1
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
2
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
3
|
Lehuedé L, Henríquez C, Carú C, Córdova A, Mendonça RT, Salazar O. Xylan extraction from hardwoods by alkaline pretreatment for xylooligosaccharide production: A detailed fractionation analysis. Carbohydr Polym 2023; 302:120381. [PMID: 36604059 DOI: 10.1016/j.carbpol.2022.120381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
In the last decades, the production of value-added products from lignocellulosic biomass (LCB) has gained relevance. Xylans, which are the main hemicellulose compounds in LCB, may be extracted by alkaline pretreatment and employed for xylooligosaccharide (XOS) production. However, xylan extraction currently works as a black box due to the lack of characterization of the involved streams. Therefore, the appropriate operational conditions often remain unclear, especially in hardwoods. In this study, alkaline/thermal pretreatments at different operational conditions were evaluated for xylan extractions from Chilean Nothofagus species sawdust, determining the chemical compositions of the fractions at each step of the process. Results indicated that increasing alkali concentration (NaOH) leads to a higher xylan extraction, but also to high salt production during the acid neutralization step, decreasing xylan's purity and therefore XOS production. In this context, decreasing NaOH concentration and neutralizing it by membrane filtration, allow extracting xylans (62.5 %) of higher-purity (77 %).
Collapse
Affiliation(s)
- Luciana Lehuedé
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago Zipcode 8370448, Chile.
| | - Constanza Henríquez
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago Zipcode 8370448, Chile.
| | - Claudia Carú
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago Zipcode 8370448, Chile
| | - Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso Zipcode 2360100, Chile.
| | - Regis Teixeira Mendonça
- Facultad de Ciencias Forestales and Centro de Biotecnología, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - Oriana Salazar
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago Zipcode 8370448, Chile.
| |
Collapse
|
4
|
Carrillo-Varela I, Vidal C, Vidaurre S, Parra C, Machuca Á, Briones R, Mendonça RT. Alkalization of Kraft Pulps from Pine and Eucalyptus and Its Effect on Enzymatic Saccharification and Viscosity Control of Cellulose. Polymers (Basel) 2022; 14:3127. [PMID: 35956642 PMCID: PMC9370887 DOI: 10.3390/polym14153127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bleached kraft pulps from eucalyptus and pine were subjected to cold caustic extraction (CCE) with NaOH (5, 10, 17.5, and 35%) for hemicelluloses removal and to increase cellulose accessibility. The effect of these changes was evaluated in enzymatic saccharification with the multicomponent Cellic CTec3 enzyme cocktail, and in viscosity reduction of pulps with the monocomponent Trichoderma reesei endoglucanase (EG). After CCE with 10% NaOH (CCE10) and 17.5% NaOH (CCE17.5), hemicellulose content lower than 1% was achieved in eucalyptus and pine pulps, respectively. At these concentrations, cellulose I started to be converted into cellulose II. NaOH concentrations higher than 17.5% decreased the intrinsic viscosity (from 730 to 420 mL/g in eucalyptus and from 510 to 410 mL/g in pine). Cellulose crystallinity was reduced from 60% to 44% in eucalyptus and from 71% to 44% in pine, as the NaOH concentration increased. Enzymatic multicomponent saccharification showed higher glucose yields in all CCE-treated eucalyptus samples (up to 93%) while only CCE17.5 and CCE35 pine pulps achieved 90% after 40 h of incubation. Untreated bleached pulps of both species presented saccharification yields lower than 70%. When monocomponent EG was used to treat the same pulps, depending on enzyme charge and incubation time, a wide range of intrinsic viscosity reduction was obtained (up to 74%). Results showed that eucalyptus pulps are more accessible and easier to hydrolyze by enzymes than pine pulps and that the conversion of cellulose I to cellulose II hydrate only has the effect of increasing saccharification of CCE pine samples. Viscosity reduction of CCE pulps and EG treated pulps were obtained in a wide range indicating that pulps presented characteristics suitable for cellulose derivatives production.
Collapse
Affiliation(s)
- Isabel Carrillo-Varela
- Centro de Investigación de Polímeros Avanzados, CIPA, Concepción 4030000, Chile; (I.C.-V.); (R.B.)
| | - Claudia Vidal
- Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile; (C.V.); (S.V.); (C.P.)
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Sebastián Vidaurre
- Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile; (C.V.); (S.V.); (C.P.)
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Carolina Parra
- Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile; (C.V.); (S.V.); (C.P.)
| | - Ángela Machuca
- Departamento de Ciencias y Tecnología Vegetal, Universidad de Concepción, Los Ángeles 4440000, Chile;
| | - Rodrigo Briones
- Centro de Investigación de Polímeros Avanzados, CIPA, Concepción 4030000, Chile; (I.C.-V.); (R.B.)
| | - Regis Teixeira Mendonça
- Centro de Investigación de Polímeros Avanzados, CIPA, Concepción 4030000, Chile; (I.C.-V.); (R.B.)
- Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile; (C.V.); (S.V.); (C.P.)
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
5
|
Umar A, Ahmed S. Optimization, purification and characterization of laccase from Ganoderma leucocontextum along with its phylogenetic relationship. Sci Rep 2022; 12:2416. [PMID: 35165332 PMCID: PMC8844424 DOI: 10.1038/s41598-022-06111-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.
Collapse
|
6
|
The Role of Eucalyptus Species on the Structural and Thermal Performance of Cellulose Nanocrystals (CNCs) Isolated by Acid Hydrolysis. Polymers (Basel) 2022; 14:polym14030423. [PMID: 35160413 PMCID: PMC8840396 DOI: 10.3390/polym14030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact of the incorporation of sulphate groups on the crystalline structure was committed, changes in the hydrophilicity and water retention ability or thermal stability were observed. These effects were also corroborated by the apparent activation energy during thermal decomposition obtained through kinetic analysis. Low-sulphated CNCs (E. benthamii) involved hints of a more crystalline structure along with less water retention ability, higher thermal stability, and greater average apparent activation energy (233 kJ·mol−1) during decomposition. Conversely, the high-sulphated species (E. globulus) involved higher reactivity during preparation that endorsed a little greater water retention ability and lower thermal stability, with subsequently less average apparent activation energy (185 kJ·mol−1). The E. smithii (212 kJ·mol−1) and En × Eg (196 kJ·mol−1) showed an intermediate behavior according to their sulphate index.
Collapse
|
7
|
Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113619. [PMID: 34467865 DOI: 10.1016/j.jenvman.2021.113619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Fei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yong-Jia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils. Polymers (Basel) 2021; 13:polym13193238. [PMID: 34641054 PMCID: PMC8512821 DOI: 10.3390/polym13193238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
The available research does not allow specific relationships to be established between the applied enzymatic-mechanical treatment, the degree of polymerization, and the characteristics of the cellulose nanofibrils (CNFs) produced. This work aims to establish specific relationships between the intensity of enzymatic treatment, the degree of polymerization of the cellulose, the morphology of CNFs, and the tensile strength of the CNF films. It is determined that the decrease in the degree of polymerization plays an essential role in the fibrillation processes of the cell wall to produce CNFs and that there is a linear relationship between the degree of polymerization and the length of CNFs, which is independent of the type of enzyme, enzyme charge, and intensity of the applied mechanical treatment. In addition, it is determined that the percentage of the decrease in the degree of polymerization of CNFs due to mechanical treatment is irrespective of the applied enzyme charge. Finally, it is shown that the aspect ratio is a good indicator of the efficiency of the fibrillation process, and is directly related to the mechanical properties of CNF films.
Collapse
|
9
|
Troncoso-Ortega E, Castillo RDP, Reyes-Contreras P, Castaño-Rivera P, Teixeira Mendonça R, Schiappacasse N, Parra C. Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules 2021; 11:biom11040507. [PMID: 33805256 PMCID: PMC8066282 DOI: 10.3390/biom11040507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.
Collapse
Affiliation(s)
- Eduardo Troncoso-Ortega
- Laboratorio de Recursos Renovables, Centro de Biotecnología, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile; (R.d.P.C.); (R.T.M.); (C.P.)
- ANID—Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860, Macul, Santiago 8320000, Chile
- Facultad de Ciencias Químicas, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence:
| | - Rosario del P. Castillo
- Laboratorio de Recursos Renovables, Centro de Biotecnología, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile; (R.d.P.C.); (R.T.M.); (C.P.)
- Facultad de Farmacia, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile
| | - Pablo Reyes-Contreras
- Centro de Excelencia en Nanotecnología (CEN), Leitat Chile, Santiago 8320000, Chile;
| | | | - Regis Teixeira Mendonça
- Laboratorio de Recursos Renovables, Centro de Biotecnología, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile; (R.d.P.C.); (R.T.M.); (C.P.)
- Facultad de Ciencias Forestales, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Carolina Parra
- Laboratorio de Recursos Renovables, Centro de Biotecnología, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile; (R.d.P.C.); (R.T.M.); (C.P.)
- ANID—Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860, Macul, Santiago 8320000, Chile
| |
Collapse
|
10
|
Synthetic dyes decolorization potential of agroindustrial waste-derived thermo-active laccase from Aspergillus species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Loureiro CB, Gasparotto JM, Rabuscke CM, Baldoni DB, Guedes JVC, Mazutti MA, Jacques RJS. PRODUCTION OF CELLULOLYTIC ENZYMES BY Gelatoporia subvermispora USING DIFFERENT SUBSTRATES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180352s20160575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Singh S. White-Rot Fungal Xylanases for Applications in Pulp and Paper Industry. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Torres-Farradá G, Manzano León AM, Rineau F, Ledo Alonso LL, Sánchez-López MI, Thijs S, Colpaert J, Ramos-Leal M, Guerra G, Vangronsveld J. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus Ganoderma: Applicable for Biodegradation of Xenobiotic Compounds? Front Microbiol 2017; 8:898. [PMID: 28588565 PMCID: PMC5440474 DOI: 10.3389/fmicb.2017.00898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains.
Collapse
Affiliation(s)
- Giselle Torres-Farradá
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Ana M Manzano León
- Department of Phytopathology, Research Institute for Tropical Fruit TreesHavana, Cuba
| | - François Rineau
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Lucía L Ledo Alonso
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - María I Sánchez-López
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Jan Colpaert
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Miguel Ramos-Leal
- Department of Phytopathology, Research Institute for Tropical Fruit TreesHavana, Cuba
| | - Gilda Guerra
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| |
Collapse
|
14
|
Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. ACTA ACUST UNITED AC 2017; 13:49-57. [PMID: 28352563 PMCID: PMC5361131 DOI: 10.1016/j.btre.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Actinomycetes represent an attractive source of ligninolytic enzymes. 43 actinomycetes were screened for laccase and peroxidase activities. The novel species N. gerenzanensis produces a valuable bacterial peroxidase activity. The dye-decolorizing activity paves the way for an industrial use of this peroxidase.
Degradation of lignin constitutes a key step in processing biomass to become useful monomers but it remains challenging. Compared to fungi, bacteria are much less characterized with respect to their lignin metabolism, although it is reported that many soil bacteria, especially actinomycetes, attack and solubilize lignin. In this work, we screened 43 filamentous actinomycetes by assaying their activity on chemically different substrates including a soluble and semi-degraded lignin derivative (known as alkali lignin or Kraft lignin), and we discovered a novel and valuable peroxidase activity produced by the recently classified actinomycete Nonomuraea gerenzanensis. Compared to known fungal manganese and versatile peroxidases, the stability of N. gerenzanensis peroxidase activity at alkaline pHs and its thermostability are significantly higher. From a kinetic point of view, N. gerenzanensis peroxidase activity shows a Km for H2O2 similar to that of Phanerochaete chrysosporium and Bjerkandera enzymes and a lower affinity for Mn2+, whereas it differs from the six Pleurotus ostreatus manganese peroxidase isoenzymes described in the literature. Additionally, N. gerenzanensis peroxidase shows a remarkable dye-decolorizing activity that expands its substrate range and paves the way for an industrial use of this enzyme. These results confirm that by exploring new bacterial diversity, we may be able to discover and exploit alternative biological tools putatively involved in lignin modification and degradation.
Collapse
Key Words
- 2,4-DCP, 2,4-dichlorophenol
- 2,6-DMP, 2,6-dimethoxyphenol
- ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- Alkali lignin
- DyP, dye decolorizing peroxidase
- Filamentous actinomycetes
- Kraft lignin
- LiP, lignin peroxidase
- MAM, mannitol agar medium
- MM-L, minimal salt medium plus lignin
- MnP, manganese peroxidase
- Nonomuraea gerenzanensis
- Peroxidases
- RB5, reactive black 5
- RBBR, remazol brilliant blue R
- VP, versatile peroxidase
Collapse
Affiliation(s)
- Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Fabio Tonin
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico of Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
15
|
Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E. Production of Ethanol from Lignocellulosic Biomass. PRODUCTION OF PLATFORM CHEMICALS FROM SUSTAINABLE RESOURCES 2017. [DOI: 10.1007/978-981-10-4172-3_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Abdel-Hamid AM, Solbiati JO, Cann IKO. Insights into lignin degradation and its potential industrial applications. ADVANCES IN APPLIED MICROBIOLOGY 2016; 82:1-28. [PMID: 23415151 DOI: 10.1016/b978-0-12-407679-2.00001-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides.
Collapse
Affiliation(s)
- Ahmed M Abdel-Hamid
- Energy Biosciences Institute, University of Illinois, IL, USA; Institute for Genomic Biology, University of Illinois, IL, USA
| | | | | |
Collapse
|
17
|
Kuhar F, Papinutti L. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers. Rev Argent Microbiol 2014; 46:144-9. [PMID: 25011599 DOI: 10.1016/s0325-7541(14)70063-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 04/30/2014] [Indexed: 10/25/2022] Open
Abstract
Ganoderma lucidum (Curtis) P. Karst is a white rot fungus that is able to degrade the lignin component in wood. The ability of two strains of this species to produce the ligninolytic enzyme laccase was assessed. After the evaluation of induction with heavy metals and phenolic compounds, it was found that among the tested substances, copper and ferulic acid are the best laccase inducers. It was also observed that the two types of inducers (phenolic and metallic) produce different electrophoretic patterns of laccase activity. Optimized concentrations of inducers were obtained through a factorial design and the thermal stability of optimized supernatants was studied at a wide range of acidic pH. We found that the enzyme is more thermostable at higher pH values.
Collapse
Affiliation(s)
- Francisco Kuhar
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina.
| | - Leandro Papinutti
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates. Fungal Genet Biol 2014; 72:106-114. [PMID: 24726546 DOI: 10.1016/j.fgb.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/24/2022]
Abstract
During several forays for ligninolytic fungi in different Spanish native forests, 35 white-rot basidiomycetes growing on dead wood (16 species from 12 genera) and leaf litter (19 species from 10 genera) were selected for their ability to decolorize two recalcitrant aromatic dyes (Reactive Blue 38 and Reactive Black 5) added to malt extract agar medium. In this study, two dye decolorization patterns were observed and correlated with two ecophysiological groups (wood and humus white-rot basidiomycetes) and three taxonomical groups (orders Polyporales, Hymenochaetales and Agaricales). Depending on the above groups, different decolorization zones were observed on the dye-containing plates, being restricted to the colony area or extending to the surrounding medium, which suggested two different decay strategies. These two strategies were related to the ability to secrete peroxidases and laccases inside (white-rot wood Polyporales, Hymenochaetales and Agaricales) and outside (white-rot humus Agaricales) of the fungal colony, as revealed by enzymatic tests performed directly on the agar plates. Similar oxidoreductases production patterns were observed when fungi were grown in the absence of dyes, although the set of enzyme released was different. All these results suggest that the decolorization patterns observed could be related with the existence of two decay strategies developed by white-rot basidiomycetes adapted to wood and leaf litter decay in the field.
Collapse
|
19
|
Saparrat MCN, Balatti PA, Arambarri AM, Martínez MJ. Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biotechnol 2014; 41:607-17. [DOI: 10.1007/s10295-014-1408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Abstract
Abstract
In the last two decades, a significant amount of work aimed at studying the ability of the white-rot fungus Coriolopsis rigida strain LPSC no. 232 to degrade lignin, sterols, as well as several hazardous pollutants like dyes and aliphatic and aromatic fractions of crude oil, including polycyclic aromatic hydrocarbons, has been performed. Additionally, C. rigida in association with arbuscular mycorrhizal fungi appears to enhance plant growth, albeit the physiological and molecular bases of this effect remain to be elucidated. C. rigida's ability to degrade lignin and lignin-related compounds and the capacity to transform the aromatic fraction of crude oil in the soil might be partially ascribed to its ligninolytic enzyme system. Two extracellular laccases are the only enzymatic components of its lignin-degrading system. We reviewed the most relevant findings regarding the activity and role of C. rigida LPSC no. 232 and its laccases and discussed the work that remains to be done in order to assess, more precisely, the potential use of this fungus and its extracellular enzymes as a model in several applied processes.
Collapse
Affiliation(s)
- Mario C N Saparrat
- grid.9499.d 0000000120973940 Instituto de Fisiología Vegetal (INFIVE) Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Diag. 113 y 61, CC 327 1900 La Plata Argentina
- grid.9499.d 0000000120973940 Facultad de Ciencias Naturales y Museo Instituto de Botánica Spegazzini, UNLP 53 # 477 1900 La Plata Argentina
- grid.9499.d 0000000120973940 Cátedra de Microbiología Agrícola Facultad de Ciencias Agrarias y Forestales, UNLP 60 y 119 1900 La Plata Argentina
| | - Pedro A Balatti
- grid.9499.d 0000000120973940 Cátedra de Microbiología Agrícola Facultad de Ciencias Agrarias y Forestales, UNLP 60 y 119 1900 La Plata Argentina
- grid.501763.6 0000 0004 1757 289X INFIVE, UNLP-CCT-La Plata-CONICET Diag. 113 y 61, CC 327 1900 La Plata Argentina
- grid.9499.d 0000 0001 2097 3940 Facultad de Ciencias Agrarias y Forestales Centro de Investigaciones de Fitopatología (CIDEFI), UNLP 60 y 119 1900 La Plata Argentina
| | - Angélica M Arambarri
- grid.9499.d 0000000120973940 Facultad de Ciencias Naturales y Museo Instituto de Botánica Spegazzini, UNLP 53 # 477 1900 La Plata Argentina
| | - María J Martínez
- grid.418281.6 0000000417940752 Centro de Investigaciones Biológicas, CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
20
|
Thakur S, Shrivastava B, Ingale S, Kuhad RC, Gupte A. Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3 Biotech 2013; 3:365-372. [PMID: 28324332 PMCID: PMC3781266 DOI: 10.1007/s13205-012-0102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/03/2012] [Indexed: 11/28/2022] Open
Abstract
Lignocelluloses from agricultural, industrial, and forest residues constitute a majority of the total biomass present in the world. Environmental concerns of disposal, costly pretreatment options prior to disposal, and increased need to save valuable resources have led to the development of value-added alternate technologies such as bioethanol production from lignocellulosic wastes. In the present study, biologically pretreated (with the fungus, Pleurotus ostreatus HP-1) and chemically pretreated (with mild acid or dilute alkali) wheat straw (WS) and banana stem (BS) were subsequently subjected to enzymatic saccharification (with mixture of 6.0 U/g of filter paper cellulase and 17 U/g of β-glucosidase) and were evaluated for bioethanol production using Saccharomyces cerevisiae NCIM 3570. Biological and chemical pretreatments removed up to 4.0–49.2 % lignin from the WS and BS which was comparatively higher than that for cellulose (0.3–12.4 %) and for hemicellulose (0.7–21.8 %) removal with an average 5.6–49.5 % dry matter loss. Enzymatic hydrolysis yielded 64–306.6 mg/g (1.5–15 g/L) reducing sugars from which 0.15–0.54 g/g ethanol was produced from Saccharomyces cerevisiae NCIM 3570.
Collapse
Affiliation(s)
- Shilpi Thakur
- Department of Microbiology, Natubhai V. Patel College of Pure and Applied Sciences, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Bhuvnesh Shrivastava
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Snehal Ingale
- Ashok and Rita Patel Institute of Integrated Study and Research in biotechnology and Allied Sciences, New Vallabh Vidyanagar, 388121, Gujarat, India
| | - Ramesh C Kuhad
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akshaya Gupte
- Department of Microbiology, Natubhai V. Patel College of Pure and Applied Sciences, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
21
|
Grandes-Blanco AI, Díaz-Godínez G, Téllez-Téllez M, Delgado-Macuil RJ, Rojas-López M, Bibbins-Martínez MD. LIGNINOLYTIC ACTIVITY PATTERNS OFPleurotus ostreatusOBTAINED BY SUBMERGED FERMENTATION IN PRESENCE OF 2,6-DIMETHOXYPHENOL AND REMAZOL BRILLIANT BLUE R DYE. Prep Biochem Biotechnol 2013; 43:468-80. [DOI: 10.1080/10826068.2012.746233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Biological Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. PRETREATMENT TECHNIQUES FOR BIOFUELS AND BIOREFINERIES 2013. [DOI: 10.1007/978-3-642-32735-3_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Si J, Peng F, Cui B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. BIORESOURCE TECHNOLOGY 2013. [PMID: 23196221 DOI: 10.1016/j.biortech.2012.10.085] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular laccase (Tplac) from Trametes pubescens was purified to homogeneity by a three-step method, which resulted in a high specific activity of 18.543 Umg(-1), 16.016-fold greater than that of crude enzyme at the same level. Tplac is a monomeric protein that has a molecular mass of 68 kDa. The enzyme demonstrated high activity toward 1.0mM ABTS at an optimum pH of 5.0 and temperature of 50 °C, and under these conditions, the catalytic efficiency (k(cat)/K(m)) is 8.34 s(-1) μM(-1). Tplac is highly stable and resistant under alkaline conditions, with pH values ranging from 7.0 to 10.0. Interestingly, above 88% of initial enzyme activity was maintained in the presence of metal ions at 25.0mM, leading to an increase in substrate affinity, which indicated that the laccase is highly metal-tolerant. These unusual properties demonstrated that the new fungal laccase Tplac has potentials for the specific industrial or environmental applications.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, China
| | | | | |
Collapse
|
24
|
Babič J, Likozar B, Pavko A. Optimization of ligninolytic enzyme activity and production rate with Ceriporiopsis subvermispora for application in bioremediation by varying submerged media composition and growth immobilization support. Int J Mol Sci 2012; 13:11365-11384. [PMID: 23109859 PMCID: PMC3472751 DOI: 10.3390/ijms130911365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/23/2012] [Accepted: 09/05/2012] [Indexed: 11/21/2022] Open
Abstract
Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L−1 and 16 U L−1 day−1 for laccase (Lac), and 193 U L−1 and 80 U L−1 day−1 for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L−1 for Lac and 58 U L−1 for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes.
Collapse
Affiliation(s)
- Janja Babič
- Chair of Chemical, Biochemical and Environmental Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia; E-Mail:
| | - Blaž Likozar
- Laboratory of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
| | - Aleksander Pavko
- Chair of Chemical, Biochemical and Environmental Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-1-24-19-506; Fax: +386-1-24-19-530
| |
Collapse
|
25
|
Zhou XW, Cong WR, Su KQ, Zhang YM. Ligninolytic enzymes fromGanodermaspp: Current status and potential applications. Crit Rev Microbiol 2012; 39:416-26. [DOI: 10.3109/1040841x.2012.722606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Martín-Sampedro R, Eugenio ME, Carbajo JM, Villar JC. Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping. BIORESOURCE TECHNOLOGY 2011; 102:7183-7189. [PMID: 21570827 DOI: 10.1016/j.biortech.2011.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
The effect of a pretreatment consisting of steam explosion (SE) followed by a laccase mediator system (LMS) stage on Eucalyptus globulus kraft pulping has been evaluated and compared with fungal pretreatments. Pretreatment with SE and LMS was more efficient than pretreatments using Pycnoporus sanguineus and Trametes sp. I-62. Steam explosion not only improved the enzyme penetration into the wood chips and shortened the pulping process by 60%, but also extracted around 50% of the hemicelluloses which could be converted into value-added products. The optimal conditions for the LMS treatment were 3h, 3UA/g and 40°C. Compared to SE, the SE/LMS treatment yielded an increase in delignification of 13.9% without affecting pulp properties, provided a similar screened kraft yield, and reduced consumption of chemical reagents Na(2)S and NaOH by 11.5% and 6.3%, respectively. Therefore, SE/LMS is a promising pretreatment for converting the pulp mill into a forest bio-refinery.
Collapse
Affiliation(s)
- R Martín-Sampedro
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Carretera de Coruña, km 7.5, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. J Ind Microbiol Biotechnol 2011; 38:1861-6. [PMID: 21523448 DOI: 10.1007/s10295-011-0975-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85-95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.
Collapse
|
28
|
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC 2011; 68:117-128. [DOI: 10.1016/j.molcatb.2010.11.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC. White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 2010; 22:823-31. [DOI: 10.1007/s10532-010-9408-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/13/2010] [Indexed: 11/30/2022]
|
30
|
Fissore A, Carrasco L, Reyes P, Rodríguez J, Freer J, Mendonça RT. Evaluation of a combined brown rot decay–chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. J Ind Microbiol Biotechnol 2010; 37:893-900. [DOI: 10.1007/s10295-010-0736-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
31
|
Fonseca MI, Shimizu E, Zapata PD, Villalba LL. Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme Microb Technol 2010; 46:534-9. [DOI: 10.1016/j.enzmictec.2009.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
|
32
|
Ligninolytic Fungal Laccases and Their Biotechnological Applications. Appl Biochem Biotechnol 2009; 160:1760-88. [DOI: 10.1007/s12010-009-8676-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|