1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Zhang F, Ramar S, Wang Y, Xu H, Zhang K, Awadasseid A, Rao G, Zhang W. Advances in cancer immunotherapy using small-molecular inhibitors targeting the PD-1/PD-L1 interaction. Bioorg Med Chem 2025; 127:118238. [PMID: 40367914 DOI: 10.1016/j.bmc.2025.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Cancer cells evade immune responses by interacting with PD-1 and its ligand, PD-L1. Although monoclonal antibodies targeting this pathway have revolutionized oncology, their high production costs, poor oral bioavailability, and limited tumor penetration remain significant challenges. Small-molecule inhibitors provide a promising alternative, offering advantages such as improved tumor penetration and cost-effectiveness. This review highlights advancements in small-molecule PD-1/PD-L1 inhibitors, focusing on their mechanisms, structural designs, and therapeutic potential. Key innovations, including biphenyl scaffolds, heterocyclic frameworks, enhance binding efficiency and immune activation. The article effectively integrates fundamental principles of drug chemistry with real-world clinical needs, offering a comprehensive approach to the design of PD-1/PD-L1 small-molecule inhibitors. It systematically classifies various molecular structures, analyzes relevant industrial cases, and incorporates the most recent research findings. By examining these aspects, it uncovers the underlying logic driving the design process and provides a fresh, innovative perspective on advancing the field of immune small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Sivaramakarthikeyan Ramar
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute ZJUT, Deqing 313202, China
| | - Yu Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Haoran Xu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Koutian Zhang
- Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China
| | - Annoor Awadasseid
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China.
| | - Guowu Rao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
3
|
Iwai C, Jo T, Okada A, Fujita A, Konishi T, Oba K, Hashimoto Y, Yasunaga H. Association between immune checkpoint inhibitors and uveitis in patients with lung cancer, renal cell carcinoma, or malignant melanoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2025:S0008-4182(25)00068-7. [PMID: 40118100 DOI: 10.1016/j.jcjo.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) reportedly have a potential risk of general ocular complications; however, whether ICIs have a risk of uveitis remains unclear. Therefore, we assessed whether ICI use has a higher risk of uveitis than chemotherapy alone. METHODS Using a large administrative claims database in Japan, we identified 26 474 patients with lung cancer, renal cell carcinoma, or malignant melanoma, who initiated ICI or chemotherapy between April 2014 and November 2022. The patients were divided into 2 groups: those receiving ICI with and without chemotherapy (ICI group: n = 8103) and those receiving chemotherapy alone (non-ICI group: n = 18 371). After propensity score-overlap weighting to adjust for background factors, we estimated the incidence of uveitis and performed Cox regression analyses. We also conducted subgroup analyses stratified by age (<75 and ≥75 years). RESULTS The overlap-weighted incidence of uveitis in the ICI group was higher than that in the non-ICI group (85.1 vs 55.9/10,000 person-years; number needed to harm: 343). The hazard ratio (HR) for uveitis in the ICI group was 1.49 (95% confidence interval, 1.11 to 2.01) in comparison with the non-ICI group. The age-stratified analysis showed that the ICI group had an increased risk among individuals aged <75 years (HR 1.65 [1.15 to 2.41]), while the risk did not differ among individuals aged ≥75 years (HR 1.35 [0.84 to 2.18]). CONCLUSIONS ICI use was associated with a higher risk of uveitis compared to non-ICI use, particularly among patients aged <75 years.
Collapse
Affiliation(s)
- Chikako Iwai
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan.
| | - Taisuke Jo
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Okada
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asahi Fujita
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan; Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takaaki Konishi
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Yohei Hashimoto
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Cheng B, Li H, Hong Y, Zhou Y, Chen J, Shao C, Kong Z. Research progress in bifunctional small molecules for cancer immunotherapy. Eur J Med Chem 2025; 286:117289. [PMID: 39919914 DOI: 10.1016/j.ejmech.2025.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy has become one of the most revolutionary modalities for cancer treatment with the approval of many anti-PD-L1 (programmed cell death-ligand 1)/PD-1 (programmed cell death-1) monoclonal antibodies (mAbs). However, anti-PD-L1/PD-1 mAbs suffer from several drawbacks including limited clinical efficacy (∼20 %), poor pharmacokinetics, and the development of immune resistance. Hence, the search for PD-1/PD-L1-based combination therapies and other PD-L1-based bifunctional small molecule modulators [e.g. PD-L1/HDAC (Histone Deacetylase), PD-L1/CXCL12 (C-X-C chemokine ligand 12), PD-L1/Tubulin, PD-L1/IDO1 (Indoleamine 2,3 dioxygenase 1), PD-L1/PARP (Poly(ADP-ribose) polymerase), PD-L1/STING (Stimulator of interferon genes), and PD-L1/NAMPT (Nicotinamide phosphoribosyltransferase)-targeting dual inhibitors] has been intensified with considerable strides achieved in the past couple of years. Herein, we summarize the latest development of bifunctional small molecules as immunotherapy for tumor treatment, including those PD-L1-based, A2AR (Adenosine 2A receptor)-based, IDO1-based, Toll-like receptor (TLR)-based, SHP2 (Src homology 2 domain-containing phosphatase 2)-based, and HPK1 (Hematopoietic progenitor kinase 1)-based dual-acting compounds. In addition, we also summarize the tumorigenesis and synergy mechanism of various targets. Finally, the challenges and future directions for bifunctional small molecules for cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Yimeng Hong
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Yingxing Zhou
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
5
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024; 21:1719-1733. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ma YM, Cheng SX, Zhang MC, Zhang HY, Gu JJ, Zhao PP, Ge H. An early combination of concurrent chemoradiotherapy with immune checkpoint inhibitors for cervical cancer is superior to a late combination: a propensity-score matching analysis. Front Oncol 2024; 14:1429176. [PMID: 39640276 PMCID: PMC11617320 DOI: 10.3389/fonc.2024.1429176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose This study compared the timing effects of immune checkpoint inhibitor (ICIs) administration on the efficacy and safety of concurrent chemoradiotherapy for cervical cancer. Methods This study included patients with advanced cervical cancer who received concurrent chemoradiotherapy with ICIs. The patients were divided into early-application (n=51) and late-application groups (n=56) according to the ICI application timing. The primary objective was assessing progression-free survival (PFS) and its associated factors; secondary objectives included assessing objective remission rates (ORR) and treatment-related adverse events (TRAEs). Results Before propensity score matching (PSM), the median PFS (mPFS) times were significantly different: 11.5 months (95% CI: 11.0-13.2) and 7.5 months (95% CI: 6.5-9.0) for the early and late groups, respectively (P<0.001). After PSM, the mPFS times remained significantly different: 11.5 months (95% CI: 11.0-13.8) and 6.5 months (95% CI: 6.1-9.0), respectively (P<0.001). The PSM tumor-response ORR in the early combination group (74.3%) was significantly greater than the 31.4% in the late combination group (P<0.001). After PSM, multivariate Cox analysis showed tumor diameter (P=0.004), distant organ metastasis (P=0.047), and timing of combination therapy (P<0.001) were independently associated factors affecting PFS. The most common TRAEs in the two groups of patients were neutropenia, nausea and vomiting, and fatigue, with no significant difference in incidence (P>0.050).All adverse reactions were resolved, and no adverse reaction-related deaths occurred. Conclusion In patients with cervical cancer treated with concurrent chemoradiotherapy, earlier immunotherapy improves survival and is equivalent in safety to ICIs late application.
Collapse
Affiliation(s)
- Yi-Ming Ma
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shu-Xia Cheng
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ming-Chuan Zhang
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hui-Ying Zhang
- Department of Oncology, First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jun-Jiao Gu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Pan-Pan Zhao
- Department of Gynecologic, First Affiliated Hospital of Henan University of Science and Technology, Jiaozuo, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
8
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
9
|
Cai F, Li Y, Liu H, Luo J. Single-cell and Spatial Transcriptomic Analyses Implicate Formation of the Immunosuppressive Microenvironment during Breast Tumor Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1392-1401. [PMID: 39283254 DOI: 10.4049/jimmunol.2400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024]
Abstract
Ductal carcinoma in situ and invasive ductal carcinoma represent two stages of breast cancer progression. A multitude of studies have shown that genomic instability increases during tumor development, as manifested by higher mutation and copy number variation rates. The advent of single-cell and spatial transcriptomics has enabled the investigation of the subtle differences in cellular states during the tumor progression at single-cell level, thereby providing more nuanced understanding of the intercellular interactions within the solid tumor. However, the evolutionary trajectory of tumor cells and the establishment of the immunosuppressive microenvironment during breast cancer progression remain unclear. In this study, we performed an exploratory analysis of the single-cell sequencing dataset of 13 ductal carcinoma in situ and invasive ductal carcinoma samples. We revealed that tumor cells became more malignant and aggressive during their progression, and T cells transited to an exhausted state. The tumor cells expressed various coinhibitory ligands that interacted with the receptors of immune cells to create an immunosuppressive tumor microenvironment. Furthermore, spatial transcriptomics data confirmed the spatial colocalization of tumor and immune cells, as well as the expression of the coinhibitory ligand-receptor pairs. Our analysis provides insights into the cellular and molecular mechanism underlying the formation of the immunosuppressive landscape during two typical stages of breast cancer progression.
Collapse
MESH Headings
- Humans
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Female
- Single-Cell Analysis
- Disease Progression
- Transcriptome
- Gene Expression Profiling
- Carcinoma, Intraductal, Noninfiltrating/immunology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Gene Expression Regulation, Neoplastic/immunology
Collapse
Affiliation(s)
- Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai China
| | - YuanYuan Li
- College of Computer and Information Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Hui Liu
- College of Computer and Information Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Judong Luo
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Liu X, Zhou W, Zheng D, Yang X, Qing Y, Liao W, Zeng W. BATF-Activated AIM2 Mediates Immune Escape in Lung Adenocarcinoma by Regulating PD-L1. Int Arch Allergy Immunol 2024; 186:345-357. [PMID: 39471785 DOI: 10.1159/000540875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/26/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Immunotherapy has demonstrated encouraging outcomes in tackling lung adenocarcinoma (LUAD), but immune escape may bring negative impacts. Only a single study has demonstrated the function of AIM2 in LUAD and reported that NF-κB and STAT1 are the chief transcription factors, this study is designed to analyze the role of AIM2 and examine the transcription factor, BATF in LUAD immunotherapy. METHODS Bioinformatics methods to analyze the expression and binding sites of AIM2 and BATF in LUAD, as well as the correlation between AIM2 and PD-L1. Dual-luciferase and chromatin immunoprecipitation assays were used to verify the binding of AIM2 and BATF. qRT-PCR and Western blot assayed expression of AIM2, BATF, and PD-L1 in LUAD. MTT measured cell viability, flow cytometry detected cell apoptosis, cytotoxicity assays measured the toxicity of CD8+ T cells to cancer cells, and enzyme-linked immunosorbent assay measured the expression of related cytokines. Immunohistochemistry detected the protein expression levels of AIM2, BATF, PD-L1, and CD8 in tumor tissue. RESULTS AIM2 and BATF were both highly expressed in LUAD, and there was a targeted binding relationship. BATF promoted LUAD cell proliferation and inhibited apoptosis by affecting AIM2 expression. The downregulation of AIM2 and PD-L1 expression inhibited PD-L1 and activated CD8+ T cells. The rescue experiment manifested that increased BATF weakened repression of AIM2 silencing on LUAD tumor immune escape in vitro and in vivo. CONCLUSION BATF promoted AIM2 expression, upregulated PD-L1, inhibited CD8+ T cell activity, and ultimately led to immune escape in LUAD. Our research uncovered an innovative outlook on the intricate regulation of immune checkpoint molecules and proposed a new approach to target the BATF/AIM2 axis in tumor immunotherapy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Dayang Zheng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongcheng Qing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weijun Liao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang L, Yan Y, Gao Y, Chen Y, Yu J, Ren N, Sun L. Antibody-drug conjugates and immune checkpoint inhibitors in cancer treatment: a systematic review and meta-analysis. Sci Rep 2024; 14:22357. [PMID: 39333227 PMCID: PMC11436769 DOI: 10.1038/s41598-024-68311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024] Open
Abstract
Although antibody-drug conjugate (ADC) or immune checkpoint inhibitors (ICIs) alone fosters hope for the treatment of cancer, the effect of single drug treatment is limited and the safety profile of ADC and ICI therapy remains unclear. This meta-analysis aimed to examine the efficacy and safety of the combination of ADC and ICI therapy. This study type is a systematic review and meta-analysis. Literature retrieval was carried out through PubMed, Embase, Cochrane from inception to Jun. 5, 2024. Then, after data extraction, overall response rate (ORR) and adverse effects (AEs) were used to study its efficiency and safety. Publication bias was also calculated through Funnel plot, Begg's Test and Egger's test. Heterogeneity was investigated through subgroup and sensitivity analysis. The research protocol was registered with the PROSPERO (CRD42023375601). A total of 12 eligible clinical studies with 584 patients were included. The pooled ORR was 58% (95%CI 46%, 70%). Subgroup analysis showed an ORR of 77% (95%CI 63%, 91%) in classical Hodgkin lymphoma (cHL) and an ORR of 73% (95%CI 56%, 90%) in non-Hodgkin lymphoma (NHL). The most common AEs was peripheral neuropathy (38.0%). Meanwhile, AEs on skin (13.1-20.0%) and digestive system (9.0-36.0%) was hard be overlooked. ADC + ICI therapy may be recommended in cancer treatment, especially in cHL and NHL. However, strategies to manage toxicities warranted further exploration.
Collapse
Affiliation(s)
- Leyin Zhang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yici Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yangyang Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yixin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ning Ren
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China.
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
13
|
Sato S, Ssuzuki T, Chinen T, Yamaguchi H, Suzuki Y, Hokamura N, Saze Z, Kono K, Takahashi K, Yano F, Kunisaki C, Kosaka T, Endo I, Ichikawa Y, Miyawaki Y, Sato H, Shimada H. The real-world data of immune-checkpoint inhibitor combination therapy for unresectable or metastatic esophageal cancer: a multi-institutional cohort study. Int J Clin Oncol 2024; 29:994-1001. [PMID: 38679627 DOI: 10.1007/s10147-024-02532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The real-world efficacy, feasibility, and prognostic factors of immune-checkpoint inhibitor combination therapy for unresectable or metastatic esophageal cancer are not fully established. METHODS This multi-institutional retrospective cohort study evaluated 71 consecutive patients treated with immune-checkpoint inhibitor combination therapy for esophageal cancer between March 2021 and December 2022. We assessed tumor response, safety, and long-term survival. RESULTS In patients with measurable lesions, the response rate was 58%, and the disease control rate for all enrolled patients was 80%. Five patients (7.0%) underwent successful conversion surgery. Grade 3 or higher immune-related adverse events occurred in 13% of patients, and one patient (1.4%) died due to cholangitis. Median progression-free survival was 9.7 (95% confidence interval: 6.5-not reached). C-reactive protein levels and performance status were identified as significant predictors of progression-free survival through Cox proportional hazards analysis. CONCLUSIONS Immune-checkpoint inhibitor combination therapy for esophageal cancer demonstrated comparable tumor response, safety, and long-term survival to previous randomized clinical trials. Patients with good performance status and low C-reactive protein levels may be suitable candidates for this treatment.
Collapse
Affiliation(s)
- Sho Sato
- Department of Surgery, Yokohama City University Gastroenterological Center, Yokohama, Japan
| | - Takashi Ssuzuki
- Department of Surgery, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Takashi Chinen
- Department of Clinical Oncology, Jichi Medical University Hospital, Tochigi, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University Hospital, Tochigi, Japan
| | - Yusuke Suzuki
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Nobukazu Hokamura
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Keita Takahashi
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Fumiaki Yano
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Chikara Kunisaki
- Department of Surgery, Yokohama City University Gastroenterological Center, Yokohama, Japan
| | - Takashi Kosaka
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yasushi Ichikawa
- Department of Clinical Oncology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yutaka Miyawaki
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroshi Sato
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hideaki Shimada
- Department of Surgery, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
14
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
15
|
Xing L, Wang Z, Feng Y, Luo H, Dai G, Sang L, Zhang C, Qian J. The biological roles of CD47 in ovarian cancer progression. Cancer Immunol Immunother 2024; 73:145. [PMID: 38832992 PMCID: PMC11150368 DOI: 10.1007/s00262-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Haixia Luo
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Guijiang Dai
- Department of Comprehensive Office, The Second Affiliated Hospital of MuDanjiang Medical University, Mudanjiang, 157009, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, People's Hospital of Anji, Huzhou, 310022, People's Republic of China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
16
|
Liu X, Guo Z, Su L, Zuo A, Gao M, Ji X, Lu J, Yang S, Jiang Y, Lu D. The efficacy and safety of continuous intravenous infusion of rh-endostatin combined with platinum-based doublet chemotherapy for advanced non-small-cell lung cancer. Invest New Drugs 2024; 42:309-317. [PMID: 38700579 PMCID: PMC11164818 DOI: 10.1007/s10637-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Platinum-based doublet chemotherapy is commonly used in the treatment of non-small cell lung cancer (NSCLC). A growing body of evidence indicates that incorporating antiangiogenic agents into platinum-based chemotherapy may enhance the survival outcomes for NSCLC patients. However, the optimal administration protocol for intravenous recombinant human endostatin (rh-endostatin), an antiangiogenic agent, remains uncertain at present. AIM This study aims to investigate the efficacy and safety of 5-d continuous intravenous infusion of rh-endostatin in combination with chemotherapy for patients with advanced NSCLC. The predictive biomarkers for this treatment regimen were further probed. METHODS This prospective, single-arm multicenter study enrolled a total of 48 patients with advanced NSCLC who were histologically or cytologically confirmed but had not received any prior treatment from January 2021 to December 2022. Prior to the chemotherapy, these patients received a continuous intravenous infusion of rh-endostatin (210 mg) over a period of 120 h, using an infusion pump. The chemotherapy regimen included a combination of platinum with either pemetrexed or paclitaxel, given in 21-day cycles. The primary endpoint of the study was median progression-free survival (mPFS), and the secondary endpoints included median overall survival (mOS), objective response rate (ORR), disease control rate (DCR), and assessment of adverse events (AEs). RESULTS The mPFS was 6.5 months (95% confidence interval (CI): 3.8-9.1 m) while the mOS was 12.3 months (95% CI: 7.6-18.5 m). The ORR and DCR was 52.1% and 75.0%, respectively. Leukopenia (52.1%), anemia (33.3%), and thrombocytopenia (20.8%) were the most common adverse effects and these toxicities were deemed acceptable and manageable. In addition, a correlation was noted between elevated serum carcinoembryonic antigen (CEA) levels and decreased PFS and OS. CONCLUSIONS The incorporation of a 5-day continuous intravenous infusion of rh-endostatin into platinum-based doublet chemotherapy has demonstrated both safety and efficacy in the treatment of advanced NSCLC. Furthermore, the baseline serum levels of CEA may potentially function as a predictor for the efficacy of rh-endostatin when combined with chemotherapy in NSCLC patients. CLINICALTRIALS GOV: NCT05574998.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Zihan Guo
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Lin Su
- Department of Respiratory, Jinan Fourth People's Hospital, 250000, Jinan, Shandong, P.R. China
| | - Anli Zuo
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Min Gao
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Xiang Ji
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Jiameng Lu
- School of Microelectronics, Shandong University, 250100, Jinan, Shandong, China
| | - Shuran Yang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Yunxiu Jiang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China
| | - Degan Lu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P.R. China.
| |
Collapse
|
17
|
Hayashi H, Chamoto K, Hatae R, Kurosaki T, Togashi Y, Fukuoka K, Goto M, Chiba Y, Tomida S, Ota T, Haratani K, Takahama T, Tanizaki J, Yoshida T, Iwasa T, Tanaka K, Takeda M, Hirano T, Yoshida H, Ozasa H, Sakamori Y, Sakai K, Higuchi K, Uga H, Suminaka C, Hirai T, Nishio K, Nakagawa K, Honjo T. Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade. J Clin Invest 2024; 134:e168318. [PMID: 38557498 PMCID: PMC10977985 DOI: 10.1172/jci168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUNDPrecise stratification of patients with non-small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODSWe measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTSNonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSIONCombinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATIONUMIN000019674.FUNDINGThis study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.
Collapse
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kurosaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Fukuoka
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | | | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Shuta Tomida
- Department of Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University School of Medicine, Nara, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Fan W, Chen Y, Zhou Z, Duan W, Yang C, Sheng S, Wang Y, Wei X, Liu Y, Huang Y. An innovative antibody fusion protein targeting PD-L1, VEGF and TGF-β with enhanced antitumor efficacies. Int Immunopharmacol 2024; 130:111698. [PMID: 38377856 DOI: 10.1016/j.intimp.2024.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Immunosuppressive pathways in the tumor microenvironment (TME) are inextricably linked to tumor progression. Mono-therapeutics of immune checkpoint inhibitors (ICIs, e.g. antibodies against programmed cell death protein-1/programmed cell death ligand-1, PD-1/PD-L1) is prone to immune escape while combination therapeutics tends to cause high toxicity and side effects. Therefore, using multi-functional molecules to target multiple pathways simultaneously is becoming a new strategy for cancer therapies. Here, we developed a trifunctional fusion protein, DR30206, composed of Bevacizumab (an antibody against VEGF), and a variable domain of heavy chain of heavy chain antibody (VHH) against PD-L1 and the extracellular domain (ECD) protein of TGF-β receptor II (TGF-β RII), which are fused to the N- and C-terminus of Bevacizumab, respectively. The original intention of DR30206 design was to enhance the immune responses pairs by targeting PD-L1 while inhibiting VEGF and TGF-β in the TME. Our data demonstrated that DR30206 exhibits high antigen-binding affinities and efficient blocking capabilities, the principal drivers of efficacy in antibody therapy. Furthermore, the capability of eliciting antibody-dependent cellular cytotoxicity (ADCC) and mixed lymphocyte reaction (MLR) provides a greater possibility to enhance the immune response. Finally, in vivo experiments showed that the antitumor activity of DR30206 was superior to those of monoclonal antibody of PD-L1 or VEGF, PD-L1 and TGF-β bispecific antibody or the combination inhibition of PD-L1 and VEGF. Our findings suggest there is a great potential for DR30206 to become a therapeutic for the treatment of multiple cancer types, especially lung cancer, colon adenocarcinoma and breast carcinoma.
Collapse
Affiliation(s)
- Wenlu Fan
- Department of Biochemistry, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yonglu Chen
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Chengcheng Yang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yongwei Wang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Xinru Wei
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Ying Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China.
| |
Collapse
|
19
|
Wu Y, Fu H, Hao J, Yang Z, Qiao X, Li Y, Zhao R, Lin T, Wang Y, Wang M. Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer. Front Immunol 2024; 15:1342728. [PMID: 38562933 PMCID: PMC10982384 DOI: 10.3389/fimmu.2024.1342728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation. This mechanism allows tumor cells to evade immune pressure during the effector stage. Furthermore, the quantification of exosomal PD-L1 has the potential to serve as an indicator of the dynamic interplay between tumors and immune cells, thereby suggesting the promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable approach for anti-tumor treatment has garnered significant attention. Depleting exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic immunosuppression. This review aims to elucidate recent insights into the role of exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a diagnostic, prognostic, and therapeutic tool in lung cancer.
Collapse
Affiliation(s)
- Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Jingwei Hao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Zhaoyang Yang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Xinyi Qiao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Yingjie Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Rui Zhao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Yicun Wang
- Department of Medical Research Center, Second Hospital of Jilin University, Jilin, Changchun, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| |
Collapse
|
20
|
Zhou J, Du Z, Liang Y, Zhang S. Benefits and risks of PD-1/PD-L1 inhibitors for recurrent small cell lung cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 193:104222. [PMID: 38036155 DOI: 10.1016/j.critrevonc.2023.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
The development of immune checkpoint inhibitors(ICIs) has revolutionized the progress of solid tumors. Ongoing clinical trials are exploring the use of checkpoint inhibitors in recurrent small-cell lung cancer and achieving specific results. Although studies have been conducted to systematically review this issue, we conducted this single-arm meta-analysis in light of the emergence of several new clinical studies. In total, 854 individuals from 11 clinical investigations were enrolled in this single-arm meta-analysis. Median progression-free survival, median overall survival, and objective response rate were 1.65 months, 6.83 months, and 20.5%, respectively, according to pooled analyses. The best treatment regimen in the subgroup analysis was a dual checkpoint inhibitor combined with other treatments, and the drug that worked well for treatment was pembrolizumab. The benefit of programmed death 1/programmed cell death-ligand 1(PD-1/PD-L1) inhibitors alone is limited, and their combination with other therapies is a promising treatment option. Among PD-1/PD-L1 inhibitors, pembrolizumab is the recommended drug.
Collapse
Affiliation(s)
- Juyue Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhonghai Du
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China.
| | - Yan Liang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Sensen Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
21
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Zheng Z, Fang L, Cai H. First-line treatment with durvalumab plus chemotherapy versus chemotherapy alone for metastatic non-small-cell lung cancer in the USA: a cost-effectiveness analysis. BMJ Open 2023; 13:e076383. [PMID: 38101853 PMCID: PMC10729208 DOI: 10.1136/bmjopen-2023-076383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the cost-effectiveness of durvalumab in combination with chemotherapy compared with chemotherapy alone as first-line therapy for metastatic non-small-cell lung cancer (NSCLC) from the perspective of the US payer. METHODS Based on the POSEIDON clinical trial, a partition survival model was developed to compare the cost-effectiveness of durvalumab in combination with chemotherapy versus chemotherapy alone for the first-line treatment of metastatic NSCLC. The model's primary outcomes were costs, life years (LYs), quality-adjusted LYs (QALYs) and the incremental cost-effectiveness ratio (ICER). The analysis only considered direct medical costs, and health utility value was determined using published literature. The robustness of the model was tested by probabilistic sensitivity analyses. RESULTS The combination therapy of durvalumab and chemotherapy improved survival by 0.713 QALYs at an incremental cost of $64 104.638 compared with chemotherapy alone, resulting in an ICER of $89 908.328 per QALY gained from the US payer perspective. The combination therapy had a 92.3% probability of being cost-effective at a willingness-to-pay threshold of $150 000 per QALY based on incremental net health benefits. Sensitivity analyses confirmed the model's consistency, and none of the parameters significantly influenced the findings. CONCLUSION Durvalumab in combination with chemotherapy represents a more cost-effective strategy for first-line therapy in patients with metastatic NSCLC in the USA compared with chemotherapy alone.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Fang
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongfu Cai
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
23
|
Liu J, Gao J. Efficacy of immunotherapy as second-line or later-line therapy and prognostic significance of KRAS or TP53 mutations in advanced non-small cell lung cancer patients. Eur J Cancer Prev 2023; 32:590-599. [PMID: 37038985 DOI: 10.1097/cej.0000000000000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE In this retrospective study, we aimed to assess the relationship between mutations in the Kirsten rats sarcoma viral oncogene (KRAS )/ tumor protein p53 (TP53 ) genes and the efficacy of immune checkpoint inhibitors (ICIs) therapy as a second-line or later-line treatment for patients with stage IIIB/IV non-small cell lung cancer (NSCLC). METHODS We retrospectively analyzed the clinical data of 143 patients with stage IIIB/IV NSCLC who were admitted to the Cancer Hospital of Harbin Medical University between January 2019 and September 2022. Kaplan-Meier survival curve analysis was performed to analyze the survival outcomes. Univariate and multivariate Cox proportional risk models were used to analyze the factors associated with the progression-free survival (PFS) and overall survival (OS) of advanced-stage NSCLC patients who received ICIs as second-line or later-line therapy. RESULTS NSCLC patients with KRAS or TP53 mutations treated with ICIs showed significantly higher objective response rate, disease control rate, PFS, and OS compared to NSCLC patients with wild-type KRAS / TP53 (P < 0.05). Multivariate Cox regression analysis showed that a combined treatment regimen of ICIs plus chemotherapy was significantly associated with prolonged PFS [hazard ratio = 0.192; 95% confidence interval (CI), 0.094-0.392; P < 0.001] and OS (hazard ratio = 0.414; 95% CI, 0.281-0.612; P < 0.001). CONCLUSION KRAS or TP53 mutations were associated with improved PFS of advanced NSCLC patients treated with ICIs as second-line or later-line therapy. KRAS or TP53 mutations show great potential as clinical biomarkers to predict the efficacy of ICIs therapy.
Collapse
Affiliation(s)
| | - Jianing Gao
- Department of Urology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Pi H, Liang S, Liu H, Lu S, Huang L. Anti-PD-1 therapy for advanced colorectal cancer based on intestinal microecology. J Biochem Mol Toxicol 2023; 37:e23438. [PMID: 37421170 DOI: 10.1002/jbt.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
To explore the effects of anti-programmed death-1 (PD-1) therapy on advanced colorectal cancer (CRC) based on the intestinal microecology. Ninety-two patients with advanced CRC were selected. Patients were treated with Apatinib alone or anti PD-1 treatment combined with Apatinib. The lactulose/mannitol (L/M) value of the urine was detected by high performance liquid chromatography. The changes of intestinal microflora were determined by real-time fluorescence quantitative PCR. The risk factors were analyzed through multivariate logistic regression analysis. The curative effect of anti PD-1 treatment combined with the Apatinib treatment (82.61%) was much higher than that of the Apatinib treatment alone (63.04%, p < 0.05). After treatment, the contents of Bifidobacterium, Lactobacillus, and Enterococcus faecalis were higher with lower levels of Escherichia coli in the observation group than the control (p < 0.05). The level of D-lactic acid and urinary L/M value of the urine in the observation group was lower than that in control after treatment (p < 0.001). The patients had a 3-year survival rate of 91.30%. Age >60 years old, histological types of mucinous adenocarcinoma and signet ring cell carcinoma, vascular tumor thrombus, nerve invasion, TNM stage of Ⅲ-Ⅳ were independent risk factors, and anti PD-1 treatment was the protective factor (p < 0.05). In advanced CRC patients receiving anti PD-1 treatment combined with the Apatinib treatment, the progression of advanced CRC was effectively controlled by maintaining the intestinal microflora balance. Anti PD-1 therapy can improve the living quality of CRC patients.
Collapse
Affiliation(s)
- Hongquan Pi
- Clinical Laboratory, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, People's Republic of China
| | - Shulan Liang
- Clinical Laboratory, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, People's Republic of China
| | - Huifang Liu
- Clinical Laboratory, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, People's Republic of China
| | - Shengxiang Lu
- Clinical Laboratory, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, People's Republic of China
| | - Libing Huang
- Clinical Laboratory, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
26
|
Zhang Y, Han X, Wang K, Liu D, Ding X, Hu Z, Wang J. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment. Int J Nanomedicine 2023; 18:4329-4346. [PMID: 37545872 PMCID: PMC10403052 DOI: 10.2147/ijn.s418100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Immune checkpoint inhibitors (ICI) have received the most attention for triple negative breast cancer (TNBC), while the response rate to ICI remains limited due to insufficient T cell infiltration. It is therefore essential that alternative strategies are developed to improve the therapeutic outcomes of ICI in non-responsive TNBC cases. The efficacy of pH-responsive nanomicelles (P/A/B@NM) co-loaded with paclitaxel (PTX), CXCR4 antagonist AMD3100, and PD-1/PD-L1 inhibitor BMS-1 activating the T cell-mediated antitumor immune response were evaluated using a 4T1 antiPD-1-resistance breast tumor model. Methods In vitro, pH-responsive antitumor effect of P/A/B@NM was investigated by assessing cell viability, migration and invasion. In vivo, the distribution of P/A/B@NM was visualized in 4T1 orthotopic TNBC model using an IVIS spectrum imaging instrument. The efficacy of the co-delivery nanocarriers was evaluated by monitoring mouse survival, tumor growth and metastasis, cancer-associated fibroblasts (CAFs)-mediated tumor stroma and immunosuppressive microenvironment components, and the recruitment and infiltration of CD8+ T cells. Results The prepared P/A/B@NM in acid microenvironment demonstrates remarkable cytotoxicity against MDA-MB-231 cells, with an IC50 of 105 μg/mL. Additionally, it exhibits substantial inhibition of tumor cell migration and invasion. The P/A/B@NM based on co-delivery nanocarriers efficiently accumulate at the tumor site and release the drugs in a pH-responsive controlled manner. The nanomedicine-PTX, AMD3100, and BMS-1 formulation significantly inhibits tumor growth and lung/liver metastasis by inducing antitumor immune responses via CXCL12/CXCR4 axis blockade, and immunogenic cell death to reprogramme both tumor stroma and immunosuppressive microenvironment. As a result, CD8+ T cell infiltration is triggered into the tumor site, boosting the efficacy of ICI therapy synergistically. Conclusion These results demonstrate that combination therapy using P/A/B@NM reshapes CAFs-mediated tumor stroma and immunosuppressive microenvironment, which can enhance the infiltration of CD8+ T cells, thereby reactivating anti-tumor immunity for non-responsive TNBC cases.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xue Han
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Ke Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Da Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xiaoyun Ding
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Zhiqiang Hu
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
27
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
28
|
Ranjbar S, Zakavi SR, Eisazadeh R, Mirshahvalad SA, Pilz J, Jamshidi-Araghi Z, Schweighofer-Zwink G, Koelblinger P, Pirich C, Beheshti M. Impact of [ 18F]FDG PET/CT in the Assessment of Immunotherapy-Induced Arterial Wall Inflammation in Melanoma Patients Receiving Immune Checkpoint Inhibitors. Diagnostics (Basel) 2023; 13:diagnostics13091617. [PMID: 37175008 PMCID: PMC10178249 DOI: 10.3390/diagnostics13091617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
We aimed to investigate the role of [18F]FDG positron emission tomography/computed tomography (PET/CT) in the early detection of arterial wall inflammation (AWI) in melanoma patients receiving immune checkpoint inhibitors (ICIs). Our retrospective study enrolled 95 melanoma patients who had received ICIs. Inclusion criteria were ICI therapy for at least six months and at least three [18F]FDG PET/CTs, including one pretreatment session plus two scans three and six months after treatment initiation. AWI was assessed using quantitative and qualitative methods in the subclavian artery, thoracic aorta, and abdominal aorta. We found three patients with AWI visual suspicion in the baseline scan, which increased to five in the second and twelve in the third session. Most of these patients' treatments were terminated due to either immune-related adverse events (irAEs) or disease progression. In the overall population, the ratio of arterial-wall maximum standardized uptake value (SUVmax)/liver-SUVmax was significantly higher three months after treatment than the pretreatment scan in the thoracic aorta (0.83 ± 0.12 vs. 0.79 ± 0.10; p-value = 0.01) and subclavian artery (0.67 ± 0.13 vs. 0.63 ± 0.12; p-value = 0.01), and it remained steady in the six-month follow-up. None of our patients were diagnosed with definite clinical vasculitis on the dermatology follow-up reports. To conclude, our study showed [18F]FDG PET/CT's potential to visualise immunotherapy-induced subclinical inflammation in large vessels. This may lead to more accurate prediction of irAEs and better patient management.
Collapse
Affiliation(s)
- Shaghayegh Ranjbar
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Seyed Rasoul Zakavi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
| | - Roya Eisazadeh
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Julia Pilz
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Urology, Ordensklinikum Linz, 4020 Linz, Austria
| | - Zahra Jamshidi-Araghi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Gregor Schweighofer-Zwink
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Koelblinger
- Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
29
|
Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, Chakrabarti R. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med 2023; 15:eabl4414. [PMID: 36888695 PMCID: PMC10875969 DOI: 10.1126/scitranslmed.abl4414] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Gatha Thacker
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Samantha Henry
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Susnik
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susan B Kesmodel
- DeWitt Daughtry Family Department of Surgery, Division of Surgical Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sanjeev Gumber
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Camila O. Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
30
|
Na SK, Kang SH. The development of hepatocellular carcinoma during long-term treatment for recurrent non-small cell lung cancer: a case report. JOURNAL OF LIVER CANCER 2023; 23:230-234. [PMID: 37384034 PMCID: PMC10202240 DOI: 10.17998/jlc.2023.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/30/2023]
Abstract
Multiple primary malignancies (MPMs) are defined as the presence of two or more malignancies in different organs, without a subordinate relationship. Although rarely reported, hepatocellular carcinoma (HCC) occasionally presents with simultaneous or metachronous primary malignancies in other organs. In this report, we describe a patient with lung adenocarcinoma and lymph node and bone metastases, treated with five chemotherapeutic regimens for 24 months. Changing the chemotherapy regimen based on the suspicion of metastasis of a new liver mass did not lead to improvements. This prompted a liver biopsy and a revised diagnosis of HCC. Sixth-line treatment with the concurrent use of cisplatin-paclitaxel for lung cancer and sorafenib for HCC, stabilized the disease. The concurrent treatment was not tolerated and was discontinued owing to adverse events. Considering our findings, treatment with increased efficacy and lower toxicity for MPMs is warranted.
Collapse
Affiliation(s)
- Seong Kyun Na
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Bai H, Padron AS, Deng Y, Liao YJ, Murray CJ, Ontiveros C, Kari SJ, Kancharla A, Kornepati AVR, Garcia M, Reyes RM, Gupta HB, Conejo-Garcia JR, Curiel T. Pharmacological tumor PDL1 depletion with chlorambucil treats ovarian cancer and melanoma: improves antitumor immunity and renders anti-PDL1-resistant tumors anti-PDL1-sensitive through NK cell effects. J Immunother Cancer 2023; 11:e004871. [PMID: 36759012 PMCID: PMC9923271 DOI: 10.1136/jitc-2022-004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Tumor intracellular programmed cell death ligand-1 (PDL1) mediates pathologic signals that regulate clinical treatment responses distinctly from surface-expressed PDL1 targeted by αPDL1 immune checkpoint blockade antibodies. METHODS We performed a drug screen for tumor cell PDL1 depleting drugs that identified Food and Drug Administration (FDA)-approved chlorambucil and also 9-[2-(phosphonomethoxy)ethyl] guanine. We used in vitro and in vivo assays to evaluate treatment and signaling effects of pharmacological tumor PDL1 depletion focused on chlorambucil as FDA approved, alone or plus αPDL1. RESULTS PDL1-expressing mouse and human ovarian cancer lines and mouse melanoma were more sensitive to chlorambucil-mediated proliferation inhibition in vitro versus corresponding genetically PDL1-depleted lines. Orthotopic peritoneal PDL1-expressing ID8agg ovarian cancer and subcutaneous B16 melanoma tumors were more chlorambucil-sensitive in vivo versus corresponding genetically PDL1-depleted tumors. Chlorambucil enhanced αPDL1 efficacy in tumors otherwise αPDL1-refractory, and improved antitumor immunity and treatment efficacy in a natural killer cell-dependent manner alone and plus αPDL1. Chlorambucil-mediated PDL1 depletion was relatively tumor-cell selective in vivo, and treatment efficacy was preserved in PDL1KO hosts, demonstrating tumor PDL1-specific treatment effects. Chlorambucil induced PDL1-dependent immunogenic tumor cell death which could help explain immune contributions. Chlorambucil-mediated PDL1 reduction mechanisms were tumor cell-type-specific and involved transcriptional or post-translational mechanisms, including promoting PDL1 ubiquitination through the GSK3β/β-TRCP pathway. Chlorambucil-mediated tumor cell PDL1 depletion also phenocopied genetic PDL1 depletion in reducing tumor cell mTORC1 activation and tumor initiating cell content, and in augmenting autophagy, suggesting additional treatment potential. CONCLUSIONS Pharmacological tumor PDL1 depletion with chlorambucil targets tumor-intrinsic PDL1 signaling that mediates treatment resistance, especially in αPDL1-resistant tumors, generates PDL1-dependent tumor immunogenicity and inhibits tumor growth in immune-dependent and independent manners. It could improve treatment efficacy of selected agents in otherwise treatment-refractory, including αPDL1-refractory cancers, and is rapidly clinically translatable.
Collapse
Affiliation(s)
- Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Alvaro S Padron
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yilun Deng
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yiji J Liao
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Clare J Murray
- Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Carlos Ontiveros
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Suresh J Kari
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Aravind Kancharla
- Med Hematology/Oncology, UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Anand V R Kornepati
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Myrna Garcia
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Ryan Michael Reyes
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
- Division of Hematology/Medical Oncology, UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Harshita B Gupta
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Tyler Curiel
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
- Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
32
|
Głowska-Ciemny J, Szymański M, Kuszerska A, Malewski Z, von Kaisenberg C, Kocyłowski R. The Role of Alpha-Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. Int J Mol Sci 2023; 24:ijms24032539. [PMID: 36768863 PMCID: PMC9917199 DOI: 10.3390/ijms24032539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
This article presents contemporary opinion on the role of alpha-fetoprotein in oncologic diagnostics and treatment. This role stretches far beyond the already known one-that of the biomarker of hepatocellular carcinoma. The turn of the 20th and 21st centuries saw a significant increase in knowledge about the fundamental role of AFP in the neoplastic processes, and in the induction of features of malignance and drug resistance of hepatocellular carcinoma. The impact of AFP on the creation of an immunosuppressive environment for the developing tumor was identified, giving rise to attempts at immunotherapy. The paper presents current and prospective therapies using AFP and its derivatives and the gene therapy options. We directed our attention to both the benefits and risks associated with the use of AFP in oncologic therapy.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| | - Marcin Szymański
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Agata Kuszerska
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Zbyszko Malewski
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznań, Poland
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Rafał Kocyłowski
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| |
Collapse
|
33
|
Yao H, Lyu F, Ma J, Sun F, Tang G, Wu J, Zhou Z. PIMREG is a prognostic biomarker involved in immune microenvironment of clear cell renal cell carcinoma and associated with the transition from G1 phase to S phase. Front Oncol 2023; 13:1035321. [PMID: 36776322 PMCID: PMC9909346 DOI: 10.3389/fonc.2023.1035321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most common tumors in the world and affects human health seriously. PIMREG is a mitotic regulator which is essential to the metaphase-to-anaphase transition in cell cycle. Although PIMREG plays a crucial role in the malignant progression of tumors, there are few reports on its role in ccRCC. METHODS The transcriptional expression profile and clinical data of PIMREG were downloaded from TCGA database and verified by qRT-PCR. Kaplan-Meier plotter was used to analyze the effect of PIMREG on overall survival (OS), disease specific survival (DSS) and progression-free interval (PFI) of patients with ccRCC. Univariable and multivariable Cox regression analysis were used to determine the independent prognostic factors of ccRCC. The effects of PIMREG on cell migration and invasion were detected by wound healing assay and transwell invasion assay, and CCK-8 assay, colony formation assay and cell cycle assay were used to detect the effect of PIMREG on cell proliferation. In addition, the changes in cell cycle related proteins were detected by western blot. RESULTS PIMREG was highly expressed in human ccRCC and was positively correlated with pathologic stage, TNM stage and histologic grade. In addition, patients with high expression of PIMREG had a poor prognosis. Univariable and multivariable Cox regression analysis identified that PIMREG was an independent prognostic factor of ccRCC. Additionally, PIMREG was also closely related to immune cell infiltration. Experiments in vitro identified that the knockdown of PIMREG could significantly inhibit the proliferation, migration and invasion abilities of ccRCC. The expression of cyclin D1, CDK4 and CDK6 was also significantly reduced after PIMREG knockdown. CONCLUSIONS PIMREG plays a vital role in the development of ccRCC and may become a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Feifei Lyu
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Fengze Sun
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Gonglin Tang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Zhao X, Zhao Y, Zhang J, Zhang Z, Liu L, Zhao X. Predicting PD-L1 expression status in patients with non-small cell lung cancer using [ 18F]FDG PET/CT radiomics. EJNMMI Res 2023; 13:4. [PMID: 36682020 PMCID: PMC9868196 DOI: 10.1186/s13550-023-00956-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In recent years, immune checkpoint inhibitor (ICI) therapy has greatly changed the treatment prospects of patients with non-small cell lung cancer (NSCLC). Among the available ICI therapy strategies, programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors are the most widely used worldwide. At present, immunohistochemistry (IHC) is the main method to detect PD-L1 expression levels in clinical practice. However, given that IHC is invasive and cannot reflect the expression of PD-L1 dynamically and in real time, it is of great clinical significance to develop a new noninvasive, accurate radiomics method to evaluate PD-L1 expression levels and predict and filter patients who will benefit from immunotherapy. Therefore, the aim of our study was to assess the predictive power of pretherapy [18F]-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT)-based radiomics features for PD-L1 expression status in patients with NSCLC. METHODS A total of 334 patients with NSCLC who underwent [18F]FDG PET/CT imaging prior to treatment were analyzed retrospectively from September 2016 to July 2021. The LIFEx7.0.0 package was applied to extract 63 PET and 61 CT radiomics features. In the training group, the least absolute shrinkage and selection operator (LASSO) regression model was employed to select the most predictive radiomics features. We constructed and validated a radiomics model, clinical model and combined model. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the predictive performance of the three models in the training group and validation group. In addition, a radiomics nomogram to predict PD-L1 expression status was established based on the optimal predictive model. RESULTS Patients were randomly assigned to a training group (n = 233) and a validation group (n = 101). Two radiomics features were selected to construct the radiomics signature model. Multivariate analysis showed that the clinical stage (odds ratio [OR] 1.579, 95% confidence interval [CI] 0.220-0.703, P < 0.001) was a significant predictor of different PD-L1 expression statuses. The AUC of the radiomics model was higher than that of the clinical model in the training group (0.706 vs. 0.638) and the validation group (0.761 vs. 0.640). The AUCs in the training group and validation group of the combined model were 0.718 and 0.769, respectively. CONCLUSION PET/CT-based radiomics features demonstrated strong potential in predicting PD-L1 expression status and thus could be used to preselect patients who may benefit from PD-1/PD-L1-based immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- grid.452582.cDepartment of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011 Hebei China
| | - Yan Zhao
- grid.452582.cDepartment of Oncology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei China ,grid.452582.cDepartment of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| | - Jingmian Zhang
- grid.452582.cDepartment of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011 Hebei China ,Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, Hebei China
| | - Zhaoqi Zhang
- grid.452582.cDepartment of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011 Hebei China
| | - Lihua Liu
- grid.452582.cDepartment of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| | - Xinming Zhao
- grid.452582.cDepartment of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011 Hebei China ,Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, Hebei China
| |
Collapse
|
35
|
Bukhari S, Henick BS, Winchester RJ, Lerrer S, Adam K, Gartshteyn Y, Maniar R, Lin Z, Khodadadi-Jamayran A, Tsirigos A, Salvatore MM, Lagos GG, Reiner SL, Dallos MC, Mathew M, Rizvi NA, Mor A. Single-cell RNA sequencing reveals distinct T cell populations in immune-related adverse events of checkpoint inhibitors. Cell Rep Med 2023; 4:100868. [PMID: 36513074 PMCID: PMC9873824 DOI: 10.1016/j.xcrm.2022.100868] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
PD-1 is an inhibitory receptor in T cells, and antibodies that block its interaction with ligands augment anti-tumor immune responses. The clinical potential of these agents is limited by the fact that half of all patients develop immune-related adverse events (irAEs). To generate insights into the cellular changes that occur during anti-PD-1 treatment, we performed single-cell RNA sequencing of circulating T cells collected from patients with cancer. Using the K-nearest-neighbor-based network graph-drawing layout, we show the involvement of distinctive genes and subpopulations of T cells. We identify that at baseline, patients with arthritis have fewer CD8 TCM cells, patients with pneumonitis have more CD4 TH2 cells, and patients with thyroiditis have more CD4 TH17 cells when compared with patients who do not develop irAEs. These data support the hypothesis that different populations of T cells are associated with different irAEs and that characterization of these cells' pre-treatment has the potential to serve as a toxicity-specific predictive biomarker.
Collapse
Affiliation(s)
- Shoiab Bukhari
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brian S Henick
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert J Winchester
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Rohan Maniar
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories and Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories and Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories and Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY 10016, USA
| | - Mary M Salvatore
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Galina G Lagos
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven L Reiner
- Departments of Microbiology & Immunology and Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew C Dallos
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthen Mathew
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Naiyer A Rizvi
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
36
|
Möller K, Knöll M, Bady E, Schmerder MJ, Rico SD, Kluth M, Hube-Magg C, Blessin NC, Mandelkow T, Lennartz M, Menz A, Luebke AM, Höflmayer D, Fraune C, Bernreuther C, Lebok P, Uhlig R, Contreras H, Weidemann S, Gorbokon N, Jacobsen F, Clauditz TS, Steurer S, Burandt E, Minner S, Sauter G, Simon R, Marx AH, Krech T. PD-L1 expression and CD8 positive lymphocytes in human neoplasms: A tissue microarray study on 11,838 tumor samples. Cancer Biomark 2023; 36:177-191. [PMID: 36683495 PMCID: PMC9986704 DOI: 10.3233/cbm-220030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) is the target of immune checkpoint inhibitor therapies in a growing number of tumor types, but a unanimous picture on PD-L1 expression across cancer types is lacking. MATERIALS AND METHODS We analyzed immunohistochemical PD-L1 expression in 11,838 samples from 118 human tumor types and its relationship with tumor infiltrating CD8 positive lymphocytes. RESULTS At a cut-off level of 10% positive tumor cells, PD-L1 positivity was seen in 85 of 118 (72%) tumor types, including thymoma (100% positive), Hodgkin's lymphoma (93%), anaplastic thyroid carcinoma (76%), Kaposi sarcoma (71%), sarcomatoid urothelial carcinoma (71%), and squamous cell carcinoma of the penis (67%), cervix (65%), floor of the mouth (61%), the lung (53%), and pharynx (50%). In immune cells, PD-L1 positivity was detectable in 103 (87%) tumor types, including tumors of haematopoetic and lymphoid tissues (75% to 100%), Warthin tumors of the parotid glands (95%) and Merkel cell carcinoma (82%). PD-L1 positivity in tumor cells was significantly correlated with the number of intratumoral CD8 positive lymphocytes across all tumor types as well as in individual tumor types, including serous carcinoma of the ovary, invasive breast carcinoma of no special type, intestinal gastric adenocarcinoma, and liposarcoma (p< 0.0001 each). CONCLUSIONS PD-L1 expression in tumor and inflammatory cells is found in a wide range of human tumor types. Higher rates of tumor infiltrating CD8 positive lymphocytes in PD-L1 positive than in PD-L1 negative cancers suggest that the antitumor immune response may trigger tumoral PD-L1 expression.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madeleine Knöll
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Bady
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrina Contreras
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
37
|
Jeong SU, Hwang HS, Park JM, Yoon SY, Shin SJ, Go H, Lee JL, Jeong G, Cho YM. PD-L1 Upregulation by the mTOR Pathway in VEGFR-TKI-Resistant Metastatic Clear Cell Renal Cell Carcinoma. Cancer Res Treat 2023; 55:231-244. [PMID: 35240013 PMCID: PMC9873321 DOI: 10.4143/crt.2021.1526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) targeting vascular endothelial growth factor receptor (VEGFR) signaling pathways have been used for metastatic clear cell renal cell carcinoma (mCCRCC), but resistance to the drug develops in most patients. We aimed to explore the underlying mechanism of the TKI resistance with regard to programmed death-ligand 1 (PD-L1) and to investigate signaling pathway associated with the resistant mechanism. MATERIALS AND METHODS To determine the mechanism of resistance, 10 mCCRCC patients from whom tumor tissues were harvested at both the pretreatment and the TKI-resistant post-treatment period were included as the discovery cohort, and their global gene expression profiles were compared. A TKI-resistant renal cancer cell line was established by long-term treatment with sunitinib. RESULTS Among differentially expressed genes in the discovery cohort, increased PD-L1 expression in post-treatment tissues was noted in four patients. Pathway analysis showed that PD-L1 expression was positively correlated with the mammalian target of rapamycin (mTOR) signaling pathway. The TKI-resistant renal cancer cells showed increased expression of PD-L1 and mTOR signaling proteins and demonstrated aggressive tumoral behaviour. Treatment with mTOR inhibitors down-regulated PD-L1 expression and suppressed aggressive tumoral behaviour, which was reversed with stimulation of the mTOR pathway. CONCLUSION These results showed that PD-L1 expression may be increased in a subset of VEGFR-TKI-resistant mCCRCC patients via the mTOR pathway.
Collapse
Affiliation(s)
- Se Un Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Ja-Min Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sun Young Yoon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Gowun Jeong
- AI Recommendation, T3K, SK Telecom, Seoul,
Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
38
|
Tamanna MT, Egbune C. Traditional Treatment Approaches and Role of Immunotherapy in Lung Malignancy and Mesothelioma. Cancer Treat Res 2023; 185:79-89. [PMID: 37306905 DOI: 10.1007/978-3-031-27156-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is no denying that many revolutions took place in the fight against cancer during the last decades. However, cancers have always managed to find new ways to challenge humankinds. Variable genomic epidemiology, socio-economic differences and limitations of widespread screening are the major concerns in cancer diagnosis and early treatment. A multidisciplinary approach is essentially to manage a cancer patient efficiently. Thoracic malignancies including lung cancers and pleural mesothelioma are accountable for little more than 11.6% of the global cancer burden [4]. Mesothelioma is one of the rare cancers, but concern is the incidences are increasing globally. However, the good news is first-line chemotherapy with the combination of immune checkpoints inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and mesothelioma has showed promising respond and improved overall survival (OS) in pivotal clinical trials [10]. ICIs are commonly referred as immunotherapy are antigens on the cancer cells, and inhibitors are the antibodies produce by the T cell defence system. By inhibiting immune checkpoints, the cancer cells become visible to be identified as abnormal cells and attack by the body's defence system [17]. The programmed death receptor-1 (PD-1) and programmed death receptor ligand-1 (PD-L1) inhibitors are commonly used immune checkpoint blockers for anti-cancer treatment. PD-1/PD-L1 are proteins produced by immune cells and mimic by cancer cells that are implicated in inhibiting T cell response to regulate our immune system, which results tumour cells escaping the defence mechanism to achieve immune surveillance. Therefore, inhibiting immune checkpoints as well as monoclonal antibodies can lead to effective apoptosis of tumour cells [17]. Mesothelioma is an industrial disease caused by significant asbestos exposure. It is the cancer of the mesothelial tissue which presents in the lining of the mediastinum of pleura, pericardium and peritoneum, most commonly affected sites are pleura of the lung or chest wall lining [9] as route of asbestos exposure is inhalation. Calretinin is a calcium binding protein, typically over exposed in malignant mesotheliomas and the most useful marker even while initial changes take place [5]. On the other hand, Wilm's tumour 1 (WT-1) gene expression on the tumour cells can be related to prognosis as it can elicit immune response, thereby inhibit cell apoptosis. A systematic review and meta-analysis study conducted by Qi et al. has suggested that expression of WT-1 in a solid tumour is fatal however, it gives the tumour cell a feature of immune sensitivity which then acts positively towards the treatment with immunotherapy. Clinical significance of WT-1 oncogene in treatment is still hugely debatable and needs further attention [21]. Recently, Japan has reinstated Nivolumab in patients with chemo-refractory mesothelioma. According to NCCN guidelines, the salvage therapies include Pembrolizumab in PD-L1 positive patients and Nivolumab alone or with Ipilimumab in cancers irrespective of PD-L1 expression [9]. The checkpoint blockers have taken over the biomarker-based research and demonstrated impressive treatment options in immune sensitive and asbestos-related cancers. It can be expected that in near future the immune checkpoint inhibitors will be considered as approved first-line cancer treatment universally.
Collapse
|
39
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
40
|
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205166. [PMID: 36437050 DOI: 10.1002/smll.202205166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy aims to activate the cancer patient's immune system for cancer therapy. The whole process of the immune system against cancer referred to as the "cancer immunity cycle", gives insight into how drugs can be designed to affect every step of the anticancer immune response. Cancer immunotherapy such as immune checkpoint inhibitor (ICI) therapy, cancer vaccines, as well as small molecule modulators has been applied to fight various cancers. However, the effect of immunotherapy in clinical applications is still unsatisfactory due to the limited response rate and immune-related adverse events. Mounting evidence suggests that cell-based drug delivery systems (DDSs) with low immunogenicity, superior targeting, and prolonged circulation have great potential to improve the efficacy of cancer immunotherapy. Therefore, with the rapid development of cell-based DDSs, understanding their important roles in various stages of the cancer immunity cycle guides the better design of cell-based cancer immunotherapy. Herein, an overview of how cell-based DDSs participate in cancer immunotherapy at various stages is presented and an outlook on possible challenges of clinical translation and application in future development.
Collapse
Affiliation(s)
- Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| |
Collapse
|
41
|
Zhang Y, Li Y, Fu Q, Han Z, Wang D, Umar Shinge SA, Muluh TA, Lu X. Combined Immunotherapy and Targeted Therapies for Cancer Treatment: Recent Advances and Future Perspectives. Curr Cancer Drug Targets 2023; 23:251-264. [PMID: 36278447 DOI: 10.2174/1568009623666221020104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The previous year's worldview for cancer treatment has advanced from general to more precise therapeutic approaches. Chemotherapies were first distinguished as the most reliable and brief therapy with promising outcomes in cancer patients. However, patients could also suffer from severe toxicities resulting from chemotherapeutic drug usage. An improved comprehension of cancer pathogenesis has led to new treatment choices, including tumor-targeted therapy and immunotherapy. Subsequently, cancer immunotherapy and targeted therapy give more hope to patients since their combination has tremendous therapeutic efficacy. The immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that when targeted therapies are combined with immunotherapy, the clinical outcomes are of excellent efficacy, as presented in this review. This review focuses on how immunotherapy and targeted therapy are applicable in cancer management and treatment. Also, it depicts promising therapeutic results with more extensive immunotherapy applications with targeted therapy. Further elaborate that immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that this combination therapy with immunotherapy can be of great outcome clinically.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Yafei Li
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Qiuxia Fu
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Zhiqiang Han
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Daijie Wang
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Shafiu A Umar Shinge
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, P.R. China
| | - Tobias Achu Muluh
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan, P.R. China.,School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xiaohong Lu
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| |
Collapse
|
42
|
Guan J, Zhang J, Zhang X, Yuan Z, Cheng J, Chen B. Efficacy and safety of PD-1/PD-L1 immune checkpoint inhibitors in treating non-Hodgkin lymphoma: A systematic review and meta-analysis of clinical trials. Medicine (Baltimore) 2022; 101:e32333. [PMID: 36550903 PMCID: PMC9771317 DOI: 10.1097/md.0000000000032333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunotherapy with programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors has been widely used in the treatment of solid tumors and Hodgkin lymphoma, demonstrating powerful efficacy and good safety. However, there is no systematic review and meta-analysis to fully investigate the efficacy and safety of PD-1/PD-L1 inhibitors in treating non-Hodgkin lymphoma (NHL). METHODS We searched PubMed, EMBASE, The Cochrane Library, China National Knowledge Infrastructure, Wanfang database, and abstracts of conference proceedings of annual meetings up to January 23, 2022, to identify eligible clinical trials. To evaluate the efficacy of PD-1/PD-L1 inhibitors, objective response rate (ORR), complete response rate (CRR), 1-year overall survival rate, and 1-year progression-free survival rate were analyzed. For safety analysis, we calculated rates of any grade and grade ≥3 treatment-related adverse events. RESULTS Overall 22 studies and 1150 participants were enrolled in this meta-analysis. The pooled ORR, CRR, 1-year overall survival, and 1-year progression-free survival rates were 0.43 (95% confidence interval [CI], 0.33-0.54), 0.21 (95% CI, 0.13-0.31), 0.72 (95% CI, 0.58-0.89), and 0.42 (95% CI, 0.29-0.62), respectively. The ORR and CRR in the combination immunochemotherapy subgroup (0.65 and 0.41) were higher than those in the monotherapy (0.27 and 0.09) and combination chemotherapy (0.39 and 0.19) subgroups. This study was registered with PROSPERO (#CRD 42022316805). CONCLUSION Given that there were limited clinical trials and relatively few relevant studies, we conducted this meta-analysis to fully elucidate the efficacy and safety of PD-1/PD-L1 inhibitors in NHL. Our results suggested that PD-1/PD-L1 inhibitors improved outcomes of responses as well as survival rates in NHL patients with tolerable adverse events. More well-designed randomized clinical trials are still needed to further confirm our findings.
Collapse
Affiliation(s)
- Jiaheng Guan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongshu Yuan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jian Cheng
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
43
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
44
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
45
|
Xie W, Xi P, Liu Y, Zhang Z, Sun T. A comprehensive analysis of the prognostic value and immune infiltration of low expression DBT in clear cell renal cell carcinoma. Front Pharmacol 2022; 13:1002588. [PMID: 36299888 PMCID: PMC9589218 DOI: 10.3389/fphar.2022.1002588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although DBT is strongly associated with human tumorigenesis and progression through a variety of pathways, the role of DBT in clear cell renal cell carcinoma (ccRCC) has not been well established. Materials and methods: The Cancer Genome Atlas (TCGA)-Kidney renal clear cell carcinoma (KIRC) databset provides RNA sequencing data and clinicopathological information on ccRCC. The Gene Expression Omnibus (GEO) database was used to validate the DBT expression levels, and qPCR was used to examine the DBT expression in renal cancer cell lines and ccRCC tissue samples from our centre. In parallel, DBT protein expression was explored in the Human Protein Atlas (HPA) database, and western blotting and immunohistochemistry of renal cancer cell lines and ccRCC tissues validated the results. Additionally, the diagnostic and prognostic value of DBT was comprehensively evaluated by receiver operating characteristic (ROC) curves, univariate and multivariate Cox regression analyses, and Kaplan‒Meier survival analysis. The protein‒protein interaction (PPI) network based on the STRING website, Gene Ontology (GO) analysis, Kyoto Gene and Genome Encyclopedia (KEGG) analysis and gene set enrichment analysis (GSEA) further provided a landscape of the molecular mechanisms of DBT in ccRCC. Finally, the TIMER 2.0, GEPIA and TISIDB websites were used to understand the relationship between DBT and immune characteristics. Results: The mRNA expression and protein expression of DBT were significantly downregulated in ccRCC tissues relative to normal tissues, which was associated with poor clinical outcomes. DBT has an encouraging discriminatory power for ccRCC and is an independent prognostic factor for ccRCC patients. Mechanistically, DBT is mainly involved in the regulation of immune-related signalling pathways in ccRCC; it is associated with a variety of immune infiltrating cells and immune checkpoints. Conclusion: DBT is a tumour suppressor gene in ccRCC and could be used as a new biomarker for diagnostic and prognostic purposes, and it is associated with immune infiltration in ccRCC.
Collapse
|
46
|
Shang X, Zhang W, Zhang X, Yu M, Liu J, Cheng Y, Cheng B. PTPRD/PTPRT mutation as a predictive biomarker of immune checkpoint inhibitors across multiple cancer types. Front Immunol 2022; 13:991091. [PMID: 36248841 PMCID: PMC9556668 DOI: 10.3389/fimmu.2022.991091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are dramatically changing the treatment landscape of a variety of cancers. Nevertheless, the variability in ICI responses highlight the importance in identifying predictive biomarkers. PTPRD and PTPRT (PTPRD/PTPRT) are the phosphatases of JAK-STAT signaling, a critical pathway in anti-cancer immunity regulation. However, the pan-cancer association between PTPRD/PTPRT mutation and the efficacy of ICIs remains unclear across pan-cancer patients. Methods We analyzed the association between PTPRD/PTPRT mutations and patient outcomes using clinical data and genomic mutations from TCGA pan-cancer cohort. Furthermore, the ICI-treatment cohort was used to evaluate the relationship between PTPRD/PTPRT mutation and the efficacy of ICIs. Another ICIs-treatment cohort was used to validate the findings. The TCGA pan-cancer dataset was analyzed to explore the correlation between PTPRD/PTPRT mutations and immune signatures. Moreover, we combined four factors to construct a nomogram model that could be used to predict the survival of pan-cancer patients receiving ICI treatment. The calibration curves and area under the curve were applied to assess the performance of the model. Results PTPRD/PTPRT mutations were shown to be associated with a worse prognosis in TCGA cohort (P < 0.05). In the Samstein cohort, prolonged overall survival (OS) was observed in PTPRD/PTPRT mutant cancers, compared with wild-type cancers (mOS: 40.00 vs 16.00 months, HR = 0.570, 95%CI: 0.479-0.679, P < 0.0001). In the validation cohort, significant OS advantage was observed in PTPRD/PTPRT mutant patients (mOS: 31.32 vs 15.53 months, HR = 0.658, 95%CI: 0.464-0.934, P = 0.0292). Furthermore, PTPRD/PTPRT mutations were associated with a higher tumor mutational burden, MSI score, and TCR score (P < 0.0001). Enhanced immune signatures were found in the PTPRD/PTPRT mutant cancers (P < 0.05). Finally, we successfully established a nomogram model that could be used to predict the survival of NSCLC patients who received ICI treatment. Based on the risk score of the model, patients in the low-risk group showed a better mOS than those in the high-risk group (mOS: 2.75 vs 1.08 years, HR = 0.567, 95%CI: 0.492-0.654; P < 0.001). Conclusions PTPRD/PTPRT mutations may be a potential biomarker for predicting ICI treatment responsiveness in multiple cancer types.
Collapse
Affiliation(s)
- Xiaoling Shang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xun Zhang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Yu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Liu
- The Internet of Things, Shandong University of Science and Technology, Qingdao, China
| | - Yufeng Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
47
|
Wang T, Liu Y, Li Q, Luo Y, Liu D, Li B. Cuproptosis-related gene FDX1 expression correlates with the prognosis and tumor immune microenvironment in clear cell renal cell carcinoma. Front Immunol 2022; 13:999823. [PMID: 36225932 PMCID: PMC9549781 DOI: 10.3389/fimmu.2022.999823] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cuproptosis, a newly discovered form of cell death, is regulated by protein lipoylation and is related to mitochondrial metabolism. However, further research is needed to determine how the cuproptosis-related gene ferredoxin 1 (FDX1) affects the tumor immune response and its prognostic significance in clear cell renal cell carcinoma (ccRCC). Methods The Cancer Genome Atlas was used to screen for FDX1 gene expression in ccRCC and healthy tissue samples. The results were validated using the Gene Expression Omnibus and the Human Protein Atlas. Multivariable analysis and Kaplan-Meier survival curves were used to examine the relationship between FDX1 gene expression, clinicopathological parameters, and overall survival (OS). The protein network containing FDX1 gene interaction was constructed using the online Search Tool for the Retrieval of Interacting Genes/Proteins. The relationship between FDX1 gene expression and immune cell infiltration in ccRCC was examined using Gene Ontology, gene set enrichment analysis (GSEA), and a single-sample GSEA. Using the Gene Expression Profiling Interactive Analysis and Tumor Immune Estimation Resource databases, we investigated the relationship between FDX1 gene expression, the degree of immune cell infiltration, and the corresponding gene marker sets. Results ccRCC samples had significantly (p < 0.05) lower FDX1 gene expression levels than normal tissue samples. Lower FDX1 gene expression levels were strongly associated with higher cancer grades and more advanced tumor-node-metastasis stages. The findings of multivariate and univariate analyses illustrated that the OS in ccRCC patients with low FDX1 expression is shorter than in patients with high FDX1 expression (p < 0.05). Ferredoxin reductase and CYP11A1 are key proteins interacting with the FDX1 gene, and ccRCC with an FDX1 enzyme defect was associated with a low number of invading immune cells and their corresponding marker. Conclusion In ccRCC, decreased FDX1 expression was linked to disease progression, an unfavorable prognosis, and dysregulated immune cell infiltration.
Collapse
|
48
|
Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022; 12:896662. [PMID: 36176401 PMCID: PMC9513472 DOI: 10.3389/fonc.2022.896662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of liver cancer is extremely high worldwide and poses a serious threat to human life and health. But at present, apart from radiotherapy, chemotherapy, liver transplantation, and early resection, sorafenib was the main systemic therapy proven to have clinical efficacy for unresectable liver cancer (HCC) until 2017. Despite the emerging immunotherapy in the past decade with immune inhibitors such as PD - 1 being approved and applied to clinical treatment, there are still some patients with no response. This review aims to elucidate the mechanisms underlying the tumor microenvironment of hepatocellular carcinoma and thus analyze the effectiveness of targeting the tumor microenvironment to improve the therapeutic efficacy of hepatocellular carcinoma, including the effectiveness and feasibility of immunotherapy, tumor oncolytic viruses and anti-vascular proliferation therapy.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
49
|
Zhang J, Pan T, Zhou W, Zhang Y, Xu G, Xu Q, Li S, Gao Y, Wang Z, Xu J, Li Y. Long noncoding RNA LINC01132 enhances immunosuppression and therapy resistance via NRF1/DPP4 axis in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:270. [PMID: 36071454 PMCID: PMC9454129 DOI: 10.1186/s13046-022-02478-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in various types of cancer. Current developments in transcriptome analyses unveiled the existence of lncRNAs; however, their functional characterization remains a challenge. Methods A bioinformatics screen was performed by integration of multiple omics data in hepatocellular carcinoma (HCC) prioritizing a novel oncogenic lncRNA, LINC01132. Expression of LINC01132 in HCC and control tissues was validated by qRT-PCR. Cell viability and migration activity was examined by MTT and transwell assays. Finally, our results were confirmed in vivo mouse model and ex vivo patient derived tumor xenograft experiments to determine the mechanism of action and explore LINC01132-targeted immunotherapy. Results Systematic investigation of lncRNAs genome-wide expression patterns revealed LINC01132 as an oncogene in HCC. LINC01132 is significantly overexpressed in tumor and associated with poor overall survival of HCC patients, which is mainly driven by copy number amplification. Functionally, LINC01132 overexpression promoted cell growth, proliferation, invasion and metastasis in vitro and in vivo. Mechanistically, LINC01132 acts as an oncogenic driver by physically interacting with NRF and enhancing the expression of DPP4. Notably, LINC01132 silencing triggers CD8+ T cells infiltration, and LINC01132 knockdown combined with anti-PDL1 treatment improves antitumor immunity, which may prove a new combination therapy in HCC. Conclusions LINC01132 functions as an oncogenic driver that induces HCC development via the NRF1/DPP4 axis. Silencing LINC01132 may enhance the efficacy of anti-PDL1 immunotherapy in HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02478-z.
Collapse
|
50
|
Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model. J Pharmacokinet Pharmacodyn 2022; 49:455-469. [DOI: 10.1007/s10928-022-09816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 10/16/2022]
|