1
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Guan ZH, Yang D, Wang Y, Ma JB, Wang GN. Ectodysplasin-A2 receptor (EDA2R) knockdown alleviates myocardial ischemia/reperfusion injury through inhibiting the activation of the NF-κB signaling pathway. Exp Anim 2024; 73:376-389. [PMID: 38797667 PMCID: PMC11534487 DOI: 10.1538/expanim.24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Guan
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Di Yang
- Department of Anesthesiology, Heilongjiang Hospital, Beijing Children's Hospital, Capital Medical University, No. 57, Youyi Road, Harbin, 150028, P.R. China
| | - Yi Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Jia-Bin Ma
- Department of Medical Service, Heilongjiang Province Healthcare Security Administration, No. 68, Zhongshan Road, Harbin, 150036, P.R. China
| | - Guo-Nian Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| |
Collapse
|
3
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
4
|
Tokumasu R, Yasuhara R, Kang S, Funatsu T, Mishima K. Transcription factor FoxO1 regulates myoepithelial cell diversity and growth. Sci Rep 2024; 14:1069. [PMID: 38212454 PMCID: PMC10784559 DOI: 10.1038/s41598-024-51619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.
Collapse
Affiliation(s)
- Rino Tokumasu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, Graduate School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| | - Seya Kang
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Takahiro Funatsu
- Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
5
|
Zhou J, Pathak JL, Liu Q, Hu S, Cao T, Watanabe N, Huo Y, Li J. Modes and Mechanisms of Salivary Gland Epithelial Cell Death in Sjogren's Syndrome. Adv Biol (Weinh) 2023; 7:e2300173. [PMID: 37409392 DOI: 10.1002/adbi.202300173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Sjogren's syndrome is an autoimmune disease in middle and old-aged women with a dry mucosal surface, which is caused by the dysfunction of secretory glands, such as the oral cavity, eyeballs, and pharynx. Pathologically, Sjogren's syndrome are characterized by lymphocyte infiltration into the exocrine glands and epithelial cell destruction caused by autoantibodies Ro/SSA and La/SSB. At present, the exact pathogenesis of Sjogren's syndrome is unclear. Evidence suggests epithelial cell death and the subsequent dysfunction of salivary glands as the main causes of xerostomia. This review summarizes the modes of salivary gland epithelial cell death and their role in Sjogren's syndrome progression. The molecular mechanisms involved in salivary gland epithelial cell death during Sjogren's syndrome as potential leads to treating the disease are also discussed.
Collapse
Affiliation(s)
- Jiannan Zhou
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Janak Lal Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qianwen Liu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shilin Hu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tingting Cao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Yongliang Huo
- Experimental Animal Center, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| |
Collapse
|
6
|
Xing Z, Zhang Y, Tian Z, Wang M, Xiao W, Zhu C, Zhao S, Zhu Y, Hu L, Kong X. Escaping but not the inactive X-linked protein complex coding genes may achieve X-chromosome dosage compensation and underlie X chromosome inactivation-related diseases. Heliyon 2023; 9:e17721. [PMID: 37449161 PMCID: PMC10336589 DOI: 10.1016/j.heliyon.2023.e17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
X chromosome dosage compensation (XDC) refers to the process by which X-linked genes acquire expression equivalence between two sexes. Ohno proposed that XDC is achieved by two-fold upregulations of X-linked genes in both sexes and by silencing one X chromosome (X chromosome inactivation, XCI) in females. However, genes subject to two-fold upregulations as well as the underlying mechanism remain unclear. It's reported that gene dosage changes may only affect X-linked dosage-sensitive genes, such as protein complex coding genes (PCGs). Our results showed that in human PCGs are more likely to escape XCI and escaping PCGs (EsP) show two-fold higher expression than inactivated PCGs (InP) or other X-linked genes at RNA and protein levels in both sexes, which suggest that EsP may achieve upregulations and XDC. The higher expressions of EsP possibly result from the upregulations of the single active X chromosome (Xa), rather than escaping expressions from the inactive X chromosome (Xi). EsP genes have relatively high expression levels in humans and lower dN/dS ratios, suggesting that they are likely under stronger selection pressure over evolutionary time. Our study also suggests that SP1 transcription factor is significantly enriched in EsP and may be involved in the up-regulations of EsP on the active X. Finally, human EsP genes in this study are enriched in the toll-like receptor pathway, NF-kB pathway, apoptotic pathway, and abnormal mental, developmental and reproductive phenotypes. These findings suggest misregulations of EsP may be involved in autoimmune, reproductive, and neurological diseases, providing insight for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihao Xing
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhongyuan Tian
- Zhoukou Traditional Chinese Medicine Hospital, Zhoukou, Henan, China
| | - Meng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Weiwei Xiao
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Chunqing Zhu
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Songhui Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yufei Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
7
|
Schüle S, Hackenbroch C, Beer M, Muhtadi R, Hermann C, Stewart S, Schwanke D, Ostheim P, Port M, Scherthan H, Abend M. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int J Radiat Biol 2023; 99:1584-1594. [PMID: 36988552 DOI: 10.1080/09553002.2023.2194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Daniel Schwanke
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
8
|
Xiao L, Xiao W, Zhan F. Targets of total glucosides of paeony in the treatment of Sjogren syndrome: A network pharmacology study. J Chin Med Assoc 2023; 86:375-380. [PMID: 36653917 DOI: 10.1097/jcma.0000000000000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND We aimed to explore the underlying mechanism of the total glucoside of peony (TGP) in treating Sjogren syndrome (SS) using the network pharmacology approach. METHODS The protein targets of TGP and SS were identified by database search. Then, the intersection of the two groups was studied. The drug-target network between TGP and the overlapping genes was constructed, visualized, and analyzed by Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed to analyze these genes. Finally, the predictions of potential targets were evaluated by docking study. RESULTS Forty-six overlapping genes were discovered. The results suggested that TGP used in the treatment of SS is associated with cellular tumor antigen p53, neurotrophic tyrosine kinase receptor type 1, and epidermal growth factor receptor, as well as their related 3372 protein networks, which regulate intrinsic apoptotic signaling pathway, cellular response to oxidative stress, rhythmic process, and other processes. Molecular docking analysis proved that hydrogen bonding is the main form of interaction. CONCLUSION Our research provided the protein targets affected by TGP in SS treatment. The key targets (caspase 3, vascular endothelial growth factor A, glyceraldehyde-3-phosphate dehydrogenase, etc.), which involve 3372 proteins, are the multitarget mechanism of TGP in SS treatment.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Wei Xiao
- Department of Respiratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Feng Zhan
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| |
Collapse
|
9
|
Zhang X, Zhang D, Sun X, Li S, Sun Y, Zhai H. Tumor Suppressor Gene XEDAR Promotes Differentiation and Suppresses Proliferation and Migration of Gastric Cancer Cells Through Upregulating the RELA/LXRα Axis and Deactivating the Wnt/β-Catenin Pathway. Cell Transplant 2021; 30:963689721996346. [PMID: 33637015 PMCID: PMC7923976 DOI: 10.1177/0963689721996346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
X-linked ectodermal dysplasia receptor (XEDAR) is a new member of the tumor necrosis factor receptor (TNFR) family that induces cell death. The purpose of this study is to determine the tumor-suppressive potential of XEDAR in the development and differentiation of gastric cancer (GC). XEDAR levels were analyzed in human GC tissues and adjacent normal tissues by immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (RT-qPCR), and Western blot analysis. We found that XEDAR expression was significantly downregulated in GC tissues and further decreased in low differentiated GC tissues. Overexpression of XEDAR in MKN45 and MGC803 cells suppressed the ability of cell proliferation and migration, whereas silencing XEDAR showed the opposite effect. Additionally, XEDAR silencing resulted in the upregulation of the differentiation molecular markers β-catenin, CD44 and Cyclin D1 at the protein levels, whereas XEDAR overexpression showed the opposite effect. Notably, XEDAR positively regulated the expression of liver X receptor alpha (LXRα) through upregulating the RELA gene that was characterized as a transcription factor of LXRα in this study. Inhibition of LXRα by GSK2033 or activation of the Wnt/β-catenin pathway by Wnt agonist 1 impaired the effect of XEDAR overexpression on differentiation of MKN45 cells. Moreover, inhibition of RELA mediated by siRNA could promote cell proliferation/migration and rescue the effect of XEDAR overexpression on cell behaviors and expression of genes. Subsequently, overexpression of XEDAR suppressed the growth of GC cells in vivo. Taken together, our findings showed that XEDAR could promote differentiation and suppress proliferation and invasion of GC cells.
Collapse
Affiliation(s)
- Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Di Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shunle Li
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yun Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongjun Zhai
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
McCoy SS, Sampene E, Baer AN. Association of Sjögren's Syndrome With Reduced Lifetime Sex Hormone Exposure: A Case-Control Study. Arthritis Care Res (Hoboken) 2020; 72:1315-1322. [PMID: 31233285 DOI: 10.1002/acr.24014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To test whether cumulative estrogen exposure, as determined by age at menarche, age at menopause, female hormone use, hysterectomy, and parity, have an effect on the development of primary Sjögren's syndrome (SS). METHODS We performed a case-control study of 2,680 women from the Sjögren's International Collaborative Clinical Alliance registry, including 1,320 registrants with primary SS and 1,360 with sicca symptoms but no key features of primary SS (sicca controls). The composite estrogen score (CES) was calculated by point assignment for early menarche (age ≤10 years), high parity (>3 pregnancies), hysterectomy, female hormone use, and late menopause (age ≥53 years). Cumulative menstrual cycling (CMC) was calculated as years menstruating minus time pregnant. RESULTS Using a regression model that adjusted for age, recruitment site, ethnicity, education, employment status, and smoking, we observed a progressive inverse trend between primary SS and CES. The odds ratio (OR) and 95% confidence interval (95% CI) were as follows for the sicca control group: CES 1, OR 0.81 (95% CI 0.67-0.99); CES 2, OR 0.74 (95% CI 0.57-0.97); CES 3, OR 0.50 (95% CI 0.30-0.86). This trend was corroborated by analysis of CMC. At the highest level of CMC within the postmenopausal group there was a 24% reduction in cumulative sex hormone exposure among primary SS participants relative to controls. CONCLUSION Women with primary SS have lower estrogen exposure and CMC compared to sicca controls. Increasing estrogen exposure was negatively associated with development of primary SS. Further longitudinal studies of sex hormone exposure in primary SS are needed to confirm these findings.
Collapse
Affiliation(s)
- Sara S McCoy
- University of Wisconsin School of Medicine and Public Health, Madison
| | - Emmanuel Sampene
- University of Wisconsin School of Medicine and Public Health, Madison
| | - Alan N Baer
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Matsuda S, Kim JD, Sugiyama F, Matsuo Y, Ishida J, Murata K, Nakamura K, Namiki K, Sudo T, Kuwaki T, Hatano M, Tatsumi K, Fukamizu A, Kasuya Y. Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. Int J Mol Sci 2020; 21:E6746. [PMID: 32937976 PMCID: PMC7555042 DOI: 10.3390/ijms21186746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Yuji Matsuo
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Kazuya Murata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kanako Nakamura
- Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan;
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan;
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| |
Collapse
|
12
|
Lan X, Kumar V, Jha A, Aslam R, Wang H, Chen K, Yu Y, He W, Chen F, Luo H, Malhotra A, Singhal PC. EDA2R mediates podocyte injury in high glucose milieu. Biochimie 2020; 174:74-83. [PMID: 32304771 PMCID: PMC7282945 DOI: 10.1016/j.biochi.2020.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/05/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
Abstract
EDA2R is a member of the large family of tumor necrosis factor receptor (TNFR). Previous studies suggested that EDA2R expression might be increased in the kidneys of diabetic mice. However, its mRNA and protein expression in kidneys were not analyzed; moreover, its role in the development of diabetic kidney disease was not explored. Here we analyzed the mRNA and protein expressions of EDA2R in diabetic kidneys and examined its role in the podocyte injury in high glucose milieu. By analysis with real-time PCR, Western blotting, we found that both the mRNA and protein levels of EDA2R were increased in the kidneys of diabetic mice. Immunohistochemical studies revealed that EDA2R expression was enhanced in both glomerular and tubular cells of diabetic mice and humans. In vitro studies, high glucose increased EDA2R expression in cultured human podocytes. Overexpression of EDA2R in podocytes promoted podocyte apoptosis and decreased nephrin expression. Moreover, ED2AR increased ROS generation in podocytes, while inhibiting ROS generation attenuates EDA2R-mediated podocyte injury. In addition, EDA2R silencing partially suppressed high glucose-induced ROS generation, apoptosis, and nephrin decrease. Our study demonstrated that high glucose increases EDA2R expression in kidney cells and that EDA2R induces podocyte apoptosis and dedifferentiation in high glucose milieu partially through enhanced ROS generation.
Collapse
Affiliation(s)
- Xiqian Lan
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Alok Jha
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Haichao Wang
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yueming Yu
- Kunming Dongfang Hospital, Kunming, China
| | - Weimei He
- Kunming Dongfang Hospital, Kunming, China
| | - Feilan Chen
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing Medical University, Chongqing, China
| | - Huairong Luo
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.
| |
Collapse
|
13
|
Yang Y, Hou Y, Li J, Zhang F, Du Q. Characterization of antiapoptotic microRNAs in primary Sjögren's syndrome. Cell Biochem Funct 2020; 38:1111-1118. [PMID: 32575162 DOI: 10.1002/cbf.3569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/02/2023]
Abstract
During the development of primary Sjögren's syndrome (pSS), aberrant expression of autoantigen is a hallmark event. To explore the regulation of autoantigen tripartite motif containing 21 (Ro/SSA, TRIM21), microRNA profiling was performed in our previous study. In which, two TRIM21-targeting microRNAs were identified, namely miR-1207-5p and miR-4695-3p. To further pursue their roles in the development of pSS, assays were performed with cultured human submandibular gland (HSG) cells, and salivary gland tissues. Results showed that transfection of miR-1207-5p or miR-4695-3p mimics down-regulated not only the expression of TRIM21, but also the levels of pro-apoptotic genes B cell lymphoma 2 associated X (BAX), Caspase 9 (CASP-9) and Caspase 8 (CASP-8). This finally led to antiapoptotic phenotypes in HSG cells. Consistent with the antiapoptotic activity, transfection of microRNA inhibitors up-regulated the expression of TRIM21 and led to a pro-apoptotic phenotype. These therefore propose miR-1207-5p and miR-4695-3p as two antiapoptotic microRNAs functioning through apoptosis pathway. Supporting this speculation, assays performed with salivary gland tissues revealed down-regulation of miR-1207-5p and miR-4695-3p, as well as up-regulation of TRIM21 and pro-apoptotic CASP-8 gene in pSS samples. SIGNIFICANCE OF THE STUDY: For pSS patients, apoptosis of acinar and ductal epithelial cells has been proposed to be a potential mechanism that impairs the secretion of salivary glands. In our study, two autoantigen-targeting microRNAs were characterized as antiapoptotic microRNAs functioning through apoptosis pathway, which may be potential targets for the treatment of pSS.
Collapse
Affiliation(s)
- Ying Yang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingzi Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jinghui Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fangming Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Peng WX, Koirala P, Zhang W, Ni C, Wang Z, Yang L, Mo YY. RETRACTED: lncRNA RMST Enhances DNMT3 Expression through Interaction with HuR. Mol Ther 2020; 28:9-18. [PMID: 31636039 PMCID: PMC6953777 DOI: 10.1016/j.ymthe.2019.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editors and the corresponding author (Yin-Yuan Mo). Concerns regarding potentially duplicated western blots in Figures 2I and 3I were raised by readers on PubPeer (https://pubpeer.com/publications/64075911BAD21941D78C27FD3B8DB3#16), and the authors contacted the editorial office with the original blots to issue a correction. Following the correction of the article, the authors provided additional raw data to address further concerns raised by a reader. Given multiple inconsistencies in file labeling and post-acquisition processing, the editors have lost faith in the findings presented in the article. The retraction notice email was undeliverable to the following authors: Chao Ni, Pratirodh Koirala, Wei Zhang, and Wan-Xin Peng.
Collapse
Affiliation(s)
- Wan-Xin Peng
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pratirodh Koirala
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Wei Zhang
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China; Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China; Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
15
|
Yang L, Huang X, Wang W, Jiang T, Ding F. XEDAR inhibits the proliferation and induces apoptosis of gastric cancer cells by regulating JNK signaling pathway. Biosci Rep 2019; 39:BSR20192726. [PMID: 31829409 PMCID: PMC6928531 DOI: 10.1042/bsr20192726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
X-linked ectodermal dysplasia receptor (XEDAR) has been widely studied in epidermal morphogenesis, but few studies have been conducted on tumorigenesis and development, including gastric cancer. In the present research, we aimed to investigate the effect of XEDAR on gastric cancer and further explore the molecular mechanisms involved. The differential expression of XEDAR in 90 tissue specimens (30 gastric cancer tissues, 30 adjacent tissues and 30 normal tissues) was detected by real-time PCR (RT-PCR) and Western blot. Cell proliferation and apoptosis were explored using MTT and Annexin-V/propidium iodide (PI) assays, respectively. The results revealed that the expression of XEDAR was decreased in gastric cancer tissues and in gastric cancer cell lines, and its expression is regulated by p53 in BGC-823 cells. Furthermore, overexpression of XEDAR inhibited cell proliferation and induced apoptosis in BGC-823 cells. XEDAR moreover inhibited proliferation and induced apoptosis in gastric cancer cells by regulating the JNK signaling pathway. Collectively, the results of the present study suggested that XEDAR inhibits cell proliferation and induces apoptosis by participating in p53-mediated signaling pathway and inhibiting the downstream JNK signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000 Gansu, China
| | - Xiaojun Huang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000 Gansu, China
| | - Wei Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000 Gansu, China
| | - Tao Jiang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000 Gansu, China
| | - Feifei Ding
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000 Gansu, China
| |
Collapse
|
16
|
Kwack MH, Kim JC, Kim MK. Ectodysplasin-A2 induces apoptosis in cultured human hair follicle cells and promotes regression of hair follicles in mice. Biochem Biophys Res Commun 2019; 520:428-433. [PMID: 31607478 DOI: 10.1016/j.bbrc.2019.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Ectodysplasin is a ligand of the TNF family that plays a key role in ectodermal differentiation. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by the insertion of two amino acids and bind to two different receptors, ectodysplasin A receptor (EDAR) and ectodysplasin A2 receptor (EDA2R), respectively. Mutations of EDA-A1 and its receptor EDAR have been associated with hypohidrotic ecodermal dysplasia (HED). However, the role of EDA-A2 and the expression pattern of EDA2R in human hair follicles and in the mouse hair growth cycle have not been reported. In this study, we first investigated the expression of EDA2R in human hair follicles and in cultured follicular cells. EDA2R was strongly expressed in outer root sheath (ORS) cells and weakly expressed in dermal papilla (DP) cells. EDA-A2 induced the apoptosis of both ORS cells and DP cells via the activation of cleaved caspase-3. In addition, EDA2R was highly expressed in the late anagen phase compared with other phases in the hair growth cycle. Moreover, EDA-A2 induced apoptosis in cultured human hair follicle cells and in the mouse hair growth cycle, causing the premature onset of the catagen phase. Collectively, our results suggest that EDA-A2/EDA2R signaling could inhibit hair growth, and an inhibitor of EDA-A2/EDA2R signaling may be a promising agent for the treatment and prevention of hair loss.
Collapse
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Sun XL, Pang CY, Liu Y, Zhang W, Wang YF. Small Interfering RNA Targeting α-Fodrin Suppressing the Immune Response of Sjögren's Syndrome Mice. Chin Med J (Engl) 2018; 131:2752-2754. [PMID: 30084402 PMCID: PMC6247598 DOI: 10.4103/0366-6999.238761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xiao-Lin Sun
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| | - Chun-Yan Pang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| | - Yuan Liu
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| | - Wei Zhang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| | - Yong-Fu Wang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| |
Collapse
|
18
|
Kang Y, Sun Y, Zhang Y, Wang Z. Cytochrome c is important in apoptosis of labial glands in primary Sjogren's syndrome. Mol Med Rep 2017; 17:1993-1997. [PMID: 29257225 DOI: 10.3892/mmr.2017.8083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression and effect of cytochrome c (Cytc) in patients with primary Sjogren's syndrome (pSS). In total, 35 newly diagnosed pSS patients and 35 healthy subjects were enrolled in the present study. The mRNA expression levels of Cytc were detected using reverse transcription‑polymerase chain reaction and RT‑quantitative PCR. The expression of the Cytc protein in labial salivary glands was detected by immunohistochemistry and was associated with the integral optical density (IOD) of clinical and laboratory variables. In addition, the content of Cytc in the cytoplasm and mitochondria were examined. The mRNA and protein expression levels of Cytc, and the content of Cytc in the cytoplasm of the pSS patients was increased significantly compared with the healthy controls (P<0.05). The content of Cytc in the mitochondria was significantly decreased compared with the healthy controls (P<0.05). The IOD of Cytc protein levels was positively correlated with immunoglobin G (r=0.8142, P<0.05) and erythrocyte sedimentation rate (r=0.7512, P<0.05). Cytc was upregulated in the pSS patients, indicating the potential role of Cytc in the pathogenesis and development of pSS. Further studies may facilitate the development of targeting this molecular pathway for the treatment of pSS.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, The School of Stomatology, China Medical University and Liaoning Institute of Dental Research and Liaoning Province Key Laboratory of Oral Diseases and Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yan Sun
- Department of Emergency and Oral Medicine, The School of Stomatology, China Medical University and Liaoning Institute of Dental Research and Liaoning Province Key Laboratory of Oral Diseases and Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, The School of Stomatology, China Medical University and Liaoning Institute of Dental Research and Liaoning Province Key Laboratory of Oral Diseases and Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Zhe Wang
- Department of Pathology, The Second Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
Xu T, Xie W, Ma Y, Zhou S, Zhang L, Chen J, Cai M, Sun R, Zhang P, Yu S, Xu Z, Jiang W, Wu M. Leptin/OB-R pathway promotes IL-4 secretion from B lymphocytes and induces salivary gland epithelial cell apoptosis in Sjögren's syndrome. Oncotarget 2017; 8:63417-63429. [PMID: 28969001 PMCID: PMC5609933 DOI: 10.18632/oncotarget.18823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune epithelitis in which cell apoptosis promotes the formation of inflammatory lesions. We used immunohistochemistry and TUNEL to assay B cell infiltration and apoptosis in salivary gland tissue from 16-week-old NOD/LtJ mice with SjS. In co-cultures of primary salivary glandepithelial cells (SGECs) and spleen B cells, we assessed SGEC viability and apoptosis using CCK8 assays and flow cytometry. ELISAs were employed to assess cytokine levels in culture medium. Leptin protein, leptin receptor (OB-R), pro- and anti-apoptotic proteins, and Jak2/Stat3/ERK signaling molecules were analyzed using western blotting. B cell infiltration and salivary gland apoptosis were increased in salivary tissue from mice with SjS. Leptin treatment had no effect on cell viability or apoptosis among B cells and primary SGECs. B cell and SGEC co-culture systems showed that leptin increased apoptosis induced by B lymphocytes, reduced SGEC cell viability, and promoted IL-4 secretion from B cells. This suggests Leptin/OB-R signaling stimulates B cells-induced SGEC apoptosis via IL-4 secretion and OB-R-Jak2-Stat3 activation.
Collapse
Affiliation(s)
- Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Wen Xie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Yingchun Ma
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Shiliang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Lu Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Jinyun Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Mingyuan Cai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Rurong Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Peirong Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Shaobo Yu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Zheng Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, China
| |
Collapse
|