1
|
Sun J, Yang N, Xu Z, Cheng H, Zhang X. A novel heterozygous mutation in PTHLH causing autosomal dominant brachydactyly type E complicated with short stature. Mol Genet Genomic Med 2024; 12:e2393. [PMID: 38407575 PMCID: PMC10844838 DOI: 10.1002/mgg3.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Brachydactyly type E (BDE) is a general term characterized by variable shortening of metacarpals and metatarsals, with phalanges affected frequently. It can occur as an isolated form or part of syndromes and manifest a high degree of phenotypic variability. In this study, we have identified the clinical characteristics and pathogenic causes of a four-generation pedigree with 10 members affected by BDE and short stature. METHODS After the informed consent was signed, clinical data and peripheral blood samples were collected from available family members. Karyotype analysis, array-CGH, next-generation sequencing, and Sanger sequencing were employed to identity the pathogenic candidate gene. RESULTS No translocation or microdeletion/duplication was found in karyotype analysis and array-CGH; hence, a novel heterozygous mutation, c.146dupA. p.S50Vfs*22, was detected by next-generation sequencing in PTHLH gene, leading to a premature stop codon. Subsequently, the mutation was confirmed by Sanger sequencing and co-segregation analysis. CONCLUSION In this study, we described a novel heterozygous mutation (c.146dupA. p.S50Vfs*22) of gene PTHLH in a Chinese family. The mutation could induce a premature stop codon leading to a truncation of the protein. Our study broadened the mutation spectrum of PTHLH in BDE.
Collapse
Affiliation(s)
- Jian Sun
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Nian Yang
- Department of PediatricsLinShu People's HospitalLinyiChina
| | - Zhengquan Xu
- Department of Orthopaedics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Hongbo Cheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Xiangxin Zhang
- Department of Orthopaedics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| |
Collapse
|
2
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Ardura JA, Martín-Guerrero E, Heredero-Jiménez S, Gortazar AR. Primary cilia and PTH1R interplay in the regulation of osteogenic actions. VITAMINS AND HORMONES 2022; 120:345-370. [PMID: 35953116 DOI: 10.1016/bs.vh.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary cilia are subcellular structures specialized in sensing different stimuli in a diversity of cell types. In bone, the primary cilium is involved in mechanical sensing and transduction of signals that regulate the behavior of mesenchymal osteoprogenitors, osteoblasts and osteocytes. To perform its functions, the primary cilium modulates a plethora of molecules including those stimulated by the parathyroid hormone (PTH) receptor type I (PTH1R), a master regulator of osteogenesis. Binding of the agonists PTH or PTH-related protein (PTHrP) to the PTH1R or direct agonist-independent stimulation of the receptor activate PTH1R signaling pathways. In turn, activation of PTH1R leads to regulation of bone formation and remodeling. Herein, we describe the structure, function and molecular partners of primary cilia in the context of bone, playing special attention to those signaling pathways that are mediated directly or indirectly by PTH1R in association with primary cilia during the process of osteogenesis.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain.
| | - Eduardo Martín-Guerrero
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Sara Heredero-Jiménez
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Arancha R Gortazar
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| |
Collapse
|
5
|
Cyclooxygenase-2 regulates PTHrP transcription in human articular chondrocytes and is involved in the pathophysiology of osteoarthritis in rats. J Orthop Translat 2021; 30:16-30. [PMID: 34466385 PMCID: PMC8374645 DOI: 10.1016/j.jot.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2) inhibitors are prescribed for the management of osteoarthritis (OA)-associated pain and inflammation. However, the role of COX-2 in normal and osteoarthritic articular chondrocytes has not been well investigated. We hypothesize that COX-2 plays a role in articular chondrocytes under normal conditions and during OA progression. Methods In vivo COX-2 levels in articular cartilage of normal and papain-induced osteoarthritic rats were compared. The role of COX-2 in human articular chondrocytes (HACs) was tested in vitro by COX-2 overexpression or activity inhibition. The levels of COX-2 and marker gene for normal function or articular cartilage degeneration were evaluated: mRNA by qRT-PCR; proteins by western blotting or immunohistochemistry; and glycosaminoglycan (GAG) by Safranin O-fast green staining. Parathyroid hormone-related protein (PTHrP) promoter activity was detected with luciferase reporter assays. Results In the OA rat study, COX-2 and PTHrP were simultaneously increased in osteoarthritic rat chondrocytes, while increased PTHrP levels were reduced by celecoxib, a COX-2 selective inhibitor. The levels of normal cartilage matrices, GAG and type II collagen decreased, while markers of degeneration, collagen type X and MMP13 were elevated in osteoarthritic articular chondrocytes. Celecoxib rescued the loss of GAG and the increased collagen type X and MMP13 levels. In vitro, COX-2 overexpression in HACs significantly increased Col2a1, Col10a1, PTHrP and MMP13 mRNA expression, which was decreased when COX-2 activity was suppressed. More importantly, COX-2 overexpression upregulated the PTHrP transcription, mRNA expression and protein levels. Conclusion COX-2 plays a pathophysiological role by preventing terminal differentiation of articular chondrocytes by upregulating PTHrP expression at the early stage of OA progression. The Translational potential of this article COX2 up-regulates PTHrP expression in normal and OA articular chondrocytes.
Collapse
|
6
|
Wang Y, Li A, Mehmood K, Hussain R, Abbas RZ, Javed MT, Chang YF, Hu L, Pan J, Li Y, Shi L, Tang Z, Zhang H. Long-term exposure to the fluoride blocks the development of chondrocytes in the ducks: The molecular mechanism of fluoride regulating autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112225. [PMID: 33864983 DOI: 10.1016/j.ecoenv.2021.112225] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 05/15/2023]
Abstract
Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.
Collapse
Affiliation(s)
- Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Khalid Mehmood
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - M Tariq Javed
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
8
|
A 3.06-Mb interstitial deletion on 12p11.22-12.1 caused brachydactyly type E combined with pectus carinatum. Chin Med J (Engl) 2019; 132:1681-1688. [PMID: 31283647 PMCID: PMC6759105 DOI: 10.1097/cm9.0000000000000327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Brachydactyly, a developmental disorder, refers to shortening of hands/feet due to small or missing metacarpals/metatarsals and/or phalanges. Isolated brachydactyly type E (BDE), characterized by shortened metacarpals and/or metatarsals, consists in a small proportion of patients with Homeobox D13 (HOXD13) or parathyroid-hormone-like hormone (PTHLH) mutations. BDE is often accompanied by other anomalies that are parts of many congenital syndromes. In this study, we investigated a Chinese family presented with BDE combined with pectus carinatum and short stature. METHODS A four-generation Chinese family was recruited in June 2016. After informed consent was obtained, venous blood was collected, and genomic DNA was extracted by standard procedures. Whole-exome sequencing was performed to screen pathogenic mutation, array comparative genomic hybridization (Array-CGH) analysis was used to analyze copy number variations, and quantitative real-time polymerase chain reaction (PCR), stride over breakpoint PCR (gap-PCR), and Sanger sequencing were performed to confirm the candidate variation. RESULTS A 3.06-Mb deletion (chr12:25473650-28536747) was identified and segregated with the phenotype in this family. The deletion region encompasses 23 annotated genes, one of which is PTHLH which has been reported to be causative to the BDE. PTHLH is an important regulator of endochondral bone development. The affected individuals showed bilateral, severe, and generalized brachydactyly with short stature, pectus carinatum, and prematurely fusion of epiphyses. The feature of pectus carinatum has not been described in the PTHLH-related BDE patients previously. CONCLUSIONS The haploinsufficiency of PTHLH might be responsible for the disease in this family. This study has expanded the knowledge on the phenotypic presentation of PTHLH variation.
Collapse
|
9
|
Gao J, Li X, Zhang Y, Wang H. Endochondral ossification in hindlimbs during bufo gargarizans
metamorphosis: A model of studying skeletal development in vertebrates. Dev Dyn 2018; 247:1121-1134. [DOI: 10.1002/dvdy.24669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jinshu Gao
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Xinyi Li
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Yuhui Zhang
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Hongyuan Wang
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| |
Collapse
|
10
|
Chao W, Zhang Y, Chai L, Wang H. Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:138-150. [PMID: 29908452 DOI: 10.1016/j.aquatox.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Endochondral ossification, the process by which most of the bone is formed, is regulated by many specific groups of molecules and extracellular matrix components. Hind limb of Bufo gargarizans is a model to study endochondral ossification during metamorphosis. Chinese toad (Bufo gargarizans) were exposed to different fluoride concentrations (0, 1, 5, 10 and 20 mg L-1) from G3 to G42. The development of hind limb of B. gargarizans was observed using the double staining methodology. The transcriptome of hind limb of B. gargarizans was conducted using RNA-seq approach, and differentially expressed gene was also validated. In addition, the location of Sox9 and Ihh in the growth cartilage was determined using in situ hybridization. Our results showed that 5 mg L-1 stimulated bone mineralization, while 10 and 20 mg L-1 exposure could inhibit the tibio-fibula, tarsus and metacarpals ossification. Besides, 10 mg F/L treatment could down-regulate Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 expression, while up-regulate ObRb and HHAT mRNA expression in the hind limb of B. gargarizans. Transcript level changes of Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 were consistent with the results of RT-qPCR. In situ hybridization revealed that Ihh was expressed in prehypertrophic chondrocytes, while Sox9 was abundantly expressed in proliferous, prehypertrophic and hypertrophic chondrocytes. However, 10 mg F-/L did not cause any affect in the location of the Ihh and Sox9 mRNA. Therefore, high concentration of fluoride could affect the ossification-related genes mRNA expression and then inhibit the endochondral ossification. The present study thus will greatly contribute to our understanding of the effect of environmental contaminant on ossification in amphibian.
Collapse
Affiliation(s)
- Wu Chao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
11
|
Chu F, Feng Q, Hu Z, Shen G. Appropriate cyclic tensile strain promotes biological changes of cranial base synchondrosis chondrocytes. Orthod Craniofac Res 2018; 20:177-182. [PMID: 28727318 DOI: 10.1111/ocr.12194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES This study was designed to clarify biological changes of cranial base synchondrosis chondrocytes (CBSCs) upon cyclic tensile strain (CTS) loading which simulated orthopaedic mechanical protraction on cranial base synchondroses (CBS). MATERIAL AND METHODS A two-step digestion method was used to isolate CBSCs obtained from 1-week-old Sprague Dawley rats. Immunohistochemical staining of type II collagen and Sox9 was conducted to identify chondrocytes. A CTS of 1 Hz and 10% elongation was applied to the second passage of CBSCs by FX-5000™ Tension System for 24 hours. The control group kept static at the same time. The expression levels of extracellular matrix (Acan, Col1a1, Col2a1 and Col10a1) and key regulatory factors (Sox9, Ihh and PTHrP) were detected by quantitative real-time RT-PCR. RESULTS Positive staining of type II collagen and Sox9 was detected in the isolated CBSCs. The relative expression level of Acan, Col2a1, Col10a1, Sox9 and Ihh in the CTS-loading group was 1.85-fold, 2.19-fold, 1.53-fold, 6.62-fold, and 1.39-fold, respectively, as much as that in the control group, which had statistical significance (P<.05). There was no statistical difference (P>.05) in the expression of Col1a1 and PTHrP. CONCLUSIONS A CTS of 1 Hz and 10% elongation for 24 hours had positive effects on chondrocyte proliferation, phenotype maintenance and cartilage matrix synthesis.
Collapse
Affiliation(s)
- F Chu
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Q Feng
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Z Hu
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - G Shen
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36:533-545. [PMID: 28901584 PMCID: PMC5839937 DOI: 10.1002/jor.23732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
The primary cilium is a solitary, antenna-like sensory organelle with many important roles in cartilage and bone development, maintenance, and function. The primary cilium's potential role as a signaling nexus in the growth plate makes it an attractive therapeutic target for diseases and disorders associated with bone development and maintenance. Many signaling pathways that are mediated by the cilium-such as Hh, Wnt, Ihh/PTHrP, TGFβ, BMP, FGF, and Notch-are also known to influence endochondral ossification, primarily by directing growth plate formation and chondrocyte behavior. Although a few studies have demonstrated that these signaling pathways can be directly tied to the primary cilium, many pathways have yet to be evaluated in context of the cilium. This review serves to bridge this knowledge gap in the literature, as well as discuss the cilium's importance in the growth plate's ability to sense and respond to chemical and mechanical stimuli. Furthermore, we explore the importance of using the appropriate mechanism to study the cilium in vivo and suggest IFT88 deletion is the best available technique. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:533-545, 2018.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| | - Christopher R. Jacobs
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| |
Collapse
|
13
|
Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone. Histochem Cell Biol 2018; 149:365-373. [PMID: 29356962 DOI: 10.1007/s00418-018-1641-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Longitudinal bone growth progresses by continuous bone replacement of epiphyseal cartilaginous tissue, known as "growth plate", produced by columnar proliferated- and differentiated-epiphyseal chondrocytes. The endochondral ossification process at the growth plate is governed by paracrine signals secreted from terminally differentiated chondrocytes (hypertrophic chondrocytes), and hedgehog signaling is one of the best known regulatory signaling pathways in this process. Here, to investigate the developmental relationship between longitudinal endochondral bone formation and osteogenic progenitors under the influence of hedgehog signaling at the growth plate, genetic lineage tracing was carried out with the use of Gli1CreERT2 mice line to follow the fate of hedgehog-signal-responsive cells during endochondral bone formation. Gli1CreERT2 genetically labeled cells are detected in hypertrophic chondrocytes and osteo-progenitors at the chondro-osseous junction (COJ); these progeny then commit to the osteogenic lineage in periosteum, trabecular and cortical bone along the developing longitudinal axis. Furthermore, in ageing bone, where longitudinal bone growth ceases, hedgehog-signal responsiveness and its implication in osteogenic lineage commitment is significantly weakened. These results show, for the first time, evidence of the developmental contribution of endochondral progenitors under the influence of epiphyseal chondrocyte-derived secretory signals in longitudinally growing bone. This study provides a precise outline for assessing the skeletal lineage commitment of osteo-progenitors in response to growth-plate-derived regulatory signals during endochondral bone formation.
Collapse
|
14
|
Vaca-González JJ, Moncayo-Donoso M, Guevara JM, Hata Y, Shefelbine SJ, Garzón-Alvarado DA. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech Model Mechanobiol 2018; 17:853-875. [DOI: 10.1007/s10237-017-0997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
|
15
|
Han X, Zhuang Y, Zhang Z, Guo L, Wang W. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon. Stem Cells Int 2016; 2016:8235172. [PMID: 27994624 PMCID: PMC5138489 DOI: 10.1155/2016/8235172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022] Open
Abstract
This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh)/parathyroid hormone-related protein (PTHrP) signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I), Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS), PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.
Collapse
Affiliation(s)
- Xuesong Han
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yanfeng Zhuang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Zhihong Zhang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Lin Guo
- Center of Joint Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Wanming Wang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| |
Collapse
|
16
|
Sun K, Liu F, Wang J, Guo Z, Ji Z, Yao M. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell Dev Biol Anim 2016; 53:141-148. [PMID: 27605110 DOI: 10.1007/s11626-016-0090-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/14/2016] [Indexed: 11/27/2022]
Abstract
The study is aimed to investigate the effect of stretch stress with different intensities on the differentiation and apoptosis of human plate chondrocytes. In the present study, the human epiphyseal plate chondrocytes were isolated and cultured in vitro. Toluidine blue staining and type II collagen immunohistochemical staining were used to identify the chondrocytes. Mechanical stretch stresses with different intensities were applied to intervene cells at 0-, 2000-, and 4000-μ strain for 6 h via a four-point bending system. The expression levels of COL2, COL10, Bax, Bcl-2, and PTHrp were detected by quantitative RT-PCR. Under the intervention of 2000-μ strain, the expression levels of COL2, COL10, and PTHrp increased significantly compared with the control group (P < 0.05), and the expression level of PCNA was also increased, but the difference was not statistically significant (P > 0.05). Under 4000-μ strain, however, the expression levels of PCNA, COL2, and PTHrp decreased significantly compared with the control group (P < 0.05), and the expression level of COL10 decreased slightly (P > 0.05). The ratio of Bcl-2/Bax gradually increased with the increase of stimulus intensity; both of the differences were detected to be statistically significant (P < 0.05). In conclusion, the apoptosis of growth plate chondrocytes is regulated by mechanical stretch stress. Appropriate stretch stress can effectively promote the cells' proliferation and differentiation, while excessive stretch stress inhibits the cells' proliferation and differentiation, even promotes their apoptosis. PTHrp may play an important role in this process.
Collapse
Affiliation(s)
- Keming Sun
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Fangna Liu
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Junjian Wang
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zhanhao Guo
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zejuan Ji
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Manye Yao
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
17
|
Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes. Toxicology 2016; 368-369:116-128. [PMID: 27608943 DOI: 10.1016/j.tox.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/04/2016] [Indexed: 11/24/2022]
Abstract
Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.
Collapse
|
18
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
19
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
20
|
Iber D, Germann P. How do digits emerge? - mathematical models of limb development. ACTA ACUST UNITED AC 2014; 102:1-12. [DOI: 10.1002/bdrc.21057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Dagmar Iber
- Department of Biosystems; Science and Engineering (D-BSSE); ETH Zurich 4058 Basel Switzerland
- Swiss Institute of Bioinformatics (SIB); Geneva Switzerland
| | - Philipp Germann
- Department of Biosystems; Science and Engineering (D-BSSE); ETH Zurich 4058 Basel Switzerland
| |
Collapse
|
21
|
Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells. J Biomech 2013; 47:2122-9. [PMID: 24290176 DOI: 10.1016/j.jbiomech.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/28/2022]
Abstract
Flow-perfusion is being promoted as a way to grow tissue-engineered cartilage in vitro. Yet, there is a concern that flow-perfusion may induce unwanted mechanical effects on chondrogenesis and terminal differentiation. Therefore, the aim of this study is to evaluate the effect of fluid flow on chondrogenesis and chondrocyte hypertrophy of MSCs in a well-established pellet culture model. Human MSC pellets were mounted into 3D-printed porous scaffolds in basic chondrogenic differentiation medium, containing TGF-β2. Constructs were then allowed to form cartilaginous matrix for 18 days, before they were transferred to a custom-built flow-perfusion system. A continuous flow of 1.22ml min(-1) was applied to the constructs for 10 days. Controls were maintained under static culture conditions. To evaluate chondrogenic and hypertrophic differentiation, RNA was isolated at day 20 and 28 and histology, immunohistochemistry and western blot analyses were performed after 28 days of culture. Abundant matrix was formed in the constructs, but production of chondrogenic and hypertrophic matrix components was affected by flow-perfusion. Although gene expression levels of the (late) hypertrophic and osteogenic marker osteocalcin increased by flow-perfusion, this did not result in more collagen type X protein deposition. Decreased GAG release, in combination with diminished collagen II staining, indicates reduced chondrogenesis in response to flow-perfusion. Caution should thus be taken when applying flow-perfusion to cultures to improve nutrient diffusion. Although we show that it is possible to influence the differentiation of chondrogenic differentiated MSCs by flow-perfusion, effects are inconsistent and strongly donor-dependent.
Collapse
|
22
|
Tanaka S, Iber D. Inter-dependent tissue growth and Turing patterning in a model for long bone development. Phys Biol 2013; 10:056009. [PMID: 24104059 DOI: 10.1088/1478-3975/10/5/056009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.
Collapse
Affiliation(s)
- Simon Tanaka
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, Switzerland
| | | |
Collapse
|
23
|
A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:326150. [PMID: 23653665 PMCID: PMC3638701 DOI: 10.1155/2013/326150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/11/2013] [Accepted: 02/23/2013] [Indexed: 11/17/2022]
Abstract
The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation.
Collapse
|
24
|
Smith EL, Kanczler JM, Roberts CA, Oreffo ROC. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora. Tissue Eng Part C Methods 2012; 18:984-94. [PMID: 22690868 PMCID: PMC4014091 DOI: 10.1089/ten.tec.2012.0132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/04/2012] [Indexed: 11/13/2022] Open
Abstract
Enhancement and application of our understanding of skeletal developmental biology is critical to developing tissue engineering approaches to bone repair. We propose that use of the developing embryonic femur as a model to further understand skeletogenesis, and the effects of key differentiation agents, will aid our understanding of the developing bone niche and inform bone reparation. We have used a three-dimensional organotypic culture system of embryonic chick femora to investigate the effects of two key skeletal differentiation agents, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), on bone and cartilage development, using a combination of microcomputed tomography and histological analysis to assess tissue formation and structure, and cellular behavior. Stimulation of embryonic day 11 (E11) organotypic femur cultures with PTH and PTHrP initiated osteogenesis. Bone formation was enhanced, with increased collagen I and STRO-1 expression, and cartilage was reduced, with decreased chondrocyte proliferation, collagen II expression, and glycosaminoglycan levels. This study demonstrates the successful use of organotypic chick femur cultures as a model for bone development, evidenced by the ability of exogenous bioactive molecules to differentially modulate bone and cartilage formation. The organotypic model outlined provides a tool for analyzing key temporal stages of bone and cartilage development, providing a paradigm for translation of bone development to improve scaffolds and skeletal stem cell treatments for skeletal regenerative medicine.
Collapse
Affiliation(s)
- Emma L Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Spongiosa primary development: a biochemical hypothesis by Turing patterns formations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012. [PMID: 23193429 PMCID: PMC3447359 DOI: 10.1155/2012/748302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.
Collapse
|
26
|
Kerkhofs J, Roberts SJ, Luyten FP, Van Oosterwyck H, Geris L. Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS One 2012; 7:e34729. [PMID: 22558096 PMCID: PMC3340393 DOI: 10.1371/journal.pone.0034729] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, K.U. Leuven, Leuven, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| | - Scott J. Roberts
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
- Rheumatology Department, K.U. Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
- Rheumatology Department, K.U. Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics section, K.U. Leuven, Leuven, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Abstract
Patterns of variation in bone size and shape provide crucial data for reconstructing hominin paleobiology, including ecogeographic adaptation, life history, and functional morphology. Measures of bone strength, including robusticity (diaphyseal thickness relative to length) and cross-sectional geometric properties such as moments of area, are particularly useful for inferring behavior because bone tissue adapts to its mechanical environment. Particularly during skeletal growth, exercise-induced strains can stimulate periosteal modeling so that, to some extent, bone thickness reflects individual behavior. Thus, patterns of skeletal robusticity have been used to identify gender-based activity differences, temporal shifts in mobility, and changing subsistence strategies. Although there is no doubt that mechanical loading leaves its mark on the skeleton, less is known about whether individuals differ in their skeletal responses to exercise. For example, the potential effects of hormones or growth factors on bone-strain interactions are largely unexplored. If the hormonal background can increase or decrease the effects of exercise on skeletal robusticity, then the same mechanical loads might cause different degrees of bone response in different individuals. Here I focus on the role of the hormone estrogen in modulating exercise-induced changes in human bone thickness.
Collapse
Affiliation(s)
- Maureen J Devlin
- Orthopedic Biomechanics Laboratory of Beth Israel Deaconess Medical Center, USA.
| |
Collapse
|
28
|
Lambrechts D, Schrooten J, Van de Putte T, Van Oosterwyck H. Computational Modeling of Mass Transport and Its Relation to Cell Behavior in Tissue Engineering Constructs. COMPUTATIONAL MODELING IN TISSUE ENGINEERING 2012. [DOI: 10.1007/8415_2012_139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Peinado Cortés LM, Vanegas Acosta JC, Garzón Alvarado DA. A mechanobiological model of epiphysis structures formation. J Theor Biol 2011; 287:13-25. [PMID: 21810429 DOI: 10.1016/j.jtbi.2011.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/28/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022]
Abstract
Developing bone consists of epiphysis, metaphysis and diaphysis. The secondary ossification centre (SOC) appears and grows within the epiphysis, involving two histological stages. Firstly, cartilage canals appear; they carry hypertrophy factors towards the central area of the epiphysis. Canal growth and expansion is modulated by stress on the epiphysis. Secondly, the diffusion of hypertrophy factors causes SOC growth. Hypertrophy is regulated by biological and mechanical factors present within the epiphysis. The finite element method has been used for solving a coupled system of differential equations for modelling these histological stages of epiphyseal development. Cartilage canal spatial-temporal growth patterns were obtained as well as the SOC formation pattern. This model qualitatively agreed with experimental results reported by other authors.
Collapse
Affiliation(s)
- L M Peinado Cortés
- Mechanics and Materials Research Building 407, Office 203A, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | |
Collapse
|
30
|
Garzón-Alvarado DA, Peinado Cortés LM, Cárdenas Sandoval RP. A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre. Comput Methods Biomech Biomed Engin 2011; 14:23-32. [DOI: 10.1080/10255842.2010.484810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Fasano A, Herrero M, López J, Medina E. On the dynamics of the growth plate in primary ossification. J Theor Biol 2010; 265:543-53. [DOI: 10.1016/j.jtbi.2010.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol 2008; 4:e1000250. [PMID: 19112485 PMCID: PMC2592698 DOI: 10.1371/journal.pcbi.1000250] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 11/11/2008] [Indexed: 11/18/2022] Open
Abstract
Although it is known that mechanical forces are needed for normal bone
development, the current understanding of how biophysical stimuli are
interpreted by and integrated with genetic regulatory mechanisms is limited.
Mechanical forces are thought to be mediated in cells by
“mechanosensitive” genes, but it is a challenge to
demonstrate that the genetic regulation of the biological system is dependant on
particular mechanical forces in vivo. We propose a new means of selecting
candidate mechanosensitive genes by comparing in vivo gene expression patterns
with patterns of biophysical stimuli, computed using finite element analysis. In
this study, finite element analyses of the avian embryonic limb were performed
using anatomically realistic rudiment and muscle morphologies, and patterns of
biophysical stimuli were compared with the expression patterns of four candidate
mechanosensitive genes integral to bone development. The expression patterns of
two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise
with biophysical stimuli induced by embryonic muscle contractions, identifying
them as potentially being involved in the mechanoregulation of bone formation.
An altered mechanical environment was induced in the embryonic chick, where a
neuromuscular blocking agent was administered in ovo to modify skeletal muscle
contractions. Finite element analyses predicted dramatic changes in levels and
patterns of biophysical stimuli, and a number of immobilised specimens exhibited
differences in ColX and Ihh expression. The results obtained indicate that
computationally derived patterns of biophysical stimuli can be used to inform a
directed search for genes that may play a mechanoregulatory role in particular
in vivo events or processes. Furthermore, the experimental data demonstrate that
ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators
in translating information from the mechanical environment to the molecular
regulation of bone formation in the embryo. While mechanical forces are known to be critical to adult bone maintenance and
repair, the importance of mechanobiology in embryonic bone formation is less
widely accepted. The influence of mechanical forces on cells is thought to be
mediated by “mechanosensitive genes,” genes which respond to
mechanical stimulation. In this research, we examined the situation in the
developing embryo. Using finite element analysis, we simulated the biophysical
stimuli in the developing bone resulting from spontaneous muscle contractions,
incorporating detailed morphology of the developing chick limb. We compared
patterns of stimuli with expression patterns of a number of genes involved in
bone formation and demonstrated a clear colocalisation in the case of two genes
(Ihh and ColX). We then altered the mechanical environment of the growing chick
embryo by blocking muscle contractions and demonstrated changes in the
magnitudes and patterns of biophysical stimuli and in the expression patterns of
both Ihh and ColX. We have demonstrated the value of combining computational
techniques with in vivo gene expression analysis to identify genes that may play
a mechanoregulatory role and have identified genes that respond to mechanical
stimulation during bone formation in vivo.
Collapse
Affiliation(s)
- Niamh C Nowlan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
33
|
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. A reaction–diffusion model for long bones growth. Biomech Model Mechanobiol 2008; 8:381-95. [DOI: 10.1007/s10237-008-0144-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
34
|
Wilsman NJ, Bernardini ES, Leiferman E, Noonan K, Farnum CE. Age and pattern of the onset of differential growth among growth plates in rats. J Orthop Res 2008; 26:1457-65. [PMID: 18404738 PMCID: PMC2954232 DOI: 10.1002/jor.20547] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Differential growth is the phenomenon whereby growth plates in the same individual at the same time all have uniquely different axial growth velocities. Differential growth is clearly present in the adolescent skeleton. In this study we ask two questions. When and by what pattern does the phenomenon of differential growth begin? Second, to what extent are the development of differential growth velocities correlated with changes in hypertrophic chondrocyte volume and/or with changes in chondrocytic production/turnover? Four growth plates (proximal and distal radial; proximal and distal tibial) were studied at 24 different time points in Long-Evans rats between the 17th gestational day (when differential growth does not exist) and postnatal day 27 (when differential growth is well established). Growth velocities were measured using fluorochrome labeling. Using stereological methodology, multiple chondrocytic kinetic parameters were measured for all growth plates. Elongation of the proximal radial growth plate decreases relative to elongation in the other three growth plates in the late fetal phase. Differential growth is fully expressed at postnatal day 13 when the other three growth plates start to decrease daily elongation at different rates. Differential growth is primarily associated with differences in hypertrophic cell volume manifested when growth deceleration occurs. This study also illustrates that differential growth is superimposed on systemic regulators that affect all growth plates simultaneously. The most dramatic illustration of this is the sharp decline in growth velocity in all four growth plates that occurs perinatally.
Collapse
Affiliation(s)
| | | | | | - Ken Noonan
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53706
| | | |
Collapse
|
35
|
Andrade AC, Nilsson O, Barnes KM, Baron J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 2007; 40:1361-9. [PMID: 17337262 PMCID: PMC1941840 DOI: 10.1016/j.bone.2007.01.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/07/2006] [Accepted: 01/10/2007] [Indexed: 01/10/2023]
Abstract
Longitudinal growth of long bones occurs at the growth plate by endochondral ossification. In the embryonic mouse, this process is regulated by Wnt signaling. Little is known about which members of the Wnt family of secreted signaling proteins might be involved in the regulation of the postnatal growth plate. We used microdissection and real-time PCR to study mRNA expression of Wnt genes in the mouse growth plate. Of the 19 known members of the Wnt family, only six were expressed in postnatal growth plate. Of these, Wnts -2b, -4, and -10b signal through the canonical beta-catenin pathway and Wnts -5a, -5b, and -11 signal through the noncanonical calcium pathway. The spatial expression for these six Wnts was remarkably similar, showing low mRNA expression in the resting zone, increasing expression as the chondrocytes differentiated into the proliferative and prehypertrophic state and then (except Wnt-2b) decreasing expression as the chondrocytes underwent hypertrophic differentiation. This overall pattern is broadly consistent with previous studies of embryonic mouse growth cartilage suggesting that Wnt signaling modulates chondrocyte proliferation and hypertrophic differentiation. We also found that mRNA expression of these Wnt genes persisted at similar levels at 4 weeks, when longitudinal bone growth is waning. In conclusion, we have identified for the first time the specific Wnt genes that are expressed in the postnatal mammalian growth plate. The six identified Wnt genes showed a similar pattern of expression during chondrocyte differentiation, suggesting overlapping or interacting roles in postnatal endochondral bone formation.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
|