1
|
Jurva U, Sandinge AS, Baek JM, Avanthay M, Thomson RES, D'Cunha SA, Andersson S, Hayes MA, Gillam EMJ. Biocatalysis using Thermostable Cytochrome P450 Enzymes in Bacterial Membranes - Comparison of Metabolic Pathways with Human Liver Microsomes and Recombinant Human Enzymes. Drug Metab Dispos 2024; 52:242-251. [PMID: 38176735 DOI: 10.1124/dmd.123.001569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.
Collapse
Affiliation(s)
- Ulrik Jurva
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Ann-Sofie Sandinge
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Jong Min Baek
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Mickaël Avanthay
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Raine E S Thomson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Stephlina A D'Cunha
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Shalini Andersson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Elizabeth M J Gillam
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| |
Collapse
|
2
|
Gillam EMJ, Kramlinger VM. Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metab Dispos 2023; 51:392-402. [PMID: 36460479 DOI: 10.1124/dmd.121.000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
The study of drug metabolism is fundamental to drug discovery and development (DDD) since by mediating the clearance of most drugs, metabolic enzymes influence their bioavailability and duration of action. Biotransformation can also produce pharmacologically active or toxic products, which complicates the evaluation of the therapeutic benefit versus liability of potential drugs but also provides opportunities to explore the chemical space around a lead. The structures and relative abundance of metabolites are determined by the substrate and reaction specificity of biotransformation enzymes and their catalytic efficiency. Preclinical drug biotransformation studies are done to quantify in vitro intrinsic clearance to estimate likely in vivo pharmacokinetic parameters, to predict an appropriate dose, and to anticipate interindividual variability in response, including from drug-drug interactions. Such studies need to be done rapidly and cheaply, but native enzymes, especially in microsomes or hepatocytes, do not always produce the full complement of metabolites seen in extrahepatic tissues or preclinical test species. Furthermore, yields of metabolites are usually limiting. Engineered recombinant enzymes can make DDD more comprehensive and systematic. Additionally, as renewable, sustainable, and scalable resources, they can also be used for elegant chemoenzymatic, synthetic approaches to optimize or synthesize candidates as well as metabolites. Here, we will explore how these new tools can be used to enhance the speed and efficiency of DDD pipelines and provide a perspective on what will be possible in the future. The focus will be on cytochrome P450 enzymes to illustrate paradigms that can be extended in due course to other drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Protein engineering can generate enhanced versions of drug-metabolizing enzymes that are more stable, better suited to industrial conditions, and have altered catalytic activities, including catalyzing non-natural reactions on structurally complex lead candidates. When applied to drugs in development, libraries of engineered cytochrome P450 enzymes can accelerate the identification of active or toxic metabolites, help elucidate structure activity relationships, and, when combined with other synthetic approaches, provide access to novel structures by regio- and stereoselective functionalization of lead compounds.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| | - Valerie M Kramlinger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| |
Collapse
|
3
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Humphreys WG. Biosynthesis using cytochrome P450 enzymes: Focus on synthesis of drug metabolites. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:177-194. [PMID: 35953155 DOI: 10.1016/bs.apha.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While modern synthetic chemistry provides the ability to synthesize an incredible variety of new structures, the natural world provides unmatched chemical diversity. This diversity can be employed in the drug discovery process either through isolation of an organic molecule from a biological source as a drug candidate, usually referred to as natural product chemistry, or by providing enzymes that are capable to performing chemistry not available through synthetic chemistry approaches. Natural or engineered enzymes can be used in candidate discovery to generate chemical diversity in conjunction with synthetic efforts. As a candidate progresses into develop there is often a need to characterize metabolites, thus a need for metabolite standard synthesis. Metabolite synthesis is best accomplished with a flexible application of both chemical and biosynthetic approaches. This overview of the use of biosynthesis to aid in the drug discovery and development process will cover multiple methodologies with a focus on the use of microbes as a flexible and cost-effective resource.
Collapse
|
5
|
Zhao YQ, Liu YJ, Ji WT, Liu K, Gao B, Tao XY, Zhao M, Wang FQ, Wei DZ. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Microb Cell Fact 2022; 21:59. [PMID: 35397581 PMCID: PMC8994266 DOI: 10.1186/s12934-022-01786-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7β-hydroxylated steroids (7β-OHSt) possess significant activities in anti-inflammatory and neuroprotection, and some of them have been widely used in clinics. However, the production of 7β-OHSt is still a challenge due to the lack of cheap 7β-hydroxy precursor and the difficulty in regio- and stereo-selectively hydroxylation at the inert C7 site of steroids in industry. The conversion of phytosterols by Mycolicibacterium species to the commercial precursor, androst-4-ene-3,17-dione (AD), is one of the basic ways to produce different steroids. This study presents a way to produce a basic 7β-hydroxy precursor, 7β-hydroxyandrost-4-ene-3,17-dione (7β-OH-AD) in Mycolicibacterium, for 7β-OHSt synthesis. Results A mutant of P450-BM3, mP450-BM3, was mutated and engineered into an AD producing strain for the efficient production of 7β-OH-AD. The enzyme activity of mP450-BM3 was then increased by 1.38 times through protein engineering and the yield of 7β-OH-AD was increased from 34.24 mg L− 1 to 66.25 mg L− 1. To further enhance the performance of 7β-OH-AD producing strain, the regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) for the activity of mP450-BM3-0 was optimized by introducing an NAD kinase (NADK) and a glucose-6-phosphate dehydrogenase (G6PDH). Finally, the engineered strain could produce 164.52 mg L− 1 7β-OH-AD in the cofactor recycling and regeneration system. Conclusions This was the first report on the one-pot biosynthesis of 7β-OH-AD from the conversion of cheap phytosterols by an engineered microorganism, and the yield was significantly increased through the mutation of mP450-BM3 combined with overexpression of NADK and G6PDH. The present strategy may be developed as a basic industrial pathway for the commercial production of high value products from cheap raw materials. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01786-5.
Collapse
|
6
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
7
|
Srdič M, Fessner ND, Yildiz D, Glieder A, Spiertz M, Schwaneberg U. Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules 2022; 12:biom12020153. [PMID: 35204652 PMCID: PMC8961652 DOI: 10.3390/biom12020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their N- and O-containing derivatives (N-/O-PAHs) are environmental pollutants and synthetically attractive building blocks in pharmaceuticals. Functionalization of PAHs can be achieved via C-H activation by cytochrome P450 enzymes (e.g., P450 CYP3A4) in an environmentally friendly manner. Despite its broad substrate scope, the contribution of CYP3A4 to metabolize common PAHs in humans was found to be small. We recently showcased the potential of CYP3A4 in whole-cell biocatalysis with recombinant yeast Komagataella phaffii (Pichia pastoris) catalysts for the preparative-scale synthesis of naturally occurring metabolites in humans. In this study, we aimed at exploring the substrate scope of CYP3A4 towards (N-/O)-PAHs and conducted a bioconversion experiment at 10 L scale to validate the synthetic potential of CYP3A4 for the preparative-scale production of functionalized PAH metabolites. Hydroxylated products were purified and characterized using HPLC and NMR analysis. In total, 237 mg of fluorenol and 48 mg of fluorenone were produced from 498 mg of fluorene, with peak productivities of 27.7 μmol/L/h for fluorenol and 5.9 μmol/L/h for fluorenone; the latter confirmed that CYP3A4 is an excellent whole-cell biocatalyst for producing authentic human metabolites.
Collapse
Affiliation(s)
- Matic Srdič
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Deniz Yildiz
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Markus Spiertz
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| |
Collapse
|
8
|
Pereira RFS, de Carvalho CCCR. Optimization of Multiparameters for Increased Yields of Cytochrome B5 in Bioreactors. Molecules 2021; 26:4148. [PMID: 34299423 PMCID: PMC8306036 DOI: 10.3390/molecules26144148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
The production of recombinant proteins is gaining increasing importance as the market requests high quality proteins for several applications. However, several process parameters affect both the growth of cells and product yields. This study uses high throughput systems and statistical methods to assess the influence of fermentation conditions in lab-scale bioreactors. Using this methodology, it was possible to find the best conditions to produce cytochrome b5 with recombinant cells of Escherichia coli. Using partial least squares, the height-to-diameter ratio of the bioreactor, aeration rate, and PID controller parameters were found to contribute significantly to the final biomass and cytochrome concentrations. Hence, we could use this information to fine-tune the process parameters, which increased cytochrome production and yield several-fold. Using aeration of 1 vvm, a bioreactor with a height-to-ratio of 2.4 and tuned PID parameters, a production of 72.72 mg/L of cytochrome b5 in the culture media, and a maximum of product to biomass yield of 24.97 mg/g could be achieved.
Collapse
Affiliation(s)
- Ricardo F. S. Pereira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Schmitz LM, Hageneier F, Rosenthal K, Busche T, Brandt D, Kalinowski J, Lütz S. Recombinant expression and characterization of novel P450s from Actinosynnema mirum. Bioorg Med Chem 2021; 42:116241. [PMID: 34139548 DOI: 10.1016/j.bmc.2021.116241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are the major contributor in the metabolism of xenobiotics, including therapeutic agents. Thus, P450s find broad application in the pharmaceutical industry to synthesize metabolites of new active pharmaceutical ingredients in order to evaluate toxicity and pharmacokinetics. As an alternative to human hepatic P450s, microbial P450s offer several advantages, such as an easier and more efficient heterologous expression as well as higher stability under process conditions. Recently, the wild-type strain Actinosynnema mirum has been reported to catalyze hydroxylation reactions with high activity on a broad range of substrates. In this study, one of these substrates, ritonavir, was used to analyze the transcriptional response of the wild-type strain. Analysis of the differential gene expression pattern allowed the assignment of genes potentially responsible for ritonavir conversion. Heterologous expression of these candidates and activity testing led to the identification of a novel P450 that efficiently converts ritonavir resembling the activity of the human CYP3A4.
Collapse
Affiliation(s)
- Lisa Marie Schmitz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Felix Hageneier
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Tobias Busche
- Microbial Genomic and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - David Brandt
- Microbial Genomic and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomic and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
10
|
Garrigós-Martínez J, Weninger A, Montesinos-Seguí JL, Schmid C, Valero F, Rinnofner C, Glieder A, Garcia-Ortega X. Scalable production and application of Pichia pastoris whole cell catalysts expressing human cytochrome P450 2C9. Microb Cell Fact 2021; 20:90. [PMID: 33902608 PMCID: PMC8074423 DOI: 10.1186/s12934-021-01577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/07/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.
Collapse
Affiliation(s)
- Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Christian Schmid
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Claudia Rinnofner
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010, Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria.
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
11
|
Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116515. [PMID: 33493756 DOI: 10.1016/j.envpol.2021.116515] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Sludge generated at sewage treatment plants is of environmental concern due to the voluminous production and the presence of a high concentration of emerging contaminants (ECs). This review discusses the fate of ECs in sewage sludge treatment with an emphasis on fundamental mechanisms driving the degradation of compounds based on chemical properties of the contaminant and process operating conditions. The removal of ECs in sewage sludge through various treatment processes of sludge stabilization, such as anaerobic digestion (AD), composting, and pre-treatment methods (thermal, sonication, and oxidation) followed by AD, are discussed. Several transformation mechanisms and remediation strategies for the removal of ECs in sludge are summarized. The study concludes that pH, sludge type, and the types of functional groups are the key factors affecting the sorption of ECs to sludge. During conventional waste stabilization processes such as composting, the degradation of ECs depends on the type of feedstock (TOC, N, P, C/N, C/P) and the initial concentration of the contaminant. In AD, the degree of degradation depends on the hydrophilicity of the compound. The estrogenicity of the sludge may sometimes increase due to the conversion to estrogenic compounds. The pre-treatment techniques can increase the partitioning of ECs in the soluble fraction resulting in enhanced biodegradation up to 10-60%. However, the formation of by-products and loss of OH· to scavenging under high organic content during advanced oxidation processes can make the process uneconomical and require further research.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, 138602, Singapore
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
12
|
Awad G, Garnier A. Promising optimization of bacterial cytochrome P450BM3 enzyme production by engineered Escherichia coli BL21. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Strohmaier SJ, De Voss JJ, Jurva U, Andersson S, Gillam EMJ. Oxygen Surrogate Systems for Supporting Human Drug-Metabolizing Cytochrome P450 Enzymes. Drug Metab Dispos 2020; 48:432-437. [PMID: 32238418 DOI: 10.1124/dmd.120.090555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Oxygen surrogates (OSs) have been used to support cytochrome P450 (P450) enzymes for diverse purposes in drug metabolism research, including reaction phenotyping, mechanistic and inhibition studies, studies of redox partner interactions, and to avoid the need for NADPH or a redox partner. They also have been used in engineering P450s for more cost-effective, NADPH-independent biocatalysis. However, despite their broad application, little is known of the preference of individual P450s for different OSs or the substrate dependence of OS-supported activity. Furthermore, the biocatalytic potential of OSs other than cumene hydroperoxide (CuOOH) and hydrogen peroxide (H2O2) is yet to be explored. Here, we investigated the ability of the major human drug-metabolizing P450s, namely CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2, to use the following OSs: H2O2, tert-butyl hydroperoxide (tert-BuOOH), CuOOH, (diacetoxyiodo)benzene, and bis(trifluoroacetoxy)iodobenzene. Overall, CuOOH and tert-BuOOH were found to be the most effective at supporting these P450s. However, the ability of P450s to be supported by OSs effectively was also found to be highly dependent on the substrate used. This suggests that the choice of OS should be tailored to both the P450 and the substrate under investigation, underscoring the need to employ screening methods that reflect the activity toward the substrate of interest to the end application. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450) enzymes can be supported by different oxygen surrogates (OSs), avoiding the need for a redox partner and costly NADPH. However, few data exist comparing relative activity with different OSs and substrates. This study shows that the choice of OS used to support the major drug-metabolizing P450s influences their relative activity and regioselectivity in a substrate-specific fashion and provides a model for the more efficient use of P450s for metabolite biosynthesis.
Collapse
Affiliation(s)
- Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrik Jurva
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shalini Andersson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
14
|
Fessner ND, Srdič M, Weber H, Schmid C, Schönauer D, Schwaneberg U, Glieder A. Preparative‐Scale Production of Testosterone Metabolites by Human Liver Cytochrome P450 Enzyme 3A4. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| | - Matic Srdič
- SeSaM-Biotech GmbH Aachen Germany
- Bisy GmbH Hofstaetten Austria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI Graz Austria
| | - Christian Schmid
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Graz Austria
| | | | | | - Anton Glieder
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| |
Collapse
|
15
|
Mie Y, Yasutake Y, Takayama H, Tamura T. Electrochemically boosted cytochrome P450 reaction that efficiently produces 25-hydroxyvitamin D3. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
An Inexpensive, Efficient Alternative to NADPH to Support Catalysis by Thermostable Cytochrome P450 Enzymes. ChemCatChem 2020. [DOI: 10.1002/cctc.201902235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Production of metabolites of the anti-cancer drug noscapine using a P450 BM3 mutant library. ACTA ACUST UNITED AC 2019; 24:e00372. [PMID: 31516852 PMCID: PMC6728265 DOI: 10.1016/j.btre.2019.e00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
Abstract
Mutants of P450BM3 can metabolise noscapine. Noscapine is N-demethylated with high selectivity. The metabolites produced are of interest for drug development. The profile of metabolites generated resembles that of mammalian CYP3A4.
Cytochrome P450 enzymes are a promising tool for the late-stage diversification of lead drug candidates and can provide an alternative route to structural modifications that are difficult to achieve with synthetic chemistry. In this study, a library of P450BM3 mutants was produced using site-directed mutagenesis and the enzymes screened for metabolism of the opium poppy alkaloid noscapine, a drug with anticancer activity. Of the 18 enzyme mutants screened, 12 showed an ability to metabolise noscapine that was not present in the wild-type enzyme. Five noscapine metabolites were detected by LC-MS/MS, with the major metabolite for all mutants being N-demethylated noscapine. The highest observed regioselectivity for N-demethylation was 88%. Two hydroxylated metabolites, a catechol and two C-C cleavage products were also detected. P450-mediated production of hydroxylated and N-demethylated noscapine structures may be useful for the development of noscapine analogues with improved biological activity. The variation in substrate turnover, coupling efficiency and product distribution between the active mutants was considered alongside in silico docking experiments to gain insight into structural and functional effects of the introduced mutations. Selected mutants were identified as targets for further mutagenesis to improve activity and when coupled with an optimised process may provide a route for the preparative-scale production of noscapine metabolites.
Collapse
|
18
|
Klenk JM, Kontny LH, Escobedo-Hinojosa W, Nebel BA, Hauer B. Oxyfunctionalization of nonsteroidal anti-inflammatory drugs by filamentous-fungi. J Appl Microbiol 2019; 127:724-738. [PMID: 31173436 DOI: 10.1111/jam.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
AIMS We aimed to expand the microbial biocatalyst platform to generate essential oxyfunctionalized standards for pharmaceutical, toxicological and environmental research. In particular, we examined the production of oxyfunctionalized nonsteroidal anti-inflammatory drugs (NSAIDs) by filamentous-fungi. METHODS AND RESULTS Four NSAIDs; diclofenac, ibuprofen, naproxen and mefenamic acid were used as substrates for oxyfunctionalization in a biocatalytic process involving three filamentous-fungi strains; Beauveria bassiana, Clitocybe nebularis and Mucor hiemalis. Oxyfunctionalized metabolites that are major degradation intermediates formed by Cytochrome P450 monooxygenases in human metabolism were produced in isolated yields of up to 99% using 1 g l-1 of substrate. In addition, a novel compound, 3',4'-dihydroxydiclofenac, was produced by B. bassiana. Proteomic analysis identified CYP548A5 that might be responsible for diclofenac oxyfunctionalization in B. bassiana. CONCLUSIONS Efficient fungi catalysed oxyfunctionalization was achieved when using NSAIDs as substrates. High purities and isolated yields of the produced metabolites were achieved. SIGNIFICANCE AND IMPACT OF THE STUDY The lack of current efficient synthetic strategies for oxyfunctionalization of NSAIDs is a bottleneck to perform pharmacokinetic, pharmacodynamic and toxicological analysis for the pharmaceutical industry. Additionally, oxyfunctionalized derivatives are needed for tracking the fate and impact of such metabolites in the environment. Herein, we described a fungi catalysed process that surpasses previously reported strategies in terms of efficiency, to synthesize oxyfunctionalized NSAIDs.
Collapse
Affiliation(s)
- J M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - L H Kontny
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - W Escobedo-Hinojosa
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B A Nebel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
19
|
Rekka EA, Kourounakis PN, Pantelidou M. Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design. Curr Top Med Chem 2019; 19:276-291. [DOI: 10.2174/1568026619666190129122727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Background:
The biotransformation of xenobiotics is a homeostatic defensive response of the
body against bioactive invaders. Xenobiotic metabolizing enzymes, important for the metabolism,
elimination and detoxification of exogenous agents, are found in most tissues and organs and are distinguished
into phase I and phase II enzymes, as well as phase III transporters. The cytochrome P450 superfamily
of enzymes plays a major role in the biotransformation of most xenobiotics as well as in the
metabolism of important endogenous substrates such as steroids and fatty acids. The activity and the
potential toxicity of numerous drugs are strongly influenced by their biotransformation, mainly accomplished
by the cytochrome P450 enzymes, one of the most versatile enzyme systems.
Objective:
In this review, considering the importance of drug metabolising enzymes in health and disease,
some of our previous research results are presented, which, combined with newer findings, may
assist in the elucidation of xenobiotic metabolism and in the development of more efficient drugs.
Conclusion:
Study of drug metabolism is of major importance for the development of drugs and provides
insight into the control of human health. This review is an effort towards this direction and may
find useful applications in related medical interventions or help in the development of more efficient
drugs.
Collapse
Affiliation(s)
- Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Panos N. Kourounakis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| |
Collapse
|
20
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Human Enzymes for Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:13406-13423. [PMID: 29600541 PMCID: PMC6334177 DOI: 10.1002/anie.201800678] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Human enzymes have been widely studied in various disciplines. The number of reactions taking place in the human body is vast, and so is the number of potential catalysts for synthesis. Herein, we focus on the application of human enzymes that catalyze chemical reactions in course of the metabolism of drugs and xenobiotics. Some of these reactions have been explored on the preparative scale. The major field of application of human enzymes is currently drug development, where they are applied for the synthesis of drug metabolites.
Collapse
Affiliation(s)
- Margit Winkler
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- acib GmbHPetersgasse 148010GrazAustria
| | | | | | - Bernd Nidetzky
- acib GmbHPetersgasse 148010GrazAustria
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 128010GrazAustria
| | - Anton Glieder
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
21
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Humane Enzyme für die organische Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margit Winkler
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
- acib GmbH; Petersgasse 14 8010 Graz Österreich
| | | | | | - Bernd Nidetzky
- acib GmbH; Petersgasse 14 8010 Graz Österreich
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; Petersgasse 12 8010 Graz Österreich
| | - Anton Glieder
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
22
|
Hausjell J, Halbwirth H, Spadiut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep 2018; 38:BSR20171290. [PMID: 29436484 PMCID: PMC5835717 DOI: 10.1042/bsr20171290] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (P450s) comprise one of the largest known protein families. They occur in every kingdom of life and catalyze essential reactions, such as carbon source assimilation, synthesis of hormones and secondary metabolites, or degradation of xenobiotics. Due to their outstanding ability of specifically hydroxylating complex hydrocarbons, there is a great demand to use these enzymes for biocatalysis, including applications at an industrial scale. Thus, the recombinant production of these enzymes is intensively investigated. However, especially eukaryotic P450s are difficult to produce. Challenges are faced due to complex cofactor requirements and the availability of a redox-partner (cytochrome P450 reductase, CPR) can be a key element to get active P450s. Additionally, most eukaryotic P450s are membrane bound which complicates the recombinant production. This review describes current strategies for expression of P450s in the microbial cell factories Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris.
Collapse
Affiliation(s)
- Johanna Hausjell
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Heidi Halbwirth
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| |
Collapse
|
23
|
Beyer N, Kulig JK, Fraaije MW, Hayes MA, Janssen DB. Exploring PTDH-P450BM3 Variants for the Synthesis of Drug Metabolites. Chembiochem 2018; 19:326-337. [DOI: 10.1002/cbic.201700470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nina Beyer
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Justyna K. Kulig
- Cardiovascular and Metabolic Diseases; DMPK; Innovative Medicines and Early Development; AstraZeneca R&D Gothenburg; Pepparedsleden 1 43150 Mölndal Sweden
- Crop Science Division; Bayer AG; Alfred-Nobel-Strasse 50 40789 Monheim am Rhein Germany
| | - Marco W. Fraaije
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Martin A. Hayes
- Cardiovascular and Metabolic Diseases; DMPK; Innovative Medicines and Early Development; AstraZeneca R&D Gothenburg; Pepparedsleden 1 43150 Mölndal Sweden
| | - Dick B. Janssen
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
24
|
Zernia S, Frank R, Weiße RHJ, Jahnke HG, Bellmann-Sickert K, Prager A, Abel B, Sträter N, Robitzki A, Beck-Sickinger AG. Surface-Binding Peptide Facilitates Electricity-Driven NADPH-Free Cytochrome P450 Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201701810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sarah Zernia
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ronny Frank
- Center for Biotechnology and Biomedicine; Leipzig University; Deutscher Platz 5 04103 Leipzig Germany
| | - Renato H.-J. Weiße
- Center for Biotechnology and Biomedicine; Leipzig University; Deutscher Platz 5 04103 Leipzig Germany
| | - Heinz-Georg Jahnke
- Center for Biotechnology and Biomedicine; Leipzig University; Deutscher Platz 5 04103 Leipzig Germany
| | | | - Andrea Prager
- Leibniz Institute of Surface Modification, IOM; Permoserstraße 15 04318 Leipzig Germany
| | - Bernd Abel
- Leibniz Institute of Surface Modification, IOM; Permoserstraße 15 04318 Leipzig Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine; Leipzig University; Deutscher Platz 5 04103 Leipzig Germany
| | - Andrea Robitzki
- Center for Biotechnology and Biomedicine; Leipzig University; Deutscher Platz 5 04103 Leipzig Germany
| | | |
Collapse
|
25
|
Klenk JM, Nebel BA, Porter JL, Kulig JK, Hussain SA, Richter SM, Tavanti M, Turner NJ, Hayes MA, Hauer B, Flitsch SL. The self-sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5-hydroxylation of diclofenac. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600520] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/12/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jan M. Klenk
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Bernd A. Nebel
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Joanne L. Porter
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Justyna K. Kulig
- Cardiovascular and Metabolic Diseases DMPK; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
- Present address: Crop Science Division; Bayer AG; Monheim am Rhein Germany
| | - Shaneela A. Hussain
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Sven M. Richter
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Michele Tavanti
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Nicholas J. Turner
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Martin A. Hayes
- Cardiovascular and Metabolic Diseases DMPK; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
| | - Bernhard Hauer
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Sabine L. Flitsch
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| |
Collapse
|
26
|
O'Hanlon JA, Ren X, Morris M, Wong LL, Robertson J. Hydroxylation of anilides by engineered cytochrome P450BM3. Org Biomol Chem 2017; 15:8780-8787. [DOI: 10.1039/c7ob02236k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytochrome P450BM3mutants achieve selectivepara-hydroxylation of substitutedN-sulfonylanilines under mild conditions.
Collapse
Affiliation(s)
- Jack A. O'Hanlon
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| | - Xinkun Ren
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Melloney Morris
- Syngenta UK
- Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Luet Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Jeremy Robertson
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| |
Collapse
|
27
|
Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:104-116. [DOI: 10.1016/j.bbamem.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023]
|
28
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
29
|
Genovino J, Sames D, Hamann LG, Touré BB. Die Erschließung von Wirkstoffmetaboliten durch übergangsmetallkatalysierte C-H-Oxidation: die Leber als Inspiration für die Synthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Genovino
- Pfizer Inc.; Worldwide Medicinal Chemistry, Cardiovascular, Metabolic, and Endocrine Diseases (CVMED); 558 Eastern Point Road Groton CT 06340 USA
| | - Dalibor Sames
- Columbia University; Department of Chemistry and Neurotechnology Center; 3000 Broadway MC3101 New York NY 10027 USA
| | - Lawrence G. Hamann
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC); 181 Massachusetts Avenue Cambridge MA 02139 USA
| | - B. Barry Touré
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC); 100 Technology Square Cambridge MA 02139 USA
| |
Collapse
|
30
|
Genovino J, Sames D, Hamann LG, Touré BB. Accessing Drug Metabolites via Transition-Metal Catalyzed C-H Oxidation: The Liver as Synthetic Inspiration. Angew Chem Int Ed Engl 2016; 55:14218-14238. [PMID: 27723189 DOI: 10.1002/anie.201602644] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/08/2016] [Indexed: 11/07/2022]
Abstract
Can classical and modern chemical C-H oxidation reactions complement biotransformation in the synthesis of drug metabolites? We have surveyed the literature in an effort to try to answer this important question of major practical significance in the pharmaceutical industry. Drug metabolites are required throughout all phases of the drug discovery and development process; however, their synthesis is still an unsolved problem. This Review, not intended to be comprehensive or historical, highlights relevant applications of chemical C-H oxidation reactions, electrochemistry and microfluidic technologies to drug templates in order to access drug metabolites, and also highlights promising reactions to this end. Where possible or appropriate, the contrast with biotransformation is drawn. In doing so, we have tried to identify gaps where they exist in the hope to spur further activity in this very important research area.
Collapse
Affiliation(s)
- Julien Genovino
- Pfizer Inc., Worldwide Medicinal Chemistry, Cardiovascular, Metabolic, and Endocrine Diseases (CVMED), 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Dalibor Sames
- Columbia University, Department of Chemistry and Neurotechnology Center, 3000 Broadway MC3101, New York, NY, 10027, USA
| | - Lawrence G Hamann
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC), 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - B Barry Touré
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC), 100 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Kern F, Khatri Y, Litzenburger M, Bernhardt R. CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are Highly Versatile Drug Metabolizers. Drug Metab Dispos 2016; 44:495-504. [PMID: 26842594 DOI: 10.1124/dmd.115.068486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 02/13/2025] Open
Abstract
The guidelines of the Food and Drug Administration and International Conference on Harmonization have highlighted the importance of drug metabolites in clinical trials. As a result, an authentic source for their production is of great interest, both for their potential application as analytical standards and for required toxicological testing. Since we have previously shown promising biotechnological potential of cytochromes P450 from the soil bacterium Sorangium cellulosum So ce56, herein we investigated the CYP267 family and its application for the conversion of commercially available drugs including nonsteroidal anti-inflammatory, antitumor, and antihypotensive drugs. The CYP267 family, especially CYP267B1, revealed the interesting ability to convert a broad range of substrates. We established substrate-dependent extraction protocols and also optimized the reaction conditions for the in vitro experiments and Escherichia coli-based whole-cell bioconversions. We were able to detect activity of CYP267A1 toward seven out of 22 drugs and the ability of CYP267B1 to convert 14 out of 22 drugs. Moderate to high conversions (up to 85% yield) were observed in our established whole-cell system using CYP267B1 and expressing the autologous redox partners, ferredoxin 8 and ferredoxin-NADP(+) reductase B. With our existing setup, we present a system capable of producing reasonable quantities of the human drug metabolites 4'-hydroxydiclofenac, 2-hydroxyibuprofen, and omeprazole sulfone. Due to the great potential of converting a broad range of substrates, wild-type CYP267B1 offers a wide scope for the screening of further substrates, which will draw further attention to future biotechnological usage of CYP267B1 from S. cellulosum So ce56.
Collapse
Affiliation(s)
- Fredy Kern
- Department of Biochemistry, Saarland University, Saarbruecken, Germany
| | - Yogan Khatri
- Department of Biochemistry, Saarland University, Saarbruecken, Germany
| | | | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbruecken, Germany
| |
Collapse
|
32
|
Ferreira Antunes M, Eggimann FK, Kittelmann M, Lütz S, Hanlon SP, Wirz B, Bachler T, Winkler M. Human xanthine oxidase recombinant in E. coli: A whole cell catalyst for preparative drug metabolite synthesis. J Biotechnol 2016; 235:3-10. [PMID: 27021957 DOI: 10.1016/j.jbiotec.2016.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022]
Abstract
Human xanthine oxidoreductase (XOR), which is responsible for the final steps of the purine metabolism pathway and involved in oxidative drug metabolism, was successfully expressed in Escherichia coli BL21(DE3) Gold. Recombinant human (rh) XOR yielded higher productivity with the gene sequence optimized for expression in E.coli than with the native gene sequence. Induction of XOR expression with lactose or IPTG resulted in complete loss of activity whereas shake flasks cultures using media rather poor in nutrients resulted in functional XOR expression in the stationary phase. LB medium was used for a 25L fermentation in fed-batch mode, which led to a 5 fold increase of the enzyme productivity when compared to cultivation in shake flasks. Quinazoline was used as a substrate on the semi-preparative scale using an optimized whole cell biotransformation protocol, yielding 73mg of the isolated product, 4-quinazolinone, from 104mg of starting material.
Collapse
Affiliation(s)
- Márcia Ferreira Antunes
- Edifício da Unidade Piloto do IBET, Estação Agronómica Nacional, Avenida da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | - Beat Wirz
- F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Thorsten Bachler
- acib GmbH c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Margit Winkler
- acib GmbH c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| |
Collapse
|
33
|
Dziedzic K, Górecka D, Szwengiel A, Smoczyńska P, Czaczyk K, Komolka P. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Food Funct 2016; 6:1011-20. [PMID: 25677572 DOI: 10.1039/c4fo00946k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.
Collapse
Affiliation(s)
- Krzysztof Dziedzic
- Department of Food Service and Catering, Food Sciences and Nutrition, Poznań University of Life Sciences, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Quehl P, Hollender J, Schüürmann J, Brossette T, Maas R, Jose J. Co-expression of active human cytochrome P450 1A2 and cytochrome P450 reductase on the cell surface of Escherichia coli. Microb Cell Fact 2016; 15:26. [PMID: 26838175 PMCID: PMC4736170 DOI: 10.1186/s12934-016-0427-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background Human cytochrome P450 (CYP) enzymes mediate the first step in the breakdown of most drugs and are strongly involved in drug–drug interactions, drug clearance and activation of prodrugs. Their biocatalytic behavior is a key parameter during drug development which requires preparative synthesis of CYP related drug metabolites. However, recombinant expression of CYP enzymes is a challenging bottleneck for drug metabolite biosynthesis. Therefore, we developed a novel approach by displaying human cytochrome P450 1A2 (CYP1A2) and cytochrome P450 reductase (CPR) on the surface of Escherichia coli. Results To present human CYP1A2 and CPR on the surface, we employed autodisplay. Both enzymes were displayed on the surface which was demonstrated by protease and antibody accessibility tests. CPR activity was first confirmed with the protein substrate cytochrome c. Cells co-expressing CYP1A2 and CPR were capable of catalyzing the conversion of the known CYP1A2 substrates 7-ethoxyresorufin, phenacetin and the artificial substrate luciferin-MultiCYP, which would not have been possible without interaction of both enzymes. Biocatalytic activity was strongly influenced by the composition of the growth medium. Addition of 5-aminolevulinic acid was necessary to obtain a fully active whole cell biocatalyst and was superior to the addition of heme. Conclusion We demonstrated that CYP1A2 and CPR can be co-expressed catalytically active on the cell surface of E. coli. It is a promising step towards pharmaceutical applications such as the synthesis of drug metabolites. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0427-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Quehl
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany.
| | - Joel Hollender
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany. .,Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany.
| | - Jan Schüürmann
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany.
| | - Tatjana Brossette
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany.
| | - Ruth Maas
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
35
|
Ramesh H, Zajkoska P, Rebroš M, Woodley JM. The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. Enzyme Microb Technol 2015; 83:7-13. [PMID: 26777245 DOI: 10.1016/j.enzmictec.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell biocatalysis. The results are illustrated using a recombinant monoamine oxidase (expressed in Escherichia coli, used in resting state) for the oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. It was shown that the need for washing biocatalyst prior to use in a reaction is dependent upon growth medium. Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason for this improvement in activity was identified to be the increase in transfer of substrates across the cell membrane as a result of cell washing.
Collapse
Affiliation(s)
- Hemalata Ramesh
- Department of Chemical and Biochemical Engineering, Building 229, Søltofts Plads, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Petra Zajkoska
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Rebroš
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Building 229, Søltofts Plads, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
36
|
Reinen J, Vredenburg G, Klaering K, Vermeulen NP, Commandeur JN, Honing M, Vos JC. Selective whole-cell biosynthesis of the designer drug metabolites 15- or 16-betahydroxynorethisterone by engineered Cytochrome P450 BM3 mutants. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ren X, Yorke JA, Taylor E, Zhang T, Zhou W, Wong LL. Drug Oxidation by Cytochrome P450BM3 : Metabolite Synthesis and Discovering New P450 Reaction Types. Chemistry 2015; 21:15039-47. [PMID: 26311271 DOI: 10.1002/chem.201502020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022]
Abstract
There is intense interest in late-stage catalytic C-H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α-hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α-functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late-stage C-H activation catalysts.
Collapse
Affiliation(s)
- Xinkun Ren
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd., Oxford OX1 3QR (UK)
| | - Jake A Yorke
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd., Oxford OX1 3QR (UK)
| | - Emily Taylor
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd., Oxford OX1 3QR (UK)
| | - Ting Zhang
- College of Life Sciences and The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071 (P. R. China)
| | - Weihong Zhou
- College of Life Sciences and The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071 (P. R. China).
| | - Luet Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd., Oxford OX1 3QR (UK).
| |
Collapse
|
38
|
Poraj-Kobielska M, Peter S, Leonhardt S, Ullrich R, Scheibner K, Hofrichter M. Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Biochem J 2015; 467:1-15. [DOI: 10.1042/bj20141493] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 enzymes are renowned for their ability to insert oxygen into an enormous variety of compounds with a high degree of chemo- and regio-selectivity under mild conditions. This property has been exploited in Nature for an enormous variety of physiological functions, and representatives of this ancient enzyme family have been identified in all kingdoms of life. The catalytic versatility of P450s makes them well suited for repurposing for the synthesis of fine chemicals such as drugs. Although these enzymes have not evolved in Nature to perform the reactions required for modern chemical industries, many P450s show relaxed substrate specificity and exhibit some degree of activity towards non-natural substrates of relevance to applications such as drug development. Directed evolution and other protein engineering methods can be used to improve upon this low level of activity and convert these promiscuous generalist enzymes into specialists capable of mediating reactions of interest with exquisite regio- and stereo-selectivity. Although there are some notable successes in exploiting P450s from natural sources in metabolic engineering, and P450s have been proven repeatedly to be excellent material for engineering, there are few examples to date of practical application of engineered P450s. The purpose of the present review is to illustrate the progress that has been made in altering properties of P450s such as substrate range, cofactor preference and stability, and outline some of the remaining challenges that must be overcome for industrial application of these powerful biocatalysts.
Collapse
|
40
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
41
|
Drug metabolism in microorganisms. Biotechnol Lett 2014; 37:19-28. [DOI: 10.1007/s10529-014-1653-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
|
42
|
The use of immobilized cytochrome P4502C9 in PMMA-based plug flow bioreactors for the production of drug metabolites. Appl Biochem Biotechnol 2013; 172:1293-306. [PMID: 24166101 DOI: 10.1007/s12010-013-0537-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/15/2013] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly(methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: (1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and (2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process.
Collapse
|
43
|
Heterologous expression of CYP102A5 variant from Bacillus cereus CYPPB-1: Validation of model for predicting drug metabolism of human P450 probe substrates. Appl Microbiol Biotechnol 2013; 97:8107-19. [DOI: 10.1007/s00253-012-4654-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
|
44
|
Di Nardo G, Gilardi G. Optimization of the bacterial cytochrome P450 BM3 system for the production of human drug metabolites. Int J Mol Sci 2012; 13:15901-24. [PMID: 23443101 PMCID: PMC3546669 DOI: 10.3390/ijms131215901] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| |
Collapse
|
45
|
|
46
|
O'Reilly E, Aitken SJ, Grogan G, Kelly PP, Turner NJ, Flitsch SL. Regio- and stereoselective oxidation of unactivated C-H bonds with Rhodococcus rhodochrous. Beilstein J Org Chem 2012; 8:496-500. [PMID: 22509221 PMCID: PMC3326629 DOI: 10.3762/bjoc.8.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/22/2012] [Indexed: 11/30/2022] Open
Abstract
The ability of Rhodococcus rhodochrous (NCIMB 9703) to catalyse the regio- and stereoselective hydroxylation of a range of benzyloxy-substituted heterocycles has been investigated. Incubation of 2-benzyloxytetrahydropyrans with resting cell suspensions of the organism yielded predominantly a mixture of 5-hydroxylated isomers in combined yields of up to 40%. Exposure of the corresponding 2-benzyloxytetrahydrofuran derivatives to the cell suspensions gave predominantly the 4-hydroxylated isomers in yields of up to 26%. Most interestingly, 2-(4-nitrobenzyloxy)tetrahydrofuran and 2-(4-nitrobenzyloxy)tetrahydropyran were transformed in high yields to the 4-hydroxylated and 5-hydroxylated products, respectively.
Collapse
Affiliation(s)
- Elaine O'Reilly
- School of Chemistry, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7ND, UK, , Tel: +44 (0)161 3065172
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
48
|
Abstract
Microorganisms have been used for decades as sources of antibiotics, vitamins and enzymes and for the production of fermented foods and chemicals. In the 21st century microorganisms will play a vital role in addressing some of the problems faced by mankind. In this article three of the current applications in which microbes have a significant role to play are highlighted: the discovery of new antibiotics, manufacture of biofuels and bioplastics, and production of fine chemicals via biotransformation.
Collapse
Affiliation(s)
- Cormac D Murphy
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Ardmore House, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
49
|
Hunter D, Behrendorff J, Johnston W, Hayes P, Huang W, Bonn B, Hayes M, De Voss J, Gillam E. Facile production of minor metabolites for drug development using a CYP3A shuffled library. Metab Eng 2011; 13:682-93. [DOI: 10.1016/j.ymben.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/08/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
50
|
Rentmeister A, Brown TR, Snow CD, Carbone MN, Arnold FH. Engineered Bacterial Mimics of Human Drug Metabolizing Enzyme CYP2C9. ChemCatChem 2011. [DOI: 10.1002/cctc.201000452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|