1
|
Li D, Chu X, Liu W, Ma Y, Tian X, Yang Y. The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. RNA Biol 2025; 22:1-14. [PMID: 39718205 DOI: 10.1080/15476286.2024.2440683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m6A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
3
|
Zhao Y, Zhao Y, Liu L, Li G, Wu Y, Cui Y, Xie L. Tumor-exosomal miR-205-5p as a diagnostic biomarker for colorectal cancer. Clin Transl Oncol 2025; 27:1185-1197. [PMID: 39133387 PMCID: PMC11913934 DOI: 10.1007/s12094-024-03647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Tumor-derived exosomal miRNAs play crucial roles in cancer diagnosis. Current studies aim to identify exosomal miRNAs associated with colorectal cancer (CRC) that are noninvasive, sensitive, and specific. PATIENTS AND METHODS Exosomes were extracted from CRC patients and healthy donors via ultracentrifugation, followed by verification via transmission electron microscopy (TEM), qNano, and Western blot analysis. The differential expression levels and clinical characteristics of miR-205-5p were analyzed in CRC via data from The Cancer Genome Atlas (TCGA). Real-time quantitative PCR was used to assess the expression levels of exosomal miRNAs in 157 primary CRC patients, 20 patients with benign diseases, and 135 healthy donors. Predictions regarding target genes were made to guide further exploration of the disease's etiopathogenesis through bioinformatics. RESULTS Compared with that in healthy donors, the expression of miR-205-5p in colorectal cancer (CRC) patients was significantly lower, as determined through analysis of the TCGA database. We conducted a prediction and analysis of the functional enrichment of downstream target genes regulated by miR-205-5p. A lower level of exosomal miR-205-5p in the serum of CRC patients than in that of healthy controls (p < 0.0001) and patients with benign disease (p < 0.0001) was observed. Furthermore, the expression levels of exosomal miR-205-5p were significantly lower in early-stage CRC patients than in the comparison groups (p<0.001 and p < 0.0001). Notably, the expression levels of exosomal miR-205-5p significantly increased postoperatively (p = 0.0053). CONCLUSIONS The present study demonstrated that serum exosomal miR-205-5p may be a diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yapeng Zhao
- Department of Stomatology, Qinghai Red Cross Hospital, Xining, Qinghai, China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanghao Li
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yawen Wu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanan Cui
- Shandong Second Medical University, Weifang, Shandong, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, Shandong Province, China.
| |
Collapse
|
4
|
Wang S, Ma C, Ren Z, Zhang Y, Hao K, Liu C, Xu L, He S, Zhang J. Diagnostic Value of Glycosylated Extracellular Vesicle microRNAs in Gastric Cancer. Cancer Manag Res 2025; 17:145-160. [PMID: 39881946 PMCID: PMC11776422 DOI: 10.2147/cmar.s494747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Early diagnosis is crucial for improving the prognosis of patients with gastric cancer (GC). However, the currently used biomarkers for diagnosing GC have limited sensitivity and specificity. This study aimed to develop a novel diagnostic model based on miRNAs from glycosylated extracellular vesicles and evaluate its effectiveness in diagnosing gastric cancer. Methods GlyExo-capture technology was used to isolate glycosylated extracellular vesicles from serum samples. The signatures were screened in a discovery cohort of GC patients (n=55) and non-disease controls (n=46) using an integrated process, including high-throughput sequencing technology, screening using a complete bioinformatics algorithm, validation using RT-qPCR, and evaluation by constructing a diagnostic model. The diagnostic model was evaluated in an independent validation cohort (n=139). Results We developed a diagnostic model for GC based on five miRNA pairs. This diagnostic model demonstrated high sensitivity, specificity, and stable performance in distinguishing GC patients from non-cancer controls with AUC of 0.930 in the independent validation cohort, particularly in differentiating early-stage GC from benign patients. The markers also showed excellent performance in indicating perineural invasion status and lymph node metastasis in the testing cohort. Discussion The model demonstrated high sensitivity and specificity in diagnosing patients with GC, especially in differentiating early-stage GC from benign patients. The five miRNA pairs could also aid in making treatment decisions. Thus, miRNAs derived from glycosylated exosomes are promising biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Shunda Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Zhihua Ren
- Department of General Surgery, Qilu Hospital Fo Shandong University, Jinan, 250012, People’s Republic of China
| | - Yufei Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd, Beijing, 102600, People’s Republic of China
| | - Chengxiu Liu
- Beijing Hotgen Biotech Co., Ltd, Beijing, 102600, People’s Republic of China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd, Beijing, 102600, People’s Republic of China
| | - Shun He
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
5
|
Moni ZA, Hasan Z, Alam MS, Roy N, Islam F. Diagnostic and Prognostic Significance of Exosomes and Their Components in Patients With Cancers. Cancer Med 2025; 14:e70569. [PMID: 39757782 DOI: 10.1002/cam4.70569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Cancer is the second leading cause of human mortality worldwide. Extracellular vesicles (EVs) from liquid biopsy samples are used in early cancer detection, characterization, and surveillance. Exosomes are a subset of EVs produced by all cells and present in all body fluids. They play an important role in the development of cancer because they are active transporters capable of carrying the contents of any type of cell. The objective of this review was to provide a brief overview of the clinical implication of exosomes or exosomal components in cancer diagnosis and prognosis. METHODS An extensive review of the current literature of exosomes and their components in cancer diagnosis and prognosis were carried out in the current study. RESULTS Tumor cells release exosomes that contribute to the formation of the pre-metastatic microenvironment, angiogenesis, invasion, and treatment resistance. On the contrary, tumor cells release more exosomes than normal cells, and these tumor-specific exosomes can carry the genomic and proteomic signature contents of the tumor cells, which can act as tools for the diagnosis and prognosis of patients with cancers. CONCLUSION This information may help clinicians to improve the management of cancer patients in clinical settings in the future.
Collapse
Affiliation(s)
- Zinnat Ara Moni
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zahid Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shaheen Alam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Nitai Roy
- Department of Biochemistry and Molecular Biology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
9
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
10
|
Zhu H, Chen S, Lan F, Li W, Ji T, Zhang L, Guo Y, Pan W, Luo S, Xie R. Sensitive electrochemical biosensor for rapid detection of sEV-miRNA based turbo-like localized catalytic hairpin assembly. Anal Chim Acta 2024; 1311:342704. [PMID: 38816166 DOI: 10.1016/j.aca.2024.342704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Small extracellular vesicle-associated microRNAs (sEV-miRNAs) have emerged as critical biomarkers for cancer diagnosis, yet the rapid detection of these low-abundance molecules in clinical samples remains a formidable challenge. Herein, a simple turbo-like localized catalytic hairpin assembly (TL-CHA) was proposed for sEV-miR-1246 measurement. This electrochemical sensor achieves dual localization through the ingeniously use of AuNPs and DNA nanowires, which provides rich sites for CHA cascade amplification, significantly enhancing the effective reaction and amplify the detection response. Leveraging this innovative design, this biosensor demonstrated the ability to detect sEV-miRNA at concentrations as low as 5.24 aM in a time frame of 30 min. The precision of the measurements was validated through reverse transcription quantitative polymerase chain reaction. Furthermore, the sensor was used for analyzing plasma samples from gastric cancer patients yielded AUC values of 0.973 for all stages and 0.945 for early stages. This demonstrates the sensor's robust performance in both the staging diagnosis and early screening of gastric cancer. Therefore, this platform has great potential for the clinical cancer diagnosis.
Collapse
Affiliation(s)
- Huiqin Zhu
- Department of Clinical Laboratory, YunFu People's Hospital, Yunfu, Guangdong, 527300, PR China; YunFu Key Laboratory of Brain Diseases Research, YunFu People's Hospital, Yunfu, 527300, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Pathology Department, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, PR China
| | - Fei Lan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Tingting Ji
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Lifeng Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuhang Guo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China.
| | - Rongzhang Xie
- Department of Clinical Laboratory, YunFu People's Hospital, Yunfu, Guangdong, 527300, PR China; YunFu Key Laboratory of Brain Diseases Research, YunFu People's Hospital, Yunfu, 527300, PR China.
| |
Collapse
|
11
|
Aalami AH, Shahriari A, Mazaheri M, Aalami F, Sahebkar A. Advancing gastrointestinal cancer diagnostics: a systematic review and meta-analysis of circulating microRNA-1246 as a non-invasive biomarker. Biomarkers 2024; 29:233-243. [PMID: 38696280 DOI: 10.1080/1354750x.2024.2350714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Despite numerous reports on the alterations of microRNA-1246 (miR-1246) expression level in digestive system cancers, its role in gastrointestinal cancers (GICs) remains unclear. This meta-analysis aimed to assess the diagnostic potential of circulating miR-1246 in GICs. METHODS Meta-disc version 1.4 and Comprehensive Meta-Analysis (CMA) version 3.7 software were used to calculate pooled sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR), area under the curve (AUC), Q*index and summary receiver-operating characteristic (SROC). Subgroup analyses were conducted for cancer type, sample type and geographical region. Publication bias was assessed using Begg's and Egger's tests. RESULTS A total of 14 articles involving 18 studies and 1526 participants (972 cases and 554 controls) were included. The diagnostic accuracy of miRNA-1246 in GICs was as follows: pooled sensitivity: 0.81 (95% CI: 0.79 - 0.83), specificity: 0.74 (95% CI: 0.71 - 0.77), PLR: 3.315 (95% CI: 2.33 - 4.72), NLR: 0.221 (95% CI: 0.153 - 0.319), DOR: 16.87 (95% CI: 9.45 - 30.09), AUC: 0.891, and Q*-index: 0.807. No publication bias was found based on Begg's (p = 0.172) and Egger's (p = 0.113) tests. CONCLUSION Circulating miR-1246 shows promise as a non-invasive biomarker for early detection of GICs.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ali Shahriari
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Mazaheri
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
13
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
14
|
Dahl O, Myklebust MP. A study of microRNAs as new prognostic biomarkers in anal cancer patients. Acta Oncol 2024; 63:456-465. [PMID: 38899393 PMCID: PMC11332526 DOI: 10.2340/1651-226x.2024.27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND MicroRNA (MiR) influences the growth of cancer by regulation of mRNA for 50-60% of all genes. We present as per our knowledge the first global analysis of microRNA expression in anal cancer patients and their prognostic impact. METHODS Twenty-nine patients with T1-4 N0-3 M0 anal cancer treated with curative intent from September 2003 to April 2011 were included in the study. RNA was extracted from fresh frozen tissue and sequenced using NGS. Differentially expressed microRNAs were identified using the R-package DEseq2 and the endpoints were time to progression (TTP) and cancer specific survival (CSS). RESULTS Five microRNAs were significantly associated with 5-year progression free survival (PFS): Low expression of two microRNAs was associated with higher PFS, miR-1246 (100% vs. 55.6%, p = 0.008), and miR-135b-5p (92.9% vs. 59.3%, p = 0.041). On the other hand, high expressions of three microRNAs were associated with higher PFS, miR-148a-3p (93.3% vs. 53.6%, p = 0.025), miR-99a-5p (92.9% vs. 57.1%, p = 0.016), and let-7c-3p (92.9% vs. 57.1%, p = 0.016). Corresponding findings were documented for CSS. INTERPRETATION Our study identified five microRNAs as prognostic markers in anal cancer. MiR-1246 and microRNA-135b-5p were oncoMiRs (miRs with oncogene effects), while miR-148a-3p, miR- 99a-5p, and let-7c-3p acted as tumour suppressors in anal cancer patients.
Collapse
Affiliation(s)
- Olav Dahl
- Department of Oncology, Haukeland University Hospital, Bergen, Norway; University of Bergen, Bergen Norway.
| | | |
Collapse
|
15
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
16
|
Ramadan F, Saab R, Ghamloush F, Khoueiry R, Herceg Z, Gomez L, Badran B, Clezardin P, Hussein N, Cohen PA, Ghayad SE. Exosome-Mediated Paracrine Signaling Unveils miR-1246 as a Driver of Aggressiveness in Fusion-Negative Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1652. [PMID: 38730605 PMCID: PMC11083369 DOI: 10.3390/cancers16091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells' phenotype. Delivery of exosomal miR-1246 targets GSK3β and promotes β-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients' sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis.
Collapse
Affiliation(s)
- Farah Ramadan
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Raya Saab
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France;
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Philippe Clezardin
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1, 69008 Lyon, France
| | - Pascale A. Cohen
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, 13005 Marseille, France
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
17
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
18
|
Chen Y, Chen L, Zhu S, Yang H, Ye Z, Wang H, Wu H, Wu Y, Sun Q, Liu X, Liang H, Tang H. Exosomal derived miR-1246 from hydroquinone-transformed cells drives S phase accumulation arrest by targeting cyclin G2 in TK6 cells. Chem Biol Interact 2024; 387:110809. [PMID: 38006958 DOI: 10.1016/j.cbi.2023.110809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Hydroquinone (HQ), a major metabolite of benzene and known hematotoxic carcinogen. MicroRNA 1246 (miR-1246), an oncogene, regulates target genes in carcinogenesis including leukemia. This study investigates the impact of exosomal derived miR-1246 from HQ-transformed (HQ19) cells on cell-to-cell communication in recipient TK6 cells. METHODS RNA sequencing was used to identify differentially expressed exosomal miRNAs in HQ19 cells and its phosphate buffered solution control cells (PBS19), which were then confirmed using qRT-PCR. The impact of exosomal miR-1246 derived from HQ-transformed cells on cell cycle distribution was investigated in recipient TK6 cells. RESULTS RNA sequencing analysis revealed that 34 exosomal miRNAs were upregulated and 158 miRNAs were downregulated in HQ19 cells compared with PBS19 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses predicted that their targets are enriched in cancer development-related pathways, such as MAPK signaling, microRNAs in cancer, apoptosis, PI3K-Akt signaling, cell cycle, Ras signaling, and Chronic myeloid leukemia. Eleven miRNAs were confirmed to have differential expression through qRT-PCR, with 6 upregulated (miR-140-3p, miR-551b-3p, miR-7-5p, miR-1290, miR-92a-3p, and miR-1246) and 5 downregulated (miR-183-5p, miR-26a-5p, miR-30c-5p, miR-205-5p, and miR-99b-3p). Among these, miR-1246 exhibited the highest expression level. HQ exposure resulted in a concentration-dependent increase in miR-1246 levels and decrease Cyclin G2 (CCNG2) levels in TK6 cells. Similarly, exosomes from HQ19 exhibited similar effects as HQ exposure. Dual luciferase reporter gene assays indicated that miR-1246 could band to CCNG2. After HQ exposure, exosomal miR-1246 induced cell cycle arrest at the S phase, elevating the expression of genes like pRb, E2F1, and Cyclin D1 associated with S phase checkpoint. However, silencing miR-1246 caused G2/M-phase arrest. CONCLUSION HQ-transformed cells' exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.
Collapse
Affiliation(s)
- Yuting Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lin Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Shiheng Zhu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhongming Ye
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haipeng Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
19
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
20
|
Jiang G, Wang F, Qi F, Zhang L. Circulating miR-222-3p is associated with ankylosing spondylitis development and predicts therapeutic efficacy of nonsteroidal anti-inflammatory drugs. J Biochem Mol Toxicol 2023; 37:e23475. [PMID: 37462336 DOI: 10.1002/jbt.23475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/18/2023] [Accepted: 07/08/2023] [Indexed: 11/10/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic rheumatic disease, and some microRNAs (miRNAs) in AS have been identified. This study aimed to measure miR-222-3p expression in AS patients, investigate the association of miR-222-3p with AS disease activity, and explore the clinical value of miR-222-3p in diagnosing AS and predicting therapeutic efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) on AS patients. This study included 96 patients with AS, 58 patients with rheumatoid arthritis (RA), and 90 healthy controls. miR-222-3p expression was detected by reverse-transcription quantitative polymerase chain reaction (PCR). The ability of miR-222-3p to discriminate between different groups was evaluated by receiver operating characteristic analysis. The predictive value of miR-222-3p on the efficacy of NSAID treatment for AS was assessed by logistic regression analysis. AS patients treated with oral NSAIDs diclofenac sodium were divided into response (n = 76) and no-response (n = 20) groups after 16 weeks of treatment. miR-222-3p in AS patients was higher than that in healthy subjects and RA patients. miR-222-3p had high diagnostic value in distinguishing patients with AS from RA patients and healthy controls. miR-222-3p, increased in active AS patients, had the ability to screen active AS patients from inactive AS patients. miR-222-3p was decreased in the response group, and had high accuracy in predicting the therapeutic efficiency of NSAIDs. The findings indicate that increased miR-222-3p in AS patients may function as a diagnostic biomarker for AS, and predictive biomarker for the therapeutic efficacy of NSAIDs in patients with AS. In addition, miR-222-3p is associated with AS disease activity.
Collapse
Affiliation(s)
- Guohong Jiang
- Department of Clinical Laboratory, Qingdao Chest Hospital, Qingdao, Shandong, China
| | - Fei Wang
- Department of Clinical Laboratory, Qingdao Chest Hospital, Qingdao, Shandong, China
| | - Fuliang Qi
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong, China
| | - Ling Zhang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
21
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
22
|
Samuels M, Jones W, Towler B, Turner C, Robinson S, Giamas G. The role of non-coding RNAs in extracellular vesicles in breast cancer and their diagnostic implications. Oncogene 2023; 42:3017-3034. [PMID: 37670020 PMCID: PMC10555829 DOI: 10.1038/s41388-023-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Breast Cancer (BC) is the most common form of cancer worldwide, responsible for 25% of cancers in women. Whilst treatment is effective and often curative in early BC, metastatic disease is incurable, highlighting the need for early detection. Currently, early detection relies on invasive procedures, however recent studies have shown extracellular vesicles (EVs) obtained from liquid biopsies may have clinical utility. EVs transport diverse bioactive cargos throughout the body, play major roles in intercellular communication and, importantly, mirror their cell of origin. In cancer cells, EVs alter the behaviour of the tumour microenvironment (TME), forming a bridge of communication between cancerous and non-cancerous cells to alter all aspects of cancer progression, including the formation of a pre-metastatic niche. Through gene regulatory frameworks, non-coding RNAs (ncRNAs) modulate vital molecular and cellular processes and can act as both tumour suppressors and oncogenic drivers in various cancer types. EVs transport and protect ncRNAs, facilitating their use clinically as liquid biopsies for early BC detection. This review summarises current research surrounding ncRNAs and EVs within BC, focusing on their roles in cancer progression through bi-directional communication with the microenvironment and their diagnostic implications. The role of EV ncRNAs in breast cancer. A representation of the different EV ncRNAs involved in tumourigenic processes in breast cancer. Pro-tumourigenic ncRNAs displayed in green and ncRNAs which inhibit oncogenic processes are shown in red.
Collapse
Affiliation(s)
- Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Benjamin Towler
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Charlotte Turner
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Stephen Robinson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
23
|
Li W, Wang W, Luo S, Chen S, Ji T, Li N, Pan W, Zhang X, Wang X, Li K, Zhang Y, Yan X. A sensitive and rapid electrochemical biosensor for sEV-miRNA detection based on domino-type localized catalytic hairpin assembly. J Nanobiotechnology 2023; 21:328. [PMID: 37689652 PMCID: PMC10492399 DOI: 10.1186/s12951-023-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Small extracellular-vesicule-associated microRNA (sEV-miRNA) is an important biomarker for cancer diagnosis. However, rapid and sensitive detection of low-abundance sEV-miRNA in clinical samples is challenging. Herein, a simple electrochemical biosensor that uses a DNA nanowire to localize catalytic hairpin assembly (CHA), also called domino-type localized catalytic hairpin assembly (DT-LCHA), has been proposed for sEV-miRNA1246 detection. The DT-LCHA offers triple amplification, (i). CHA system was localized in DNA nanowire, which shorten the distance between hairpin substrate, inducing the high collision efficiency of H1 and H2 and domino effect. Then, larger numbers of CHAs were triggered, capture probe bind DT-LCHA by exposed c sites. (ii) The DNA nanowire can load large number of electroactive substance RuHex as amplified electrochemical signal tags. (iii) multiple DT-LCHA was carried by the DNA nanowire, only one CHA was triggered, the DNA nanowire was trapped by the capture probe, which greatly improve the detection sensitivity, especially when the target concentration is extremely low. Owing to the triple signal amplification in this strategy, sEV-miRNA at a concentration of as low as 24.55 aM can be detected in 20 min with good specificity. The accuracy of the measurements was also confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, the platform showed good performance in discriminating healthy donors from patients with early gastric cancer (area under the curve [AUC]: 0.96) and was equally able to discriminate between benign gastric tumors and early cancers (AUC: 0.77). Thus, the platform has substantial potential in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, People's Republic of China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, People's Republic of China
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Tingting Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ningcen Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weilun Pan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaojing Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ke Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xiaohui Yan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
24
|
El-Tanani M, Nsairat H, Matalka II, Aljabali AAA, Mishra V, Mishra Y, Naikoo GA, Chava SR, Charbe NB, Tambuwala MM. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol 2023; 40:225. [PMID: 37405480 PMCID: PMC10322774 DOI: 10.1007/s12032-023-02101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | | | - Nitin B Charbe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
25
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
26
|
Zafari N, Bathaei P, Velayati M, Khojasteh-Leylakoohi F, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Nazari E, Avan A. Integrated analysis of multi-omics data for the discovery of biomarkers and therapeutic targets for colorectal cancer. Comput Biol Med 2023; 155:106639. [PMID: 36805214 DOI: 10.1016/j.compbiomed.2023.106639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
The considerable burden of colorectal cancer and the rising trend in young adults emphasize the necessity of understanding its underlying mechanisms, providing new diagnostic and prognostic markers, and improving therapeutic approaches. Precision medicine is a new trend all over the world and identification of novel biomarkers and therapeutic targets is a step forward towards this trend. In this context, multi-omics data and integrated analysis are being investigated to develop personalized medicine in the management of colorectal cancer. Given the large amount of data from multi-omics approach, data integration and analysis is a great challenge. In this Review, we summarize how statistical and machine learning techniques are applied to analyze multi-omics data and how it contributes to the discovery of useful diagnostic and prognostic biomarkers and therapeutic targets. Moreover, we discuss the importance of these biomarkers and therapeutic targets in the clinical management of colorectal cancer in the future. Taken together, integrated analysis of multi-omics data has great potential for finding novel diagnostic and prognostic biomarkers and therapeutic targets, however, there are still challenges to overcome in future studies.
Collapse
Affiliation(s)
- Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Elham Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Qi SS, Miao Y, Sheng YY, Hu RM, Zhao J, Yang QP. MicroRNA-1246 Inhibits NFATc1 Phosphorylation and Regulates T Helper 17 Cell Activation in the Pathogenesis of Severe Alopecia Areata. Ann Dermatol 2023; 35:46-55. [PMID: 36750458 PMCID: PMC9905862 DOI: 10.5021/ad.22.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND We found microRNA (miR)-1246 to be significantly differentially expressed between severe active alopecia areata (AA) patients and healthy individuals. OBJECTIVE To explore the role and mechanism of miR-1246 in severe AA. METHODS Expression of miR-1246, dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), and nuclear factor of activated T cells 1c (NFATc1) in peripheral CD4+ T cells and in scalp tissues of patients were detected using RT-qPCR, Western blot, and immunohistochemistry assays. Peripheral CD4+ T cells from the AA patients were transfected with lentiviral vectors overexpressing miR-1246. RT-qPCR and Western blot analysis were used to measure mRNA or protein expression of retinoic-acid-receptor-related orphan nuclear receptor gamma (ROR-γt), interleukin (IL)-17, DYRK1A, NFATc1, and phosphorylated NFATc1. Flow cytometry was used to assay the CD4+IL-17+ cells proportion. ELISA was used to measure cytokine levels. RESULTS miR-1246 levels decreased and DYRK1A and NFATc1 mRNA levels significantly increased in the peripheral CD4+ T cells and scalp tissues of severe active AA samples. NFATc1 protein expression was also significantly increased in the peripheral CD4+ T cells but not in the scalp tissues. NFATc1 positive cells were mainly distributed among infiltrating inflammatory cells around hair follicles. In peripheral CD4+ T cells of severe active AA, overexpression of miR-1246 resulted in significant downregulation of DYRK1A, NFATc1, ROR-γt, and IL-17 mRNA and phosphorylated NFATc1 protein, as well as a decrease in the CD4+IL-17+ cells proportion and the IL-17F level. CONCLUSION miR-1246 can inhibit NFAT signaling and Th17 cell activation, which may be beneficial in the severe AA treatment.
Collapse
Affiliation(s)
- Si-si Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - You-yu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-ming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin-ping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Da D, Pan Z, Zeng L, Dang Y, Dang C, Huang Y, Shi D, Li H. Glutamate-cysteine ligase catalytic and its modifier function as novel immunotargets in gastric adenocarcinoma. Asian J Surg 2023; 46:143-149. [PMID: 35241341 DOI: 10.1016/j.asjsur.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To determine the expression and function of glutamate-cysteine ligase catalytic (GCLC) and glutamate-cysteine ligase catalytic modifier (GCLM) in gastric adenocarcinoma. METHODS Bioinformatics was used to analyze the expression of GCLC and GCLM. We download and analyzed the expression of gastric adenocarcinoma patients from TCGA database. Moreover, the method of immunochemistry was used to verify the expression of GCLC and GCLM in gastric adenocarcinoma. RESULTS At first, the expression of GCLC and GCLM in gastric adenocarcinoma tissues were both significantly higher compared with normal tissues analyzed via TCGA database. Then, gastric adenocarcinoma tissues were collected and performed with immunochemistry. The gastric adenocarcinoma with positive staining for GCLC and GCLM was 77% and 80%, respectively, which was significantly higher compared with adjacent normal tissues (9% and 11%, respectively). CONCLUSIONS The disordered expression of GCLC and GCLM in gastric adenocarcinoma suggested that these factors may induce tumorigenesis and may be a novel target for diagnosis and treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Dezhuan Da
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Zhiang Pan
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Lu Zeng
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Yamei Dang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Chunyan Dang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Yunxia Huang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Dujuan Shi
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China
| | - Hongling Li
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, 204 Donggang West Road, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
29
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Huynh KQ, Le AT, Phan TT, Ho TT, Pho SP, Nguyen HT, Le BT, Nguyen TT, Nguyen ST. The Diagnostic Power of Circulating miR-1246 in Screening Cancer: An Updated Meta-analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8379231. [PMID: 37122536 PMCID: PMC10139802 DOI: 10.1155/2023/8379231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Background MicroRNA-1246 (miR-1246), an oncomiR that regulates the expression of multiple cancer-related genes, has been attracted and studied as a promising indicator of various tumors. However, diverse conclusions on diagnostic accuracy have been shown due to the small sample size and limited studies included. This meta-analysis is aimed at systematically assessing the performance of extracellular circulating miR-1246 in screening common cancers. Methods We searched the PubMed/MEDLINE, Web of Science, Cochrane Library, and Google Scholar databases for relevant studies until November 28, 2022. Then, the summary receiver operating characteristic (SROC) curves were drawn and calculated area under the curve (AUC), diagnostic odds ratio (DOR), sensitivity, and specificity values of circulating miR-1246 in the cancer surveillance. Results After selection and quality assessment, 29 eligible studies with 5914 samples (3232 cases and 2682 controls) enrolled in the final analysis. The pooled AUC, DOR, sensitivity, and specificity of circulating miR-1246 in screening cancers were 0.885 (95% confidence interval (CI): 0.827-0.892), 27.7 (95% CI: 17.1-45.0), 84.2% (95% CI: 79.4-88.1), and 85.3% (95% CI: 80.5-89.2), respectively. Among cancer types, superior performance was noted for breast cancer (AUC = 0.950, DOR = 98.5) compared to colorectal cancer (AUC = 0.905, DOR = 47.6), esophageal squamous cell carcinoma (AUC = 0.757, DOR = 8.0), hepatocellular carcinoma (AUC = 0.872, DOR = 18.6), pancreatic cancer (AUC = 0.767, DOR = 12.3), and others (AUC = 0.887, DOR = 27.5, P = 0.007). No significant publication bias in DOR was observed in the meta-analysis (funnel plot asymmetry test with P = 0.652; skewness value = 0.672, P = 0.071). Conclusion Extracellular circulating miR-1246 may serve as a reliable biomarker with good sensitivity and specificity in screening cancers, especially breast cancer.
Collapse
Affiliation(s)
- Khanh Quang Huynh
- The Breast Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Anh Tuan Le
- Department of Chemo-Radiotherapy, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Thang Thanh Phan
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Toan Trong Ho
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Suong Phuoc Pho
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Hang Thuy Nguyen
- Department of Clinical Pathology, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Binh Thanh Le
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Thuc Tri Nguyen
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Son Truong Nguyen
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| |
Collapse
|
31
|
Proaño-Pérez E, Serrano-Candelas E, Mancia C, Navinés-Ferrer A, Guerrero M, Martin M. SH3BP2 Silencing Increases miRNAs Targeting ETV1 and Microphthalmia-Associated Transcription Factor, Decreasing the Proliferation of Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:cancers14246198. [PMID: 36551682 PMCID: PMC9777313 DOI: 10.3390/cancers14246198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Gain of function in receptor tyrosine kinases type III, KIT, or PDGFRA drives the majority of GIST. Previously, our group reported that silencing of the adaptor molecule SH3 Binding Protein 2 (SH3BP2) downregulated KIT and PDGFRA and microphthalmia-associated transcription factor (MITF) levels and reduced tumor growth. This study shows that SH3BP2 silencing also decreases levels of ETV1, a required factor for GIST growth. To dissect the SH3BP2 pathway in GIST cells, we performed a miRNA array in SH3BP2-silenced GIST cell lines. Among the most up-regulated miRNAs, we found miR-1246 and miR-5100 to be predicted to target MITF and ETV1. Overexpression of these miRNAs led to a decrease in MITF and ETV1 levels. In this context, cell viability and cell cycle progression were affected, and a reduction in BCL2 and CDK2 was observed. Interestingly, overexpression of MITF enhanced cell proliferation and significantly rescued the viability of miRNA-transduced cells. Altogether, the KIT-SH3BP2-MITF/ETV1 pathway deserves to be considered in GIST cell survival and proliferation.
Collapse
Affiliation(s)
- Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Health Sciences, Technical University of Ambato, Ambato 180105, Ecuador
| | - Eva Serrano-Candelas
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cindy Mancia
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Arnau Navinés-Ferrer
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Margarita Martin
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
32
|
Zhao G, Jing X, Li Z, Wu X, Gao Z, Ma R. The diagnostic and prognostic values of circulating miRNA-1246 in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:778-784. [PMID: 35793786 DOI: 10.1080/16078454.2022.2095890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/OBJECTIVE Bone marrow biopsy, the gold standard for the diagnosis of multiple myeloma (MM), has main limitation of the invasiveness. Here, we explored the diagnostic and prognostic values of circulating miR-1246 in patients with MM. MATERIAL AND METHODS Ninety MM patients and 30 healthy donors (control group) were recruited in this study. The expression of miR-1246 in the peripheral blood samples was detected using qPCR. The receiver operating characteristic (ROC) curve was used to assess the diagnostic value of miR-1246 in MM. The Kaplan-Meier survival analyze was performed to evaluate the prognostic value of miR-1246. RESULTS The expression level of serum miR-1246 from newly diagnosed MM patients was significantly higher than that of the control group. Circulating miR-1246 level was decreased after treatment in remission patients, but remained high levels in relapsed patients (P < 0.05). ROC analysis demonstrated that miR-1246 showed a high diagnostic value in MM with an area under the curve (AUC) of 0.952, the sensitivity of 87%, and the specificity of 95% [95% confidence interval (CI) 0.902-1.007; P < 0.001]. Kaplan-Meier analysis showed that the progression-free survival (PFS) (14.0 months vs. 26.5 months, P = 0.045) and overall survival (OS) (20.5 months vs. 55.5 months, P = 0.014) were significantly shorter in patients with high miR-1246 expression as compared with those in patients with miR-1246 low expression. Multiple Cox regression model analysis showed that circulating miR-1246 was an independent prognostic factor for PFS (HR 2.786, 95% CI: 1.420-5.467, P = 0.003) and OS (HR 2.995, 95% CI: 1.166-7.689, P = 0.023) in MM patients. CONCLUSION This study demonstrates that circulating miR-1246 level is elevated in MM patients, which shows high values in the diagnosis and prognosis prediction in patients with MM.
Collapse
Affiliation(s)
- Guimin Zhao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaotong Jing
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zheng Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaolin Wu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zhe Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ruijuan Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
33
|
Localized DNA tetrahedrons assisted catalytic hairpin assembly for the rapid and sensitive profiling of small extracellular vesicle-associated microRNAs. J Nanobiotechnology 2022; 20:503. [PMID: 36457020 PMCID: PMC9714172 DOI: 10.1186/s12951-022-01700-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.
Collapse
|
34
|
Liu Z, Zhao W, Yang R. MiR-1246 is responsible for lung cancer cells-derived exosomes-mediated promoting effects on lung cancer stemness via targeting TRIM17. ENVIRONMENTAL TOXICOLOGY 2022; 37:2651-2659. [PMID: 35894553 DOI: 10.1002/tox.23625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The stemness of lung cancer cells contributes to drug resistance, tumor occurrence, progression, and recurrence; however, the underlying mechanisms are still fragmentary. In the present study, it was found that exosomes from cisplatin-resistant cells and spheres derived from lung cancer cells enhanced the stemness of the parental lung cancer cells. Then we screened the upregulated miRNAs in spheres derived from lung cancer cells and cisplatin-resistant lung cancer cells/exosomes compared to that in the parental lung cancer cells. It was found that miR-1246 was remarkably enriched in cisplatin-resistant lung cancer cells/exosomes and spheres. Additionally, inhibition of miR-1246 attenuated the stemness of lung cancer cells induced by exosomes from cisplatin-resistant cells and spheres. Furthermore, TRIM17 was identified to the direct target of miR-1246 in lung cancer cells. Our findings suggest that exosomal miR-1246 could be as a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Zhengcheng Liu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong
| | - Rusong Yang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
35
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
36
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
The Exosomal miR-1246 of Laryngeal Squamous Cell Carcinoma Induces Polarization of M2 Type Macrophages and Promotes the Invasiveness of Laryngeal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4424221. [PMID: 36199785 PMCID: PMC9529393 DOI: 10.1155/2022/4424221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Background. The possible role and detailed mechanisms of Tumor-associated macrophages (TAMs) in laryngeal squamous cell carcinoma (LSCC) have not been revealed. Methods. The expressions of typical markers were evaluated by qRT-PCR. In macrophages cocultured with TU212 cells, CD163, and CD206 protein expressions were detected by western blot analysis; IL-10 and IL-12 expressions were detected by ELISA assay. Exosomes isolated from TU212 cells were characterized by TEM analysis. As for the TU212 cells cocultured with macrophages processed with HOK or TU212 cells derived exosomes, their viability, migration, and invasion were assessed by CCK-8 assay, wounding healing, and Transwell assays, respectively. Results. In this study, macrophages processed with exosomes from human TU212 cells notably advanced LSCC cell viability, migration, and invasion. miR-1246 inhibitor suppressed the M2 polarization of macrophages. Macrophages transfected with miR-1246 inhibitor suppressed LSCC cell viability, migration, and invasion. Conclusion. In summary, our data implied that the exosomal, miR-1246 of LSCC, induced polarization of M2 type macrophages and promoted the progression of LSCC. This trial is registered with 2020-13.
Collapse
|
38
|
Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022; 12:969866. [PMID: 36185234 PMCID: PMC9521037 DOI: 10.3389/fonc.2022.969866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. Guiding the individualized treatment of GC is the focus of research. Obtaining representative biological samples to study the biological characteristics of GC is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use high-throughput sequencing technology to detect biological genetic information in blood. Compared with traditional tissue biopsy, liquid biopsy can determine the dynamic changes of tumor. As a noninvasive auxiliary diagnostic method, liquid biopsy can provide diagnostic and prognostic information concerning the progression of the disease. Liquid biopsy includes circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor educated platelets, exosomes, and cytokines. This article describes the classification of liquid biopsy and its application value in the occurrence, development, and therapeutic efficacy of GC.
Collapse
|
39
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
40
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
41
|
Li K, Tu J, Zhang Y, Jin D, Li T, Li J, Ni W, Xiao MM, Zhang ZY, Zhang GJ. Ultrasensitive detection of exosomal miRNA with PMO-graphene quantum dots-functionalized field-effect transistor biosensor. iScience 2022; 25:104522. [PMID: 35754714 PMCID: PMC9218366 DOI: 10.1016/j.isci.2022.104522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Compared with the conventional DNA probe immobilization on the planar surface, nanoparticles-based DNA probes enable more RNA molecules to be anchored to the sensor surface, thereby improving the detection sensitivity. In this work, we report phosphorodiamidate morpholino oligomers (PMO)-graphene quantum dots (GQDs)-functionalized reduced graphene oxide (RGO) field effect transistor (FET) biosensors for ultrasensitive detection of exosomal microRNAs. After the RGO FET sensor was fabricated, polylysine (PLL) film was deposited onto the RGO surface. GQDs-PMO hybrid was prepared and covalently bound to PLL surface, enabling detection of exosomal microRNAs (miRNAs). The method achieved a detection limit as low as 85 aM and high specificity. Furthermore, the FET sensor was able to detect exosomal miRNAs in plasma samples and distinguish breast cancer samples from healthy samples. Compared with other methods, we use GQDs to further improve the sensitivity of FET, making it a potential tool for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Kun Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Jiyuan Tu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Tingxian Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan, Wuhan 430061, P.R. China
| | - Meng-Meng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 5 Yiheyuan Road, Beijing 100871, P.R. China
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 5 Yiheyuan Road, Beijing 100871, P.R. China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| |
Collapse
|
42
|
Zhu X, Su T, Wang S, Zhou H, Shi W. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol 2022; 12:834934. [PMID: 35619913 PMCID: PMC9127958 DOI: 10.3389/fonc.2022.834934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
With the development of materials science and biomedicine, the application of nanomaterials in the medical field is further promoted. In the process of the diagnosis and treatment of diseases, a variety of drugs need to be used. It is an ideal state to make these drugs arrive at a specific location at a specific time and release at a specific speed, which can improve the bioavailability of drugs and reduce the adverse effects of drugs on normal tissues. Traditional drug delivery methods such as tablets, capsules, syrups, and ointments have certain limitations. The emergence of a new nano-drug delivery system further improves the accuracy of drug delivery and the efficacy of drugs. It is well known that the development of the cancer of the stomach is the most serious consequence for the infection of Helicobacter pylori. For the patients who are suffering from gastric cancer, the treatments are mainly surgery, chemotherapy, targeted and immune therapy, and other comprehensive treatments. Although great progress has been made, the diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Current treatments are of limited benefits for patients, resulting in a poor 5-year survival rate. Nanomaterials may play a critical role in early diagnosis. A nano-drug delivery system can significantly improve the chemotherapy, targeted therapy, and immunotherapy of advanced gastric cancer, reduce the side effects of the original treatment plan and provide patients with better benefits. It is a promising treatment for gastric cancer. This article introduces the application of nanomaterials in the diagnosis and treatment of H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqing Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Vinokurova SV, Galetsky SA, Elkina NV, Denisova DA, Enikeev AD, Tchevkina EM. Extracellular Vesicles from Uterine Aspirates Represent a Promising Source for Screening Markers of Gynecologic Cancers. Cells 2022; 11:cells11071064. [PMID: 35406627 PMCID: PMC8997481 DOI: 10.3390/cells11071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are key factors of intercellular communication, performing both local and distant transfers of bioactive molecules. The increasingly obvious role of EVs in carcinogenesis, similarity of molecular signatures with parental cells, precise selection and high stability of cargo molecules make exosomes a promising source of liquid biopsy markers for cancer diagnosis. The uterine cavity fluid, unlike blood, urine and other body fluids commonly used to study EVs, is of local origin and therefore enriched in EVs secreted by cells of the female reproductive tract. Here, we show that EVs, including those corresponding to exosomes, could be isolated from individual samples of uterine aspirates (UA) obtained from epithelial ovarian cancer (EOC) patients and healthy donors using the ultracentrifugation technique. First, the conducted profiling of small RNAs (small RNA-seq) from UA-derived EVs demonstrated the presence of non-coding RNA molecules belonging to various classes. The analysis of the miRNA content in EVs from UA performed on a pilot sample revealed significant differences in the expression levels of a number of miRNAs in EVs obtained from EOC patients compared to healthy individuals. The results open up prospects for using UA-derived EVs as a source of markers for the diagnostics of gynecological cancers, including EOC.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Andrey V. Komelkov
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
- Correspondence: ; Tel.: +7-926-482-9147
| | - Kirill I. Zhordania
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 111234 Moscow, Russia;
| | - Svetlana V. Vinokurova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Sergey A. Galetsky
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Nadezhda V. Elkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Darya A. Denisova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Adel D. Enikeev
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Elena M. Tchevkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| |
Collapse
|
44
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|
45
|
Chang W, Li M, Song L, Miao S, Yu W, Wang J. Noncoding RNAs from tissue-derived small extracellular vesicles: Roles in diabetes and diabetic complications. Mol Metab 2022; 58:101453. [PMID: 35121168 PMCID: PMC8866070 DOI: 10.1016/j.molmet.2022.101453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a systemic disease, and its progression involves multiple organ dysfunction. However, the exact mechanisms underlying pathological progression remain unclear. Small extracellular vesicles (sEVs) mediate physiological and pathological signaling communication between organs and have been shown to have important regulatory roles in diabetes and its complications in recent years. In particular, the majority of studies in the diabetes-related research field have focused on the noncoding RNAs carried by sEVs. Researchers found that noncoding RNA sorting into sEVs is not random but selective. Both tissue origin differences and environmental variations affect the cargo of sEVs. In addition, the function of sEVs differs according to the tissue they derive from; for example, sEVs derived from adipose tissue regulate insulin sensitivity in the periphery, while sEVs derived from bone marrow promote β-cell regeneration. Therefore, understanding the roles of sEVs from different tissues is important for elucidating their molecular mechanisms and is necessary for the application of sEVs as therapeutic agents for diabetes treatment in the future. In this review, we summarized current studies on the mechanisms of noncoding RNA sorting into sEVs, as well as the research progress on the effects of sEVs from different tissue origins and noncoding RNAs in diabetes and diabetic complications. The knowledge of noncoding RNAs in sEVs will help us better understand the role of sEVs in the diabetes progression.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China.
| | - Mengyang Li
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Lin Song
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Suo Miao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Babuta M, Szabo G. Extracellular vesicles in inflammation: Focus on the microRNA cargo of EVs in modulation of liver diseases. J Leukoc Biol 2022; 111:75-92. [PMID: 34755380 PMCID: PMC9235439 DOI: 10.1002/jlb.3mir0321-156r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous nanometer-ranged particles that are released by cells under both normal and pathological conditions. EV cargo comprises of DNA, protein, lipids cargo, metabolites, mRNA, and non-coding RNA that can modulate the immune system by altering inflammatory response. EV associated miRNAs contribute to the pathobiology of alcoholic liver disease, non-alcoholic liver disease, viral hepatitis, acetaminophen-induced liver injury, fibrosis, and hepatocellular carcinoma. In context of liver diseases, EVs, via their cargo, alter the inflammatory response by communicating with different cell types within the liver and between liver and other organs. Here, the role of EVs and its associated miRNA in inter-cellular communication in different liver disease and as a potential biomarker and therapeutic target is reviewed.
Collapse
Affiliation(s)
- Mrigya Babuta
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Zheng R, Du M, Tian M, Zhu Z, Wei C, Chu H, Gan C, Liang J, Xue R, Gao F, Mao Z, Wang M, Zhang Z. Fine Particulate Matter Induces Childhood Asthma Attacks via Extracellular Vesicle-Packaged Let-7i-5p-Mediated Modulation of the MAPK Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102460. [PMID: 34816611 PMCID: PMC8787417 DOI: 10.1002/advs.202102460] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/09/2021] [Indexed: 05/30/2023]
Abstract
Fine particulate matter less than 2.5 µm in diameter (PM2.5 ) is a major risk factor for acute asthma attacks in children. However, the biological mechanism underlying this association remains unclear. In the present study, PM2.5 -treated HBE cells-secreted extracellular vesicles (PM2.5 -EVs) caused cytotoxicity in "horizontal" HBE cells and increased the contractility of "longitudinal" sensitive human bronchial smooth muscle cells (HBSMCs). RNA sequencing showed that let-7i-5p is significantly overexpressed in PM2.5 -EVs and asthmatic plasma; additionally, its level is correlated with PM2.5 exposure in children with asthma. The combination of EV-packaged let-7i-5p and the traditional clinical biomarker IgE exhibits the best diagnostic performance (area under the curve [AUC] = 0.855, 95% CI = 0.786-0.923). Mechanistically, let-7i-5p is packaged into PM2.5 -EVs by interacting with ELAVL1 and internalized by both "horizontal" recipient HBE cells and "longitudinal" recipient-sensitive HBSMCs, with subsequent activation of the MAPK signaling pathway via suppression of its target DUSP1. Furthermore, an injection of EV-packaged let-7i-5p into PM2.5 -treated juvenile mice aggravated asthma symptoms. This comprehensive study deciphered the remodeling of the extracellular environment mediated by the secretion of let-7i-5p-enriched EVs during PM2.5 -induced asthma attacks and identified plasma EV-packaged let-7i-5p as a novel predictor of childhood asthma.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| | - Mulong Du
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Man Tian
- Department of Respiratory MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Zhaozhong Zhu
- Department of Emergency MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Chengcheng Wei
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| | - Haiyan Chu
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| | - Cong Gan
- Department of Respiratory MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Jiayuan Liang
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| | - Renjie Xue
- Department of Respiratory MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Fang Gao
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Environmental Medicine EngineeringMinistry of Education of ChinaSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Zhenguang Mao
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| | - Meilin Wang
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhou215008China
| | - Zhengdong Zhang
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
48
|
Cai L, Zhang Q, Du L, Zheng F. Silencing of miR-1246 Induces Cell Cycle Arrest and Apoptosis in Cisplatin-Resistant Ovarian Cancer Cells by Promoting ZNF23 Transcription. Cytogenet Genome Res 2021; 161:488-500. [PMID: 34923485 DOI: 10.1159/000520069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer (OC) is the most frequent cause of death among patients with gynecologic malignancies. In recent years, the development of cisplatin (DDP) resistance has become an important reason for the poor prognosis of OC patients. Therefore, it is vital to explore the mechanism of DDP resistance in OC. In this study, microRNA-1246 (miR-1246) expression in OC and DDP-resistant OC cells was determined by RT-qPCR, and chemosensitivity to DDP was assessed by the CCK-8 assay. A dual-luciferase reporter assay was performed to confirm the interaction between miR-1246 and zinc finger 23 (ZNF23), while changes in ZNF23 expression were monitored by RT-qPCR, immunofluorescence, and western blot assays. Moreover, cell proliferation, cycle phase, and apoptosis were determined by EdU staining, flow cytometry, TUNEL staining, and Hoechst staining. Our data showed that miR-1246 was highly expressed in DDP-resistant OVCAR-3 and TOV-112D cells. Functionally, overexpression of miR-1246 markedly enhanced DDP resistance and cell proliferation, and suppressed cell cycle arrest and apoptosis of OC cells. Inhibition of miR-1246 expression significantly attenuated DDP resistance and cell proliferation, and increased cell cycle arrest and apoptosis in DDP-resistant OC cells. Furthermore, ZNF23 was identified as a target gene of miR-1246, and ZNF23 protein expression was notably downregulated in DDP-resistant OC cells. Moreover, overexpression of miR-1246 significantly downregulated the ZNF23 levels in OVCAR-3 and TOV-112D cells, and inhibition of miR-1246 upregulated the ZNF23 levels in the DDP-resistant OVCAR-3 and TOV-112D cells. In conclusion, miR-1246 might be a novel regulator of DDP-resistant OC that functions by regulating ZNF23 expression in DDP-resistant cells, as well as cell proliferation, cell cycle progression, and apoptosis.
Collapse
Affiliation(s)
- Lu Cai
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Feiyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Advances in the Aetiology & Endoscopic Detection and Management of Early Gastric Cancer. Cancers (Basel) 2021; 13:cancers13246242. [PMID: 34944861 PMCID: PMC8699285 DOI: 10.3390/cancers13246242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Gastric adenocarcinoma has remained a highly lethal disease. Awareness and recognition of preneoplastic conditions (including gastric atrophy and intestinal metaplasia) using high-resolution white-light endoscopy as well as chromoendoscopy is therefore essential. Helicobacter pylori, a class I carcinogen, remains the main contributor to the development of sporadic distal gastric neoplasia. Management of early gastric neoplasia with endoscopic resections should be in line with standard indications. A multidisciplinary approach to any case of an early gastric neoplasia is imperative. Hereditary forms of gastric cancer require a tailored approach and individua-lized surveillance. Abstract The mortality rates of gastric carcinoma remain high, despite the progress in research and development in disease mechanisms and treatment. Therefore, recognition of gastric precancerous lesions and early neoplasia is crucial. Two subtypes of sporadic gastric cancer have been recognized: cardia subtype and non-cardia (distal) subtype, the latter being more frequent and largely associated with infection of Helicobacter pylori, a class I carcinogen. Helicobacter pylori initiates the widely accepted Correa cascade, describing a stepwise progression through precursor lesions from chronic inflammation to gastric atrophy, gastric intestinal metaplasia and neoplasia. Our knowledge on He-licobacter pylori is still limited, and multiple questions in the context of its contribution to the pathogenesis of gastric neoplasia are yet to be answered. Awareness and recognition of gastric atrophy and intestinal metaplasia on high-definition white-light endoscopy, image-enhanced endoscopy and magnification endoscopy, in combination with histology from the biopsies taken accurately according to the protocol, are crucial to guiding the management. Standard indications for endoscopic resections (endoscopic mucosal resection and endoscopic submucosal dissection) of gastric dysplasia and intestinal type of gastric carcinoma have been recommended by multiple societies. Endoscopic evaluation and surveillance should be offered to individuals with an inherited predisposition to gastric carcinoma.
Collapse
|
50
|
Exosomes Derived from Radioresistant Breast Cancer Cells Promote Therapeutic Resistance in Naïve Recipient Cells. J Pers Med 2021; 11:jpm11121310. [PMID: 34945782 PMCID: PMC8704086 DOI: 10.3390/jpm11121310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation resistance is a significant challenge in the treatment of breast cancer in humans. Human breast cancer is commonly treated with surgery and adjuvant chemotherapy/radiotherapy, but recurrence and metastasis upon the development of therapy resistance results in treatment failure. Exosomes are extracellular vesicles secreted by most cell types and contain biologically active cargo that, when transferred to recipient cells, can influence the cells’ genome and proteome. We propose that exosomes secreted by radioresistant (RR) cells may be able to disseminate the RR phenotype throughout the tumour. Here, we isolated exosomes from the human breast cancer cell line, MDA-MB-231, and the canine mammary carcinoma cell line, REM134, and their RR counterparts to investigate the effects of exosomes derived from RR cells on non-RR recipient cells. Canine mammary cancer cells lines have previously been shown to be excellent translational models of human breast cancer. This is consistent with our current data showing that exosomes derived from RR cells can increase cell viability and colony formation in naïve recipient cells and increase chemotherapy and radiotherapy resistance, in both species. These results are consistent in cancer stem cell and non-cancer stem cell populations. Significantly, exosomes derived from RR cells increased the tumoursphere-forming ability of recipient cells compared to exosomes derived from non-RR cells. Our results show that exosomes are potential mediators of radiation resistance that could be therapeutically targeted.
Collapse
|