protein in to the resistance of these proteins to cold. When chilled, transgenic plants exhibited superior cold resistance, with reduced growth inhibition and cellular damage and increased fresh mass and chlorophyll content relative to control. These transgenic plants further exhibited increased Fv/Fm, P700 oxidation, φRo, and δRo relative to control plants under chilling conditions. Under these same cold conditions, these transgenic plants also exhibited higher levels of core proteins in the photosystem I (PSI) and II (PSII) complexes (PsaA and PsaB; D1 and D2) relative to control wild-type plants. Together these results suggested that the overexpression of SlDnaJ20 is sufficient to maintain PSI and PSII complex stability and to alleviate associated photoinhibition of these complexes, thereby increasing transgenic plant resistance to cold stress.
Collapse
Affiliation(s)
- Guohua Cai
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Yujie Xu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Shuxia Zhang
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Tingting Chen
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Gan Liu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Zhengyue Li
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Youshuang Zhu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| |
Collapse
|
19
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
20
|
Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232314926. [PMID: 36499255 PMCID: PMC9740226 DOI: 10.3390/ijms232314926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.
Collapse
|
21
|
Kim HY, Hong S. Multi-Faceted Roles of DNAJB Protein in Cancer Metastasis and Clinical Implications. Int J Mol Sci 2022; 23:14970. [PMID: 36499297 PMCID: PMC9737691 DOI: 10.3390/ijms232314970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (HSPs) are highly conserved molecular chaperones with diverse cellular activities, including protein folding, assembly or disassembly of protein complexes, and maturation process under diverse stress conditions. HSPs also play essential roles in tumorigenesis, metastasis, and therapeutic resistance across cancers. Among them, HSP40s are widely accepted as regulators of HSP70/HSP90 chaperones and an accumulating number of biological functions as molecular chaperones dependent or independent of either of these chaperones. Despite large numbers of HSP40s, little is known about their physiologic roles, specifically in cancer progression. This article summarizes the multi-faceted role of DNAJB proteins as one subclass of the HSP40 family in cancer development and metastasis. Regulation and deregulation of DNAJB proteins at transcriptional, post-transcriptional, and post-translational levels contribute to tumor progression, particularly cancer metastasis. Furthermore, understanding differences in function and regulating mechanism between DNAJB proteins offers a new perspective on tumorigenesis and metastasis to improve therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
22
|
Regulation of Heat Stress in Physcomitrium (Physcomitrella) patens Provides Novel Insight into the Functions of Plant RNase H1s. Int J Mol Sci 2022; 23:ijms23169270. [PMID: 36012542 PMCID: PMC9409398 DOI: 10.3390/ijms23169270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
RNase H1s are associated with growth and development in both plants and animals, while the roles of RNase H1s in bryophytes have been rarely reported. Our previous data found that PpRNH1A, a member of the RNase H1 family, could regulate the development of Physcomitrium (Physcomitrella) patens by regulating the auxin. In this study, we further investigated the biological functions of PpRNH1A and found PpRNH1A may participate in response to heat stress by affecting the numbers and the mobilization of lipid droplets and regulating the expression of heat-related genes. The expression level of PpRNH1A was induced by heat stress (HS), and we found that the PpRNH1A overexpression plants (A-OE) were more sensitive to HS. At the same time, A-OE plants have a higher number of lipid droplets but with less mobility in cells. Consistent with the HS sensitivity phenotype in A-OE plants, transcriptomic analysis results indicated that PpRNH1A is involved in the regulation of expression of heat-related genes such as DNAJ and DNAJC. Taken together, these results provide novel insight into the functions of RNase H1s.
Collapse
|
23
|
Li C, Jia Y, Zhou R, Liu L, Cao M, Zhou Y, Wang Z, Di H. GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize ( Zea mays L.) seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:963874. [PMID: 35923879 PMCID: PMC9340071 DOI: 10.3389/fpls.2022.963874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Soil salt-alkalization is a common yet critical environmental stress factor for plant growth and development. Discovering and exploiting genes associated with alkaline tolerance in maize (Zea mays L.) is helpful for improving alkaline resistance. Here, an association panel consisting of 200 maize lines was used to identify the genetic loci responsible for alkaline tolerance-related traits in maize seedlings. A total of nine single-nucleotide polymorphisms (SNPs) and their associated candidate genes were found to be significantly associated with alkaline tolerance using a genome-wide association study (GWAS). An additional 200 genes were identified when the screen was extended to include a linkage disequilibrium (LD) decay distance of r2 ≥ 0.2 from the SNPs. RNA-sequencing (RNA-seq) analysis was then conducted to confirm the linkage between the candidate genes and alkali tolerance. From these data, a total of five differentially expressed genes (DEGs; |log2FC| ≥ 0.585, p < 0.05) were verified as the hub genes involved in alkaline tolerance. Subsequently, two candidate genes, Zm00001d038250 and Zm00001d001960, were verified to affect the alkaline tolerance of maize seedlings by qRT-PCR analysis. These genes were putatively involved protein binding and "flavonoid biosynthesis process," respectively, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Gene promoter region contains elements related to stress and metabolism. The results of this study will help further elucidate the mechanisms of alkaline tolerance in maize, which will provide the groundwork for future breeding projects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Jiao Q, Zhang M, Zada A, Hu X, Jia T. DJC78 is a cochaperone that interacts with cpHsc70-1 in the chloroplasts. Biochem Biophys Res Commun 2022; 626:236-242. [DOI: 10.1016/j.bbrc.2022.07.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
|
25
|
Tamadaddi C, Verma AK, Zambare V, Vairagkar A, Diwan D, Sahi C. J-like protein family of Arabidopsis thaliana: the enigmatic cousins of J-domain proteins. PLANT CELL REPORTS 2022; 41:1343-1355. [PMID: 35290497 DOI: 10.1007/s00299-022-02857-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
J-like proteins (JLPs) are emerging as ancillaries to the cellular chaperone network. They modulate functions of Hsp70:J-domain protein (JDP) systems in novel ways thereby having key roles in diverse plant processes. J-domain proteins (JDPs) form an obligate co-chaperone partnership with Hsp70s with their highly conserved J-domain to steer protein quality control processes in the cell. The HPD motif between helix II and helix III of the J-domain is crucial for JDP's interaction with Hsp70s. According to the most recent classification, J-like proteins (JLPs) form an extended class of the JDP family possessing a degenerate J-domain with the HPD motif non-conservatively replaced by other amino acid residues and hence are not able to interact with Hsp70s. Considering this most updated and acceptable JLP classification, we identified 21 JLPs in Arabidopsis thaliana that share a structurally conserved J-like domain (JLD), but lack the HPD motif. Analysis of publicly available gene expression data as well as real-time quantitative PCR performed for a few selected JLPs implicated some of these proteins in growth, development and stress response. Here, we summarize the current state of knowledge on plant JLPs and their involvement in vital plant cellular/metabolic processes, including chloroplast division, mitochondrial protein import and flowering. Finally, we propose possible modes of action for these highly elusive proteins and other DnaJ-related proteins (DNAJRs) in regulating the Hsp70 chaperone network.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vyankatesh Zambare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, India
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Avanti Vairagkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Danish Diwan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, University of Alabama, Birmingham, AL, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
- IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal, 462066, MP, India.
| |
Collapse
|
26
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
27
|
Li K, Chen R, Tu Z, Nie X, Song B, He C, Xie C, Nie B. Global Screening and Functional Identification of Major HSPs Involved in PVY Infection in Potato. Genes (Basel) 2022; 13:566. [PMID: 35456372 PMCID: PMC9031240 DOI: 10.3390/genes13040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
HSP40 (also known as DnaJ), HSP70, and HSP90 are major heat shock protein (HSP) families that play critical roles in plant growth and development and stress adaption. Recently, several members of the three HSP families were reported to be widely involved in the plant host-virus interactions. However, their global expression profiles and core members recruited by viruses are largely unknown. In this study, a total of 89 StDnaJs were identified from a genome-wide survey, and their classification, phylogenetic relationships, chromosomal locations, and gene duplication events were further analyzed. Together with 20 StHSP70s and 7 StHSP90s previously identified in the potato genome, the global expression patterns of the members in 3 HSP families were investigated in 2 potato cultivars during Potato virus Y (PVY) infection using RNA-seq data. Of them, 16 genes (including 8 StDnaJs, 6 StHSP70s, and 2 StHSP90s) were significantly up- or downregulated. Further analysis using qRT-PCR demonstrated that 7 of the 16 genes (StDnaJ06, StDnaJ17, StDnaJ21, StDnaJ63, StHSP70-6, StHSP70-19, and StHSP90.5) were remarkably upregulated in the potato cultivar 'Eshu 3' after PVY infection, implying their potential roles in the potato-PVY compatible interaction. Subsequent virus-induced gene silencing (VIGS) assays showed that silencing of the homologous genes of StDnaJ17, StDnaJ21, StHSP70-6, and StHSP90.5 in Nicotiana. benthamiana plants dramatically reduced the accumulation of PVY, which indicated the four genes may function as susceptibility factors in PVY infection. This study provides candidate genes for exploring the mechanism of potato-PVY compatible interaction and benefits breeding work aiming to produce new cultivars with the ability to grow healthily under PVY infection.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, Hunan Agricultural University, Changsha 410128, China;
| | - Zheng Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, NB E3B 4Z7, Canada;
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng He
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, Hunan Agricultural University, Changsha 410128, China;
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grape production in southern China suffers great loss due to various environmental stresses. To understand the mechanism of how the grape plants respond to these stresses is an active area of research in developing cultivation techniques. Plant stress resistance is known to rely on special proteins. Amongst them, DnaJ protein (HSP40) serves as co-chaperones of HSP70, playing crucial roles in various stress response. However, the DnaJ proteins encoded by the DnaJ gene family in Vitis vinifera L. have not been fully described yet. In this study, we identified 78 VvDnaJs in the grape genome that can be classified into three groups—namely, DJA, DJB, and DJC. To reveal the evolutionary and stress response mechanisms for the VvDnaJ gene family, their evolutionary and expression patterns were analyzed using the bioinformatic approach and qRT-PCR. We found that the members in the same group exhibited a similar gene structure and protein domain organization. Gene duplication analysis demonstrated that segmental and tandem duplication may not be the dominant pathway of gene expansion in the VvDnaJ gene family. Codon usage pattern analysis showed that the codon usage pattern of VvDnaJs differs obviously from the monocotyledon counterparts. Tissue-specific analysis revealed that 12 VvDnaJs present a distinct expression profile, implying their distinct roles in various tissues. Cis-acting element analysis showed that almost all VvDnaJs contained the elements responsive to either hormones or stresses. Therefore, the expression levels of VvDnaJs subjected to exogenous hormone applications and stress treatments were determined, and we found that VvDnaJs were sensitive to hormone treatments and shade, salt, and heat stresses, especially VIT_00s0324g00040. The findings of this study could provide comprehensive information for the further investigation on the genetics and protein functions of the DnaJ gene family in grape.
Collapse
|
29
|
Kohlhase DR, McCabe CE, Singh AK, O’Rourke JA, Graham MA. Comparing Early Transcriptomic Responses of 18 Soybean ( Glycine max) Genotypes to Iron Stress. Int J Mol Sci 2021; 22:11643. [PMID: 34769077 PMCID: PMC8583884 DOI: 10.3390/ijms222111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.
Collapse
Affiliation(s)
- Daniel R. Kohlhase
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Chantal E. McCabe
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| |
Collapse
|
30
|
Lee HS, Choi I, Jeon Y, Ahn HK, Cho H, Kim J, Kim JH, Lee JM, Lee S, Bünting J, Seo DH, Lee T, Lee DH, Lee I, Oh MH, Kim TW, Belkhadir Y, Pai HS. Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nat Commun 2021; 12:4194. [PMID: 34234144 PMCID: PMC8263706 DOI: 10.1038/s41467-021-24446-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.
Collapse
Affiliation(s)
- Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Ilyeong Choi
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Young Jeon
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Huikyong Cho
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - JiWoo Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jae-Hee Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - SungHee Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Julian Bünting
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Dong Hye Seo
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Insuk Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Man-Ho Oh
- Plant Developmental Genetics, Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Hyun-Sook Pai
- Department of Systems biology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
31
|
Ichino L, Boone BA, Strauskulage L, Harris CJ, Kaur G, Gladstone MA, Tan M, Feng S, Jami-Alahmadi Y, Duttke SH, Wohlschlegel JA, Cheng X, Redding S, Jacobsen SE. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science 2021; 372:eabg6130. [PMID: 34083448 PMCID: PMC8639832 DOI: 10.1126/science.abg6130] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
DNA methylation is associated with transcriptional repression of eukaryotic genes and transposons, but the downstream mechanism of gene silencing is largely unknown. Here we describe two Arabidopsis methyl-CpG binding domain proteins, MBD5 and MBD6, that are recruited to chromatin by recognition of CG methylation, and redundantly repress a subset of genes and transposons without affecting DNA methylation levels. These methyl-readers recruit a J-domain protein, SILENZIO, that acts as a transcriptional repressor in loss-of-function and gain-of-function experiments. J-domain proteins often serve as co-chaperones with HSP70s. Indeed, we found that SILENZIO's conserved J-domain motif was required for its interaction with HSP70s and for its silencing function. These results uncover an unprecedented role of a molecular chaperone J-domain protein in gene silencing downstream of DNA methylation.
Collapse
Affiliation(s)
- Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon A Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Luke Strauskulage
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew A Gladstone
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Maverick Tan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sascha H Duttke
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steven E Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Wang TY, Wu JR, Duong NKT, Lu CA, Yeh CH, Wu SJ. HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153430. [PMID: 33991823 DOI: 10.1016/j.jplph.2021.153430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
AtJ3 (J3)-a member of the Arabidopsis cytosolic HSP40 family-harbors a C-terminal CaaX motif for farnesylation, which is exclusively catalyzed by protein farnesyltransferase (PFT). Previously, prolonged incubation at 37 °C for 4 d was found to be lethal to the heat-intolerant 5 (hit5) mutant lacking PFT and transgenic j3 plants expressing a CaaX-abolishing J3C417S construct, indicating that farnesylated J3 is essential for heat tolerance in plants. Given the role of HSP40s as cochaperones of HSP70s, the thermal sensitivity of five individual cytosolic HSP70 (HSP70-1 to HSP70-5) knockout mutants was tested in this study. Only hsp70-4 was sensitive to the prolonged heat treatment like hit5 and j3. The bimolecular fluorescence complementation (BiFC) assay revealed that HSP70-4 interacted with J3 and J3C417Sin vivo at normal (23 °C) and high (37 °C) temperatures. At 23 °C, both HSP70-4-J3 and HSP70-4-J3C417S BiFC signals were uniformly distributed across the cell. However, following treatment at 37 °C, HSP70-4-J3, but not HSP70-4-J3C417S, BiFC signals were detected as discernable foci. These heat-induced HSP70-4-J3 BiFC foci were localized in heat stress granules (HSGs). In addition, hsp70-4 and J3C417S accumulated more insoluble proteins than the wild type. Thus, farnesylated J3 dictates the chaperone function of HSP70-4 in HSGs. Collectively, this study identified the first HSP70/HSP40-type chaperone machinery playing a crucial role in protecting plants against prolonged heat stress, and demonstrated the significance of protein farnesylation in its protective function.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Ching-Hui Yeh
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| |
Collapse
|
33
|
Kumar A, Friedman H, Tsechansky L, Graber ER. Distinctive in-planta acclimation responses to basal growth and acute heat stress were induced in Arabidopsis by cattle manure biochar. Sci Rep 2021; 11:9875. [PMID: 33972570 PMCID: PMC8110981 DOI: 10.1038/s41598-021-88856-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
In-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise. Endogenous levels of jasmonic and abscisic acids were higher in the + BC(‒HS) treatment, suggesting their role in growth improvement. HS in ‒BC plants caused reductions in inflorescence height and PSII maximum quantum yield, as well as significant oxidative stress symptoms manifested by increased lipid peroxidation, greater chloroplast redox poise (oxidized form of roGFP), increased expression of DNAJ heat shock proteins and Zn-finger genes, and reduced expression of glutathione-S-transferase gene in addition to higher abscisic acid and salicylic acid levels. Oxidative stress symptoms were significantly reduced by BC. Results suggest that growth improvements by BC occurring under basal and HS conditions are induced by acclimation mechanisms to 'microstresses' associated with basal growth and to oxidative stress of HS, respectively.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Haya Friedman
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ludmila Tsechansky
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
34
|
HSP70/DNAJ Family of Genes in the Brown Planthopper, Nilaparvata lugens: Diversity and Function. Genes (Basel) 2021; 12:genes12030394. [PMID: 33801945 PMCID: PMC7999391 DOI: 10.3390/genes12030394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock 70kDa proteins (HSP70s) and their cochaperones DNAJs are ubiquitous molecular chaperones, which function as the “HSP70/DNAJ machinery” in a myriad of biological processes. At present, a number of HSP70s have been classified in many species, but studies on DNAJs, especially in insects, are lacking. Here, we first systematically identified and characterized the HSP70 and DNAJ family members in the brown planthopper (BPH), Nilaparvata lugens, a destructive rice pest in Asia. A total of nine HSP70 and 31 DNAJ genes were identified in the BPH genome. Sequence and phylogenetic analyses revealed the high diversity of the NlDNAJ family. Additionally, spatio-temporal expression analysis showed that most NlHSP70 and NlDNAJ genes were highly expressed in the adult stage and gonads. Furthermore, RNA interference (RNAi) revealed that seven NlHSP70s and 10 NlDNAJs play indispensable roles in the nymphal development, oogenesis, and female fertility of N. lugens under physiological growth conditions; in addition, one HSP70 (NlHSP68) was found to be important in the thermal tolerance of eggs. Together, our results in this study shed more light on the biological roles of HSP70/DNAJ in regulating life cycle, coping with environmental stresses, and mediating the interactions within, or between, the two gene families in insects.
Collapse
|
35
|
Li C, Xu Y, Fu S, Liu Y, Li Z, Zhang T, Wu J, Zhou X. The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathog 2021; 17:e1009370. [PMID: 33662041 PMCID: PMC8075255 DOI: 10.1371/journal.ppat.1009370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/26/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.
Collapse
Affiliation(s)
- Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zongdi Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Erffelinck ML, Ribeiro B, Gryffroy L, Rai A, Pollier J, Goossens A. The Heat Shock Protein 40-Type Chaperone MASH Supports the Endoplasmic Reticulum-Associated Degradation E3 Ubiquitin Ligase MAKIBISHI1 in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:639625. [PMID: 33708234 PMCID: PMC7940691 DOI: 10.3389/fpls.2021.639625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 06/02/2023]
Abstract
Jasmonates (JA) are oxylipin-derived phytohormones that trigger the production of specialized metabolites that often serve in defense against biotic stresses. In Medicago truncatula, a JA-induced endoplasmic reticulum-associated degradation (ERAD)-type machinery manages the production of bioactive triterpenes and thereby secures correct plant metabolism, growth, and development. This machinery involves the conserved RING membrane-anchor (RMA)-type E3 ubiquitin ligase MAKIBISHI1 (MKB1). Here, we discovered two additional members of this protein control apparatus via a yeast-based protein-protein interaction screen and characterized their function. First, a cognate E2 ubiquitin-conjugating enzyme was identified that interacts with MKB1 to deliver activated ubiquitin and to mediate its ubiquitination activity. Second, we identified a heat shock protein 40 (HSP40) that interacts with MKB1 to support its activity and was therefore designated MKB1-supporting HSP40 (MASH). MASH expression was found to be co-regulated with that of MKB1. The presence of MASH is critical for MKB1 and ERAD functioning because the dramatic morphological, transcriptional, and metabolic phenotype of MKB1 knock-down M. truncatula hairy roots was phenocopied by silencing of MASH. Interaction was also observed between the Arabidopsis thaliana (Arabidopsis) homologs of MASH and MKB1, suggesting that MASH represents an essential and plant-specific component of this vital and conserved eukaryotic protein quality control machinery.
Collapse
Affiliation(s)
- Marie-Laure Erffelinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bianca Ribeiro
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lore Gryffroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Avanish Rai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
37
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
38
|
Jia T, Li F, Liu S, Dou J, Huang T. DnaJ Proteins Regulate WUS Expression in Shoot Apical Meristem of Arabidopsis. PLANTS 2021; 10:plants10010136. [PMID: 33445404 PMCID: PMC7827474 DOI: 10.3390/plants10010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
WUSCHEL (WUS) protein regulates stem cell function in shoot apical meristem of Arabidopsis. The expression of WUS gene is strictly regulated by developmental cues and environmental factors. As DnaJ domain-containing proteins, SDJ1 and SDJ3 have been proven to play an important role in transcriptional activation of promoter methylated genes. Here, we showed that three DnaJ domain-containing proteins including SDJ1 and SDJ3 can bind WUS protein as a complex, which further maintain the expression of WUS gene by binding to WUS promoter. We propose a model how DnaJ domain-containing proteins are involved in the self-regulation of WUS gene in stem cells maintenance of Arabidopsis.
Collapse
|
39
|
Deng Y, Hu Z, Shang L, Chai Z, Tang YZ. Transcriptional Responses of the Heat Shock Protein 20 (Hsp20) and 40 (Hsp40) Genes to Temperature Stress and Alteration of Life Cycle Stages in the Harmful Alga Scrippsiella trochoidea (Dinophyceae). BIOLOGY 2020; 9:biology9110408. [PMID: 33233461 PMCID: PMC7700488 DOI: 10.3390/biology9110408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Simple Summary As the greatest contributors to harmful algal blooms, dinoflagellates account for roughly 75% of bloom events, which become an escalating threat to coastal ecosystems and cause substantial economic loss worldwide. Resting cyst production and broad temperature tolerance are well proven as adaptive strategies for blooming dinoflagellates; however, to date, the underlying molecular information is scarce. In the present study, we characterized two heat shock protein genes from the representative dinoflagellate Scrippsiella trochoidea, with the aim to primarily determine their possible roles in response to temperature stress and alteration of the life cycle. The yielded results enhance our knowledge about the functions of cross-talk of different Hsp members in temperature adaptation of dinoflagellates and facilitate further exploration in their potential physiological relevance during different life-stage alternation in this ecological important lineage. Abstract The small heat shock protein (sHsp) and Hsp40 are Hsp members that have not been intensively investigated but are functionally important in most organisms. In this study, the potential roles of a Hsp20 (StHsp20) and a Hsp40 (StHsp40) in dinoflagellates during adaptation to temperature fluctuation and alteration of different life stages were explored using the representative harmful algal blooms (HABs)-causative dinoflagellate species, Scrippsiella trochoidea. We isolated the full-length cDNAs of the two genes via rapid amplification of cDNA ends (RACE) and tracked their differential transcriptions via real-time qPCR. The results revealed StHsp20 and StHsp40 exhibited mRNA accumulation patterns that were highly similar in response to heat stress but completely different toward cold stress, which implies that the mechanisms underlying thermal and cold acclimation in dinoflagellates are regulated by different sets of genes. The StHsp20 was probably related to the heat tolerance of the species, and StHsp40 was closely involved in the adaptation to both higher and lower temperature fluctuations. Furthermore, significantly higher mRNA abundance of StHsp40 was detected in newly formed resting cysts, which might be a response to intrinsic stress stemmed from encystment. This finding also implied StHsp40 might be engaged in resting cyst formation of S. trochoidea. Our findings enriched the knowledge about possible cross-talk of different Hsp members in dinoflagellates and provided clues to further explore the molecular underpinnings underlying resting cyst production and broad temperature tolerance of this group of HABs contributors.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel./Fax: +86-532-8289-6098
| |
Collapse
|
40
|
DnaJs, the critical drivers of Hsp70s: genome-wide screening, characterization and expression of DnaJ family genes in Sorghum bicolor. Mol Biol Rep 2020; 47:7379-7390. [PMID: 32880065 DOI: 10.1007/s11033-020-05793-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023]
Abstract
The DnaJ/Hsp40s, are important components in the chaperone machine, and play pivotal roles in plant growth, development and stress tolerance. Sorghum, the semi-arid crop, is the drought resilient, model C4 crop. However, no reports of DnaJs have been available. Genome-wide analysis of Sorghum bicolor revealed 113 DnaJ/Hsp40 genes, classified into four groups; 8 genes in SbDnaJ-A class, 10 in SbDnaJ-B, 82 in SbDnaJ-C and 13 in SbDnaJ-D distributed unevenly on all the 10 chromosomes. Chromosomes 1 and 3 were found hot spots with 22 and 20 genes respectively. All genes displayed large number of introns, with an exception of 11 of the SbDnaJ-C which is devoid of introns. Out of 36 paralogous duplications, 7 tandem and 29 segmental duplications were noticed, indicating the major role of segmental duplications in the expansion. Analysis of digital data revealed tissue and stage-specific expressions. Transcriptional profiling of 12 selected genes representing all 4 classes revealed highly significant expression in leaf followed by root tissues. No expression was noticed in stems with an exception of SbDnaJ-C76. The SbDnaJ-A1, D1, and C subgroup genes displayed upregulation in roots, stems and leaves under cold, inferring the involvement of Hsp40s for cellular protection during cold stress. The results demonstrate that C76 and D1 are the candidate genes associated with multiple abiotic stresses. Present research furnishes valuable information about the role of sorghum DnaJs in abiotic stress response and establishes a foundation for understanding the molecular mechanisms associated with plant development and stress tolerance.
Collapse
|
41
|
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2069-2083. [PMID: 32573848 DOI: 10.1111/tpj.14883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Heat shock protein 70 (Hsp70) chaperones are highly conserved and essential proteins with diverse cellular functions, including plant abiotic stress tolerance. Hsp70 proteins have been linked with basal heat tolerance in plants. Hsp101 likewise is an important chaperone protein that plays a critical role in heat tolerance in plants. We observed that Arabidopsis hsc70-1 mutant seedlings show elevated basal heat tolerance compared with wild-type. Over-expression of Hsc70-1 resulted in increased heat sensitivity. Hsp101 transcript and protein levels were increased during non-heat stress (HS) and post-HS conditions in hsc70-1 mutant seedlings. In contrast, Hsp101 was repressed in Hsc70-1 over-expressing plants after post-HS conditions. Hsc70-1 showed physical interaction with HsfA1d and HsfA1e protein in the cytosol under non-HS conditions. In transient reporter gene analysis, HsfA1d, HsfA1e and HsfA2 showed transcriptional response on the Hsp101 promoter. HsfA1d and HsfA2 transcripts were at higher levels in hsc70-1 mutant compared with wild-type. We provide genetic evidence that Hsc70-1 is a negative regulator affecting HsfA1d/A1e/A2 activators, which in turn regulate Hsp101 expression and basal thermotolerance.
Collapse
Affiliation(s)
- Lalit D Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| |
Collapse
|
42
|
Fan FF, Liu F, Yang X, Wan H, Kang Y. Global analysis of expression profile of members of DnaJ gene families involved in capsaicinoids synthesis in pepper (Capsicum annuum L). BMC PLANT BIOLOGY 2020; 20:326. [PMID: 32646388 PMCID: PMC7350186 DOI: 10.1186/s12870-020-02476-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The DnaJ proteins play critical roles in plant development and stress responses. Recently, seventy-six DnaJ genes were identified through a comprehensive bioinformatics analysis in the pepper genome. However, there were no reports on understanding of phylogenetic relationships and diverse expression profile of pepper DnaJ genes to date. Herein, we performed the systemic analysis of the phylogenetic relationships and expression profile of pepper DnaJ genes in different tissues and in response to both abiotic stress and plant hormones. RESULTS Phylogenetic analysis showed that all the pepper DnaJ genes were grouped into 7 sub-families (sub-family I, II, III, IV, V, VI and VII) according to sequence homology. The expression of pepper DnaJs in different tissues revealed that about 38% (29/76) of pepper DnaJs were expressed in at least one tissue. The results demonstrate the potentially critical role of DnaJs in pepper growth and development. In addition, to gain insight into the expression difference of pepper DnaJ genes in placenta between pungent and non-pungent, their expression patterns were also analyzed using RNA-seq data and qRT-PCR. Comparison analysis revealed that eight genes presented distinct expression profiles in pungent and non-pungent pepper. The CaDnaJs co-expressed with genes involved in capsaicinoids synthesis during placenta development. What is more, our study exposed the fact that these eight DnaJ genes were probably regulated by stress (heat, drought and salt), and were also regulated by plant hormones (ABA, GA3, MeJA and SA). CONCLUSIONS In summary, these results showed that some DnaJ genes expressed in placenta may be involved in plant response to abiotic stress during biosynthesis of compounds related with pungency. The study provides wide insights to the expression profiles of pepper DanJ genes and contributes to our knowledge about the function of DnaJ genes in pepper.
Collapse
Affiliation(s)
- Fang Fei Fan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Fawan Liu
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, 650231, PR China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
43
|
Wang Q, Zeng X, Song Q, Sun Y, Feng Y, Lai Y. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis. Sci Rep 2020; 10:9525. [PMID: 32533096 PMCID: PMC7293223 DOI: 10.1038/s41598-020-66132-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Soil cadmium (Cd) pollution threatens food safety. This study aimed to identify genes related to Cd accumulation in rice. Low- (Shennong 315, short for S315) and high- (Shendao 47, short for S47) Cd-accumulative rice cultivars were incubated with CdCl2·2.5H2O. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify the modules and genes associated with Cd-accumulative traits of rice. After Cd stress treatment, the Cd content in various tissues of S315 was significantly higher than that of S47. In the stem nodes, the Cd distribution results of the two varieties indicated that the unelongated nodes near the root (short for node A) had a stronger ability to block Cd transfer upwards than the panicle node (short for node B). Cd stress induced huge changes in gene expression profiles. After analyzing the differentially expressed genes (DEGs) in significantly correlated WGCNA modules, we found that genes related to heavy metal transportation had higher expression levels in node A than that in node B, such as Copper transporter 6 (OS04G0415600), Zinc transporter 10 (OS06G0566300), and some heavy-metal associated proteins (OS11G0147500, OS03G0861400, and OS10G0506100). In the comparison results between S315 and S47, the expression of chitinase (OS03G0679700 and OS06G0726200) was increased by Cd treatment in S315. In addition, OsHSPs (OS05G0460000, OS08G0500700), OsHSFC2A (OS02G0232000), and OsDJA5 (OS03G0787300) were found differentially expressed after Cd treatment in S315, but changed less in S47. In summary, different rice varieties have different processes and intensities in response to Cd stress. The node A might function as the key tissue for blocking Cd upward transport into the panicle via vigorous processes, including of heavy metal transportation, response to stress, and cell wall.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Xiannan Zeng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Qiulai Song
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yu Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yanjiang Feng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
44
|
Pelgrom AJE, Meisrimler CN, Elberse J, Koorman T, Boxem M, Van den Ackerveken G. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS One 2020; 15:e0226540. [PMID: 32396563 PMCID: PMC7217486 DOI: 10.1371/journal.pone.0226540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Joyce Elberse
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thijs Koorman
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
45
|
Yang Y, Saand MA, Abdelaal WB, Zhang J, Wu Y, Li J, Fan H, Wang F. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics 2020; 220:103766. [DOI: 10.1016/j.jprot.2020.103766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
|
46
|
Ohta M, Takaiwa F. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153109. [PMID: 31896032 DOI: 10.1016/j.jplph.2019.153109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
OsERdj7 is one of six endoplasmic reticulum (ER)-resident J-domain-containing proteins (J-proteins) encoded by the rice genome that acts as a co-chaperone for Hsp70 and is characterized by the presence of two transmembrane domains. It is N-glycosylated and primarily exists in a dimeric form with a molecular mass of 64 kDa. When the microsomal fraction of maturing seeds was treated with alkaline, high salt or detergent compounds, OsERdj7 was solubilized, even in alkaline and high salt environments, indicating that it is not tightly integrated in the ER membrane. Next, to investigate its role during seed maturation, expression of OsERdj7 was specifically downregulated using RNA interference (RNAi) under the control of the endosperm-specific 16 kDa prolamin promoter in transgenic rice. As a result, the unfolded protein response (UPR) was induced in maturing seeds via activation of OsIRE1/OsbZIP50 and ATF6 orthologs, such as OsbZIP39 and OsbZIP60, leading to upregulation of several chaperones and folding enzymes. Furthermore, some prolamins (RM4 and RM9) were retained in the ER lumen in the form of a mesh-like structure without deposition to the inherent ER-derived protein bodies (PB-Is), although major storage protein glutelins were normally transported to protein storage vacuoles (PB-IIs). On the other hand, induction of ER associated degradation (ERAD) increased OsERdj7 expression in transgenic rice seeds in which ERAD related genes were highly expressed. Due to PDIL2-3 and OsHard3 co-immunoprecipitating with OsERdj7 in rice protoplasts, this result implicates OsERdj7 in the translocation of some seed proteins within the ER lumen and in the degradation of misfolded or unfolded proteins.
Collapse
Affiliation(s)
- Masaru Ohta
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization Owashi 1-2, Tsukuba, Ibaraki 305-8602, Japan; EditForce, Agri-Bio Research Laboratory, Ito Campus, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumio Takaiwa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization Owashi 1-2, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
47
|
Altunoğlu YÇ, Keleş M, Can TH, Baloğlu MC. Identification of watermelon heat shock protein members and tissue-specific gene expression analysis under combined drought and heat stresses. ACTA ACUST UNITED AC 2019; 43:404-419. [PMID: 31892809 PMCID: PMC6911259 DOI: 10.3906/biy-1907-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heat shock protein (Hsp) gene family members in the watermelon genome were identified and characterized by bioinformatics analysis. In addition, expression profiles of genes under combined drought and heat stress conditions were experimentally analyzed. In the watermelon genome, 39 genes belonging to the sHsp family, 101 genes belonging to the Hsp40 family, 23 genes belonging to the Hsp60 family, 12 genes belonging to the Hsp70 family, 6 genes belonging to the Hsp90 family, and 102 genes belonging to the Hsp100 family were found. It was also observed that the proteins in the same cluster in the phylogenetic trees had similar motif patterns. When the estimated 3-dimensional structures of the Hsp proteins were examined, it was determined that the α-helical structure was dominant in almost all families. The most orthologous relationship appeared to be between watermelon, soybean, and poplar in the ClaHsp gene families. For tissue-specific gene expression analysis under combined stress conditions, expression analysis of one representative Hsp gene each from root, stem, leaf, and shoot tissues was performed by real-time PCR. A significant increase was detected usually at 30 min in almost all tissues. This study provides extensive information for watermelon Hsps, and can enhance our knowledge about the relationships between Hsp genes and combined stresses.
Collapse
Affiliation(s)
- Yasemin Çelik Altunoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Merve Keleş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Tevfik Hasan Can
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| |
Collapse
|
48
|
Verma AK, Tamadaddi C, Tak Y, Lal SS, Cole SJ, Hines JK, Sahi C. The expanding world of plant J-domain proteins. CRITICAL REVIEWS IN PLANT SCIENCES 2019; 38:382-400. [PMID: 33223602 PMCID: PMC7678915 DOI: 10.1080/07352689.2019.1693716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants maintain cellular proteostasis during different phases of growth and development despite a barrage of biotic and abiotic stressors in an ever-changing environment. This requires a collaborative effort of a cadre of molecular chaperones. Hsp70s and their obligate co-chaperones, J-domain proteins (JDPs), are arguably the most ubiquitous and formidable components of the cellular chaperone network, facilitating numerous and diverse cellular processes and allowing survival under a plethora of stressful conditions. JDPs are also among the most versatile chaperones. Compared to Hsp70s, the number of JDP-encoding genes has proliferated, suggesting the emergence of highly complex Hsp70-JDP networks, particularly in plants. Recent studies indicate that besides the increase in the number of JDP encoding genes; regulatory differences, neo- and sub-functionalization, and inter- and intra-class combinatorial interactions, is rapidly expanding the repertoire of Hsp70-JDP systems. This results in highly robust and functionally diverse chaperone networks in plants. Here, we review the current status of plant JDP research and discuss how the paradigm shift in the field can be exploited toward a better understanding of JDP function and evolution.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Silviya S. Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sierra J. Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
49
|
Wu JR, Wang TY, Weng CP, Duong NKT, Wu SJ. AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. PLANTA 2019; 250:1449-1460. [PMID: 31309322 DOI: 10.1007/s00425-019-03239-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Despite AtJ3 and AtJ2 sharing a high protein-sequence identity and both being substrates of protein farnesyltransferase (PFT), AtJ3 but not AtJ2 mediates in Arabidopsis the heat-dependent phenotypes derived from farnesylation modification. Arabidopsis HEAT-INTOERANT 5 (HIT5)/ENHANCED RESPONSE TO ABA 1 (ERA1) encodes the β-subunit of the protein farnesyltransferase (PFT), and the hit5/era1 mutant is better able to tolerate heat-shock stress than the wild type. Given that Arabidopsis AtJ2 (J2) and AtJ3 (J3) are heat-shock protein 40 (HSP40) homologs, sharing 90% protein-sequence identity, and each contains a CaaX box for farnesylation; atj2 (j2) and atj3 (j3) mutants were subjected to heat-shock treatment. Results showed that j3 but not j2 manifested the heat-shock tolerant phenotype. In addition, transgenic j3 plants that expressed a CaaX- abolishing J3C417S construct maintained the same capacity to tolerate heat shock as j3. The basal transcript levels of HEAT-SHOCK PROTEIN 101 (HSP101) in hit5/era1 and j3 were higher than those in the wild type. Although the capacities of j3/hsp101 and hit5/hsp101 double mutants to tolerate heat-shock stress declined compared to those of j3 and hit5/era1, they were still greater than that of the wild type. These results show that a lack of farnesylated J3 contributes to the heat-dependent phenotypes of hit5/era1, in part by the modulation of HSP101 activity, and also indicates that (a) mediator(s) other than J3 is (are) involved in the PFT-regulated heat-stress response. In addition, because HSP40s are known to function in dimer formation, bimolecular fluorescence complementation experiments were performed, and results show that J3 could dimerize regardless of farnesylation. In sum, in this study, a specific PFT substrate was identified, and its roles in the farnesylation-regulated heat-stress responses were clarified, which could be of use in future agricultural applications.
Collapse
Affiliation(s)
- Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Tzu-Yun Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Chi-Pei Weng
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
50
|
Wei SS, Niu WT, Zhai XT, Liang WQ, Xu M, Fan X, Lv TT, Xu WY, Bai JT, Jia N, Li B. Arabidopsis mtHSC70-1 plays important roles in the establishment of COX-dependent respiration and redox homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5575-5590. [PMID: 31384929 DOI: 10.1093/jxb/erz357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/20/2019] [Indexed: 05/16/2023]
Abstract
The 70 kDa heat shock proteins function as molecular chaperones and are involved in diverse cellular processes. However, the functions of the plant mitochondrial HSP70s (mtHSC70s) remain unclear. Severe growth defects were observed in the Arabidopsis thaliana mtHSC70-1 knockout lines, mthsc70-1a and mthsc70-1b. Conversely, the introduction of the mtHSC70-1 gene into the mthsc70-1a background fully reversed the phenotypes, indicating that mtHSC70-1 is essential for plant growth. The loss of mtHSC70-1 functions resulted in abnormal mitochondria and alterations to respiration because of an inhibition of the cytochrome c oxidase (COX) pathway and the activation of the alternative respiratory pathway. Defects in COX assembly were observed in the mtHSC70-1 knockout lines, leading to decreased COX activity. The mtHSC70-1 knockout plants have increased levels of reactive oxygen species (ROS). The introduction of the Mn-superoxide dismutase 1 (MSD1) or the catalase 1 (CAT1) gene into the mthsc70-1a plants decreased ROS levels, reduced the expression of alternative oxidase, and partially rescued growth. Taken together, our data suggest that mtHSC70-1 plays important roles in the establishment of COX-dependent respiration.
Collapse
Affiliation(s)
- Shan-Shan Wei
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wei-Tao Niu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- College of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - Xiao-Ting Zhai
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wei-Qian Liang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Meng Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiao Fan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ting-Ting Lv
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wen-Yan Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiao-Teng Bai
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|