1
|
Wang J, Zhu J, Li Y, Zhang S, Feng C. Evaluation and optimal width ratio selection of microbial mineralization technique in the repair of lining cracks in Xinjiang desert open channel. Sci Rep 2025; 15:16862. [PMID: 40374753 PMCID: PMC12081670 DOI: 10.1038/s41598-025-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
The bank slope structure of the open channel in the Xinjiang desert is affected by seasonal climate changes and water erosion, leading to lining cracking. This study identified the optimal culture conditions and mineralization factors for Sporosarcina pasteurii through strain cultivation and precipitation assays. Subsequently, 0.1~5.0 mm wide penetrating concrete cracks were prefabricated, and microbially induced calcium carbonate precipitation (MICP) repair tests were conducted over 16 cycles. These experiments included macroscopic performance evaluations, such as area repair rate, penetration resistance, and capillary water absorption tests, alongside microscopic analyses using X-ray diffraction and scanning electron microscopy. The results indicate that MICP technology effectively repairs narrow cracks, preserving crack surface integrity, significantly reducing permeability and water absorption, and enhancing the durability of the concrete. However, for cracks exceeding 1.0 mm in width, the repair efficiency declines progressively. Based on the experimental data, it is concluded that a crack width of 1.0 mm is the optimal threshold for effective MICP-based repair within 16 cycles, ensuring both structural integrity and optimal waterproofing. These results offer valuable insights into the potential application of MICP technology for the remediation of lining cracks in the bank slopes of water conveyance channels in Xinjiang Desert.
Collapse
Affiliation(s)
- Jianxin Wang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, 830052, China.
| | - Jianing Zhu
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yusheng Li
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shihao Zhang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Chengming Feng
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
2
|
Wilcox SM, Mulligan CN, Neculita CM. Mineral Carbonation for Carbon Sequestration: A Case for MCP and MICP. Int J Mol Sci 2025; 26:2230. [PMID: 40076853 PMCID: PMC11900583 DOI: 10.3390/ijms26052230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Mineral carbonation is a prominent method for carbon sequestration. Atmospheric carbon dioxide (CO2) is trapped as mineral carbonate precipitates, which are geochemically, geologically, and thermodynamically stable. Carbonate rocks can originate from biogenic or abiogenic origin, whereby the former refers to the breakdown of biofragments and the latter precipitation out of water. Carbonates can also be formed through biologically controlled mechanisms (BCMs), biologically mediated mechanisms (BMMs), and biologically induced mechanisms (BIMs). Microbial carbonate precipitation (MCP) is a BMM occurring through the interaction of organics (extracellular polymeric substances (EPS), cell wall, etc.) and soluble cations facilitating indirect precipitation of carbonate minerals. Microbially induced carbonate precipitation (MICP) is a BIM occurring via different metabolic pathways. Enzyme-driven pathways (carbonic anhydrase (CA) and/or urease), specifically, are promising for the high conversion to calcium carbonate (CaCO3) precipitation, trapping large quantities of gaseous CO2. These carbonate precipitates can trap CO2 via mineral trapping, solubility trapping, and formation trapping and aid in CO2 leakage reduction in geologic carbon sequestration. Additional experimental research is required to assess the feasibility of MICP for carbon sequestration at large scale for long-term stability of precipitates. Laboratory-scale evaluation can provide preliminary data on preferable metabolic pathways for different materials and their capacity for carbonate precipitation via atmospheric CO2 versus injected CO2.
Collapse
Affiliation(s)
- Samantha M. Wilcox
- Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC H3G IM8, Canada;
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC H3G IM8, Canada;
| | - Carmen Mihaela Neculita
- Research Institute on Mines and the Environment (RIME), University of Quebec in Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada;
| |
Collapse
|
3
|
Elgendy IM, Elkaliny NE, Saleh HM, Darwish GO, Almostafa MM, Metwally K, Yahya G, Mahmoud YAG. Bacteria-powered self-healing concrete: Breakthroughs, challenges, and future prospects. J Ind Microbiol Biotechnol 2024; 52:kuae051. [PMID: 39673695 PMCID: PMC11730074 DOI: 10.1093/jimb/kuae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
In a world where concrete structures face constant degradation from environmental forces, a revolutionary solution has emerged: bio-self-healing concrete. This innovation involves embedding dormant bacteria within the concrete mix, poised to spring into action when cracks form. As moisture seeps into the cracks, these bacterial agents are activated, consuming nutrients and converting them into calcium carbonate, a natural substance that fills and repairs the fractures, restoring the material's integrity. This fascinating process represents a cutting-edge approach to maintaining concrete infrastructure, turning once-vulnerable materials into self-sustaining systems capable of healing themselves. The ongoing research into bio-self-healing concrete is focused on selecting bacterial strains that can withstand the extreme conditions within concrete, including its highly alkaline environment. The bacteria must also form resilient spores, remaining viable until they are needed for repair. Additionally, the study explores various challenges associated with this technology, such as the cost of production, the bacteria's long-term viability, and their potential environmental impact. Advancements in genetic engineering and smart technology are being explored to enhance these bacterial strains, making them more efficient and robust in their role as microscopic repair agents. This review delves into the potential of bio-self-healing concrete to revolutionize how we approach infrastructure maintenance, offering a glimpse into a future where concrete structures not only endure but actively repair themselves, extending their lifespan and reducing the need for costly repairs. ONE-SENTENCE SUMMARY Bio-self-healing concrete utilizes bacteria that activate upon crack formation to repair structures by producing calcium carbonate, offering a sustainable solution to prolong the lifespan of concrete infrastructure.
Collapse
Affiliation(s)
- Ibrahim M Elgendy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hoda M Saleh
- Biotechnology Department, Faculty of Agriculture, Ain shams university, Ain Shams 11241, Egypt
| | - Gehad O Darwish
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yehia A -G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Zhu J, Wei R, Peng J, Dai D. Improvement Schemes for Bacteria in MICP: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5420. [PMID: 39597243 PMCID: PMC11595289 DOI: 10.3390/ma17225420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Biomineralization is a common phenomenon in nature, and the use of microbial-induced calcium carbonate precipitation (MICP) technology for engineering construction is a successful attempt to utilize natural biological phenomena, which has become a hot topic of current research. There are many factors affecting MICP, such as bacterial properties and external environmental factors. Many scholars have carried out a lot of research on these factors, but even under appropriate conditions, the MICP process still has the problem of low efficiency. According to different engineering, the tolerance and effect of bacteria in different environments are also different. At the same time, the cultivation and preservation of bacteria will also consume a large amount of raw materials, which is far more significant than the cost of engineering construction. The efficiency and cost limit the large-scale application of this technology in practical engineering. In response to these problems, researchers are exploring new ways to improve the efficiency of MICP technology. Based on the bacteria used in MICP, this paper explores the mechanism of bacteria in the process of MICP and reviews the improvement of bacteria from the perspective of efficiency improvement and economy.
Collapse
Affiliation(s)
- Jin Zhu
- School of Civil Engineering, Wanjiang University of Technology, Maanshan 243031, China;
| | - Renjie Wei
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China;
| | - Jie Peng
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China;
| | - Di Dai
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China;
- College of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
5
|
Shin S, Lee Y, Kim MJ. Oyster shell based indirect carbonation integrated with probiotic encapsulation. Sci Rep 2024; 14:24709. [PMID: 39433771 PMCID: PMC11494112 DOI: 10.1038/s41598-024-72976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Beskopylny AN, Shcherban' EM, Stel'makh SA, Shilov AA, Chernil'nik A, El'shaeva D, Chistyakov VA. Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete). MATERIALS (BASEL, SWITZERLAND) 2024; 17:4508. [PMID: 39336249 PMCID: PMC11433433 DOI: 10.3390/ma17184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The relatively small tensile strength of concrete makes this material particularly vulnerable to cracking. However, the reality is that it is not always possible and practically useful to conduct studies on high-quality sealing cracks due to their inaccessibility or small opening width. Despite the fact that currently there are many technologies for creating self-healing cement composites, one of the most popular is the technology for creating a biologically active self-healing mechanism for concrete. It is based on the process of carbonate ion production by cellular respiration or urease enzymes by bacteria, which results in the precipitation of calcium carbonate in concrete. This technology is environmentally friendly and promising from a scientific and practical point of view. This research focuses on the technology of creating autonomous self-healing concrete using a biological crack-healing mechanism. The research methodology consisted of four main stages, including an analysis of the already conducted global studies, ecological and economic analysis, the prospects and advantages of further studies, as well as a discussion and the conclusions. A total of 257 works from about 10 global databases were analyzed. An overview of the physical, mechanical and operational properties of bioconcrete and their changes is presented, depending on the type of active bacteria and the method of their introduction into the concrete mixture. An analysis of the influence of the automatic addition of various types of bacteria on various properties of self-healing bioconcrete is carried out, and an assessment of the influence of the method of adding bacteria to concrete on the process of crack healing is also given. A comparative analysis of various techniques for creating self-healing bioconcrete was performed from the point of view of technical progress, scientific potential, the methods of application of this technology, and their resulting advantages, considered as the factor impacting on strength and life cycle. The main conditions for a quantitative assessment of the sustainability and the possibility of the industrial implementation of the technology of self-healing bioconcrete are identified and presented. Various techniques aimed at improving the recovery process of such materials are considered. An assessment of the influence of the strength of cement mortar after adding bacteria to it is also given. Images obtained using electron microscopy methods are analyzed in relation to the life cycle of bacteria in mineral deposits of microbiological origin. Current gaps and future research prospects are discussed.
Collapse
Affiliation(s)
- Alexey N Beskopylny
- Department of Transport Systems, Faculty of Roads and Transport Systems, Don State Technical University, 344003 Rostov-on-Don, Russia
| | - Evgenii M Shcherban'
- Department of Engineering Geometry and Computer Graphics, Don State Technical University, 344003 Rostov-on-Don, Russia
| | - Sergey A Stel'makh
- Department of Unique Buildings and Constructions Engineering, Don State Technical University, Gagarin Sq. 1, 344003 Rostov-on-Don, Russia
| | - Alexandr A Shilov
- Department of Unique Buildings and Constructions Engineering, Don State Technical University, Gagarin Sq. 1, 344003 Rostov-on-Don, Russia
| | - Andrei Chernil'nik
- Department of Unique Buildings and Constructions Engineering, Don State Technical University, Gagarin Sq. 1, 344003 Rostov-on-Don, Russia
| | - Diana El'shaeva
- Department of Unique Buildings and Constructions Engineering, Don State Technical University, Gagarin Sq. 1, 344003 Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Sq. 1, 344003 Rostov-on-Don, Russia
- Laboratory of Mechanics of Multicomponent and Multiphase Media, Peter the Great St. Petersburg Polytechnic University (SPbPU), 195251 St. Peterburg, Russia
- D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, Stachky 194/1, 344090 Rostov-on-Don, Russia
| |
Collapse
|
7
|
Hu X, He B, Liu Y, Ma S, Yu C. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172170. [PMID: 38575034 DOI: 10.1016/j.scitotenv.2024.172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Soil heavy metal contamination is an essential challenge in ecological and environmental management, especially for acidic soils. Microbially induced carbonate precipitation (MICP) is an effective and environmentally friendly remediation technology for heavy metal contaminated sites, and one of the key factors for its realization lies in the microorganisms. In this study, Lysinibacillus capsici TSBLM was isolated from heavy metal contaminated soil around a gold mine, and inferred to be a novel ureolytic bacteria after phylogenomic inference and genome characterization. The urease of L. capsici TSBLM was analyzed by genetic analysis and molecular docking, and further applied this bacteria to the remediation of Cu and Pb in solution and acidic soils to investigate its biomineralization mechanism and practical application. The results revealed L. capsici TSBLM possessed a comprehensive urease gene cluster ureABCEFGD, and the encoded urease docked with urea at the lowest binding energy site (ΔG = -3.43 kcal/mol) connected to three amino acids threonine, aspartic, and alanine. The urease of L. capsici TSBLM is synthesized intracellularly but mainly functions extracellularly. L. capsici TSBLM removes Cu/Pb from the solution by generating heavy metal carbonates or co-precipitating with CaCO3 vaterite. For acidic heavy metal-contaminated soil, the carbonate-bound states of Cu and Pb increased significantly from 7 % to 16 % and from 23 % to 35 % after 30 days by L. capsici TSBLM. Soil pH improved additionally. L. capsici TSBLM maintained the dominant status in the remediated soil after 30 days, demonstrating good environmental adaptability and curing persistence. The results provided new strain resources and practical application references for the remediation of acidic heavy metal contaminated soil based on MICP.
Collapse
Affiliation(s)
- Xuesong Hu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Banghua He
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Yingchao Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China.
| |
Collapse
|
8
|
White-Pettigrew M, Shaw S, Hughes L, Boothman C, Graham J, Abrahamsen-Mills L, Morris K, Lloyd JR. Enhanced Strontium Removal through Microbially Induced Carbonate Precipitation by Indigenous Ureolytic Bacteria. ACS EARTH & SPACE CHEMISTRY 2024; 8:483-498. [PMID: 38533191 PMCID: PMC10961847 DOI: 10.1021/acsearthspacechem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 03/28/2024]
Abstract
Microbial ureolysis offers the potential to remove metals including Sr2+ as carbonate minerals via the generation of alkalinity coupled to NH4+ and HCO3- production. Here, we investigated the potential for bacteria, indigenous to sediments representative of the U.K. Sellafield nuclear site where 90Sr is present as a groundwater contaminant, to utilize urea in order to target Sr2+-associated (Ca)CO3 formation in sediment microcosm studies. Strontium removal was enhanced in most sediments in the presence of urea only, coinciding with a significant pH increase. Adding the biostimulation agents acetate/lactate, Fe(III), and yeast extract to further enhance microbial metabolism, including ureolysis, enhanced ureolysis and increased Sr and Ca removal. Environmental scanning electron microscopy analyses suggested that coprecipitation of Ca and Sr occurred, with evidence of Sr associated with calcium carbonate polymorphs. Sr K-edge X-ray absorption spectroscopy analysis was conducted on authentic Sellafield sediments stimulated with Fe(III) and quarry outcrop sediments amended with yeast extract. Spectra from the treated Sellafield and quarry sediments showed Sr2+ local coordination environments indicative of incorporation into calcite and vaterite crystal structures, respectively. 16S rRNA gene analysis identified ureolytic bacteria of the genus Sporosarcina in these incubations, suggesting they have a key role in enhancing strontium removal. The onset of ureolysis also appeared to enhance the microbial reduction of Fe(III), potentially via a tight coupling between Fe(III) and NH4+ as an electron donor for metal reduction. This suggests ureolysis may support the immobilization of 90Sr via coprecipitation with insoluble calcium carbonate and cofacilitate reductive precipitation of certain redox active radionuclides, e.g., uranium.
Collapse
Affiliation(s)
- Matthew White-Pettigrew
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
- National
Nuclear Laboratory, Warrington, Cheshire WA3 6AE, United Kingdom
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Lewis Hughes
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Boothman
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - James Graham
- National
Nuclear Laboratory, Warrington, Cheshire WA3 6AE, United Kingdom
| | | | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jonathan R. Lloyd
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
Sharma B, Sharma S, Medicherla KM, Reddy SM. Genome Sequence Analysis of Calcifying Bacteria Bacillus paranthracis CT5 and Its Biomineralization Efficacy to Improve the Strength and Durability Properties of Civil Structures. Curr Microbiol 2024; 81:109. [PMID: 38466427 DOI: 10.1007/s00284-024-03625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Bacteria producing urea amidohydrolases (UA) and carbonic anhydrases (CA) are of great importance in civil engineering as these enzymes are responsible for microbially induced calcium carbonate precipitation (MICCP). In this investigation, genomic insights of Bacillus paranthracis CT5 and the expression of genes underlying in MICCP were studied. B. paranthracis produced a maximum level of UA (669.3 U/ml) and CA (125 U/ml) on 5th day of incubation and precipitated 197 mg/100 ml CaCO3 after 7 days of incubation. After 28 days of curing, compressive strength of bacterial admixed and bacterial cured (B-B) specimens was 13.7% higher compared to water-mixed and water-cured (W-W) specimens. A significant decrease in water absorption was observed in bacterial-cured specimens compared to water-cured specimens after 28 days of curing. For genome analysis, reads were assembled de novo producing 5,402,771 bp assembly with N50 of 273,050 bp. RAST annotation detected six amidohydrolase and three carbonic anhydrase genes. Among 5700 coding sequences found in genome, COG gene annotation grouped 4360 genes into COG categories with highest number of genes to transcription (435 genes), amino acid transport and metabolism (362 genes) along with cell wall/membrane/envelope biogenesis and ion transport and metabolism. KEGG functional classification predicted 223 pathways consisting of 1,960 genes and the highest number of genes belongs to two-component system (101 genes) and ABC transporter pathways (98 genes) enabling bacteria to sense and respond to environmental signals and actively transport various minerals and organic molecules, which facilitate the active transport of molecules required for MICCP.
Collapse
Affiliation(s)
- Bhavdeep Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - Shruti Sharma
- Department of Civil Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | | | - Sudhakara M Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
10
|
Natalio F, Maria R. Microbial Biomineralization of Alkaline Earth Metal Carbonates on 3D-Printed Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6327-6336. [PMID: 38205804 PMCID: PMC10859896 DOI: 10.1021/acsami.3c13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The biomineralizing bacterium Sporosarcina pasteurii has attracted considerable interest in the area of geotechnical engineering due to its ability to induce extracellular mineralization. The presented study investigated S. pasteurii's potential to induce the mineralization of alkali-earth metal carbonate coatings on different polymeric 3D-printed flat surfaces fabricated by different additive manufacturing methods. The use of calcium, barium, strontium, or magnesium ions as the source resulted in the formation of vaterite (CaCO3), witherite (BaCO3), strontianite (SrCO3), and nesquehonite MgCO3·3H2O, respectively. These mineral coatings generally exhibit a compact, yet variable, thickness and are composed of agglomerated microparticles similar to those formed in solution. However, the mechanism behind this clustering remains unclear. The thermal properties of these biologically induced mineral coatings differ from their inorganic counterpart, highlighting the unique characteristics imparted by the biomineralization process. This work seeks to capitalize on the bacterium S. pasteurii's ability to form an alkali-earth metal carbonate coating to expand beyond its traditional use in geoengineering applications. It lays the ground for a novel integration of biologically induced mineralization of single or multilayered and multifunctional coating materials, for example, aerospace applications.
Collapse
Affiliation(s)
- Filipe Natalio
- Department
of Plant and Environmental Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Raquel Maria
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
11
|
Kosma EB, Manav-Demir N, Civelek-Yoruklu H, Ozkaya B. Enrichment, characterization, and sand consolidation application of urease active calcite-producing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2466-2480. [PMID: 38066275 DOI: 10.1007/s11356-023-31332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Minerals such as calcium carbonate, which is prevalent in marble and limestone, are present naturally in rocks. Both physicochemical processes and microbial processes can result in the creation of calcium carbonate in nature, as is well documented. In this study, microbiologically induced calcite precipitation potential of three different Travertine-type water sources (Pamukkale Travertine Spring (PTS), Pamukkale Travertine Terraces (PTT), and Red Travertine of Karahayit (RTK)) using three different incubation media (NB, NB3, and ATCC1832) were investigated. After enrichment with ATCC1832 media, urease assays were positive for all of the microbial sources. The PTS and PTT were cultured with ATCC1832 medium for 48 h, which showed the best results for urease activity and microbial growth among other samples. Metagenome analyses indicated that PTT enriched with ATCC1832 media contains > 99% Firmicutes, while PTS enriched with ATCC1832 contains > 99% Proteobacteria at the Phylum level. Results from SEM-EDX and XRD analysis revealed that calcite and/or vaterite were the minerals that emerged from the mineralization of the PTS and PTT during incubation. The type of calcium carbonate crystals tended to change from one form to another when the incubation period extends from 72 to 120 h. Both the PTS and the PTT were able to precipitate calcite within the sand column. However, the bacteria from the PTT (26% CaCO3) outperformed those from the PTS (18% CaCO3) in terms of calcium carbonate deposition on the 21st day of incubation.
Collapse
Affiliation(s)
- Elvan Burcu Kosma
- Faculty of Science, Energy Science and Technology Department, Turkish-German University, 34820, Istanbul, Turkey.
- Environmental Engineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Neslihan Manav-Demir
- Environmental Engineering Department, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Hulya Civelek-Yoruklu
- Environmental Engineering Department, Yildiz Technical University, 34220, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Environmental Engineering, Tampere University, 33720, Tampere, Finland
| | - Bestami Ozkaya
- Environmental Engineering Department, Yildiz Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
12
|
Vaskevicius L, Malunavicius V, Jankunec M, Lastauskiene E, Talaikis M, Mikoliunaite L, Maneikis A, Gudiukaite R. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. ENVIRONMENTAL RESEARCH 2023; 234:116588. [PMID: 37423368 DOI: 10.1016/j.envres.2023.116588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.
Collapse
Affiliation(s)
- Laurynas Vaskevicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Egle Lastauskiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Martynas Talaikis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekis Av. 3, LT-10257, Vilnius, Lithuania
| | - Andrius Maneikis
- Vilnius Gediminas Technical University, Sauletekis Av. 11, LT-10223, Vilnius, Lithuania
| | - Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
13
|
Aqsa, Qurashi AW, Moqaddes S. Microbial bio-film calcite mediated removal of heavy metals from industrial wastewater of Kasur, Pakistan. J Basic Microbiol 2023; 63:986-995. [PMID: 37404052 DOI: 10.1002/jobm.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Heavy metals in the industrial wastewater are an area of great concern as act as source of bioaccumulation in edible plants and posing a major health risk to humans like cancers. This study was planned by exploiting the bio-film producing microbes that have the potential to remediate heavy metals by calcite mediated removal from industrial wastewater. Samples (n = 10) from a marble factory wastewater were collected. Samples were serially diluted and were spread on nutrient agar media supplemented with 2% urea and 0.28 g calcium chloride. All the isolates were observed for colony morphology, gram staining, and spore staining, for biochemical profile and for their efficacy in producing calcium carbonate crystals. All isolates showed cell densities at varying metal (chromium) concentrations ranging from 100 to 500 µg/mL. Determination of biofilm formation is performed by recording Optical density (OD = 600 nm). Normalized biofilm (570/600 nm) was formed. Different concentrations of chromium were used to measure their reduction ability and also by using tannery water. In tannery wastewater, significant reduction was recorded (p = 0.05) by AS4 bacterial isolate as compared to rest of the isolates and treatments. It showed remarkable chromium VI reduction ability.
Collapse
Affiliation(s)
- Aqsa
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Aisha W Qurashi
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Sidra Moqaddes
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| |
Collapse
|
14
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
15
|
Budamagunta V, Shameem N, Irusappan S, Parray JA, Thomas M, Marimuthu S, Kirubakaran R, Arul Jothi KN, Sayyed RZ, Show PL. Nanovesicle and extracellular polymeric substance synthesis from the remediation of heavy metal ions from soil. ENVIRONMENTAL RESEARCH 2023; 219:114997. [PMID: 36529326 DOI: 10.1016/j.envres.2022.114997] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal toxicity affects aquatic plants and animals, disturbing biodiversity and ecological balance causing bioaccumulation of heavy metals. Industrialization and urbanization are inevitable in modern-day life, and control and detoxification methods need to be accorded to meet the hazardous environment. Microorganisms and plants have been widely used in the bioremediation of heavy metals. Sporosarcina pasteurii, a gram-positive bacterium that is widely known for its calcite precipitation property in bio-cementing applications has been explored in the study for its metal tolerance ability for the first time. S. pasteurii SRMNP1 (KF214757) can tolerate silver stress to form nanoparticles and can remediate multiple heavy metals to promote the growth of various plants. This astounding property of the isolate warranted extensive examinations to comprehend the physiological changes during an external heavy metal stress condition. The present study aimed to understand various physiological responses occurring in S. pasteuriiSRMNP1 during the metal tolerance phenomenon using electron microscopy. The isolate was subjected to heavy metal stress, and a transmission electron microscope examination was used to analyze the physiological changes in bacteria to evade the metal stress. S. pasteurii SRMNP1 was tolerant against a wide range of heavy metal ions and can withstand a broad pH range (5-9). Transmission Electron Microscopy (TEM) examination of S. pasteurii SRMNP1 followed by 5 mM nickel sulfate treatment revealed the presence of nanovesicles encapsulating nanosized particles in intra and extracellular spaces. This suggests that the bacteria evade the metal stress by converting the metal ions into nanosized particles and encapsulating them within nanovesicles to efflux them through the vesicle budding mechanism. Moreover, the TEM images revealed an excessive secretion of extracellular polymeric substances by the strain to discharge the metal particles outside the bacterial system. S. pasteurii can be foreseen as an effective bioremediation agent with the potential to produce nanosized particles, nanovesicles, and extracellular polymeric substances. This study provides physiological evidence that, besides calcium precipitation applications, S. pasteurii can further be explored for its multidimensional roles in the fields of drug delivery and environmental engineering.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar 190001, India.
| | - Sivaraj Irusappan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Javid A Parray
- Department of Environmental Science, HKM Government Degree College Eidgah, Jammu and Kashmir 190017, India.
| | - Merin Thomas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | | | - Rangasamy Kirubakaran
- Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation, Salem, India.
| | - K N Arul Jothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
17
|
Sun Y, Lei A. Ca 2+-Facilitated Adhesion of Bacteria on the Na-Montmorillonite Surface. ACS OMEGA 2023; 8:3385-3395. [PMID: 36713719 PMCID: PMC9878658 DOI: 10.1021/acsomega.2c07260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The adhesion of bacteria on clay surfaces strongly affected their migration and distribution in soil and water. Bacterial adhesion experiments on the Na-montmorillonite (Na-MMT) surface were conducted to determine the role of Na-MMT in the bacterial adhesion process and to prove the validity of the isotherm and kinetic theory for the bacterial surface adhesion in the presence of Ca2+ ions. Batch adhesion experiments with bacteria on the Na-MMT surface were carried out with varying time frames, temperatures, bacterial concentrations, and Ca2+ ion concentrations. The adhesion capacity of Na-MMT significantly correlated with the Ca2+ ion concentration, temperature, time frame, and bacterial concentration when Ca2+ ions were present. The adhesion morphology of the bacteria onto the Na-MMT surface, observed through the zeta-potential and atomic force microscopy (AFM), additionally demonstrated that the bacterial adhesion onto the Na-MMT surface was dominated by the nonelectrostatic force.
Collapse
Affiliation(s)
- Yongshuai Sun
- College
of Water Resources & Civil Engineering, China Agricultural University, Beijing100083, China
| | - Anping Lei
- China
Highway Engineering Consultants Corporation, Beijing100089, China
| |
Collapse
|
18
|
Mirshahmohammad M, Rahmani H, Maleki-Kakelar M, Bahari A. Performance of biological methods on self-healing and mechanical properties of concrete using S. pasteurii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2128-2144. [PMID: 35931842 DOI: 10.1007/s11356-022-21811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Biological methods (adding bacteria to the concrete mixtures) among the most recently investigated procedures increase the durability of concrete and repair concrete cracks. In the present study, different biological methods were used to heal the cracks of concrete and the most suitable method was subsequently introduced as the main aim of the research. For this purpose, the culture medium, various sources of calcium salts as bacterial nutrients, and the effect of air-entrained agent on the healing process were studied. The results showed that the use of bacterial nutrient inside the concrete mixes has an affirmative impact on the mechanical properties and self-healing characteristics of concretes. Simultaneous use of Sporosarcina pasteurii bacteria and calcium nitrate-urea or calcium chloride-urea as a bacterial nutrient in the concrete mixture increased the 28 days compressive strength of concretes by 23.4% and 7.5%, respectively. The utilization of bacterial cells, nutrients, and culture in the concrete mixture provided the ability to heal wide cracks where the healing time was significantly reduced (about 8 days). On the other hand, separation of the bacterial culture medium slightly reduced the self-healing performance of the concretes.
Collapse
Affiliation(s)
| | - Hamid Rahmani
- Department of Civil Engineering, University of Zanjan, Zanjan, Iran
| | | | - Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| |
Collapse
|
19
|
Li J, Guo YK, Zhao QX, He JZ, Zhang Q, Cao HY, Liang CQ. Microbial cell wall sorption and Fe-Mn binding in rhizosphere contribute to the obstruction of cadmium from soil to rice. Front Microbiol 2023; 14:1162119. [PMID: 37138638 PMCID: PMC10149983 DOI: 10.3389/fmicb.2023.1162119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 05/05/2023] Open
Abstract
Screening high-tolerant microorganisms to cadmium (Cd) and revealing their bio-obstruction mechanism could be significant for Cd regulation from farmland to the food chain. We examined the tolerance and bio-removal efficiency of Cd ions of two bacterial strains, Pseudomonas putida 23483 and Bacillus sp. GY16, and measured the accumulation of Cd ions in rice tissues and its different chemical forms in soil. The results showed that the two strains had high tolerance to Cd, but the removal efficiency was decreased successively with increasing Cd concentrations (0.05 to 5 mg kg-1). Cell-sorption accounted for the major proportion of Cd removal compared with excreta binding in both strains, which was conformed to the pseudo-second-order kinetics. At the subcellular level, Cd was mostly taken up by the cell mantle and cell wall, and only a small amount entered into the cytomembrane and cytoplasmic with time progressed (0 to 24 h) in each concentration. The cell mantle and cell wall sorption decreased with increasing Cd concentration, especially in the cytomembrane and cytoplasmic. The scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis verified that Cd ions were attached to the cell surface, and the functional groups of C-H, C-N, C=O, N-H, and O-H in the cell surface may participate in cell-sorption process tested by the FTIR analysis. Furthermore, inoculation of the two strains significantly decreased Cd accumulation in rice straw and grain but increased in the root, increased Cd enrichment ratio in root from soil, decreased Cd translocation ratio from root to straw and grain, and increased the Cd concentrations of Fe-Mn binding form and residual form in rhizosphere soil. This study highlights that the two strains mainly removed Cd ions in solution through biosorption and passivated soil Cd as Fe-Mn combined form ascribe to its characteristics of manganese-oxidizing, eventually achieving bio-obstruction of Cd from soil to rice grain.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Kai Guo
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining, China
| | - Qing-Xia Zhao
- Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Qian Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong-Ying Cao
| | | |
Collapse
|
20
|
Pisani WA, Jenness GR, Schutt TC, Larson SL, Shukla MK. Preferential Adsorption of Prominent Amino Acids in the Urease Enzyme of Sporosarcina pasteurii on Arid Soil Components: A Periodic DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13414-13428. [PMID: 36279412 DOI: 10.1021/acs.langmuir.2c01854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.
Collapse
Affiliation(s)
- William A Pisani
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee37830, United States
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Timothy C Schutt
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Steven L Larson
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| |
Collapse
|
21
|
Răut I, Constantin M, Petre I, Raduly M, Radu N, Gurban AM, Doni M, Alexandrescu E, Nicolae CA, Jecu L. Highlighting Bacteria with Calcifying Abilities Suitable to Improve Mortar Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7259. [PMID: 36295324 PMCID: PMC9612027 DOI: 10.3390/ma15207259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biomineralization, the use of microorganisms to produce calcium carbonate, became a green solution for application in construction materials to improve their strength and durability. The calcifying abilities of several bacteria were investigated by culturing on a medium with urea and calcium ions. The characterization of the precipitates from bacterial cultures was performed using X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The formation of carbonate crystals was demonstrated by optical and scanning electron microscopy. Water absorption and compressive strength measurements were applied to mortars embedded with sporal suspension. The efficiency of the supplementation of mortar mixtures with bacterial cells was evaluated by properties, namely the compressive strength and the water absorption, which are in a relationship of direct dependence, the increase in compressive strength implying the decrease in water absorption. The results showed that Bacillus subtilis was the best-performing bacterium, its introduction into the mortar producing an increase in compressive strength by 11.81% and 9.50%, and a decrease in water absorption by 11.79% and 10.94%, after 28 and 56 days of curing, respectively, as compared to standards. The exploitation of B. subtilis as a calcifying agent can be an interesting prospect in construction materials.
Collapse
Affiliation(s)
- Iuliana Răut
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Mariana Constantin
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 16 Bd. Gheorghe Sincai, 040441 Bucharest, Romania
| | - Ionela Petre
- CEPROCIM S.A., 6 Preciziei Street, 062203 Bucharest, Romania
| | - Monica Raduly
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Nicoleta Radu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Boulevard, 011464 Bucharest, Romania
| | - Ana-Maria Gurban
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Mihaela Doni
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Cristi-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Luiza Jecu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| |
Collapse
|
22
|
Lapierre FM, Bolz I, Büchs J, Huber R. Developing a fluorometric urease activity microplate assay suitable for automated microbioreactor experiments. Front Bioeng Biotechnol 2022; 10:936759. [PMID: 36185447 PMCID: PMC9515450 DOI: 10.3389/fbioe.2022.936759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Quantifying urease activity is an important task for Microbial Induced Calcite Precipitation research. A new urease activity microplate assay using a fluorescent pH indicator is presented. The method is also suitable for automated measurements during microbioreactor experiments. The assay reagent consists of the green fluorescent pH-indicator fluorescein, urea and a phosphate buffer. After sample addition, the microbial urease hydrolyses urea, which results in a pH and hence fluorescence increase. The fluorescence signal can be measured with a microplate reader or with the microbioreactor system BioLector, allowing for automated urease activity measurements during cultivation experiments. In both measurement systems, the fluorescence signal slope highly correlates with the urease activity measured offline with standard methods. Automated measurement is possible, as no sample preparation such as centrifugation or adjusting of the optical density is required. The assay was developed so that the culture samples turbidity, salinity or buffer concentration does not have a negative impact on the fluorescence signal. The assay allows for straightforward, non-hazardous, parallelized, cheap and reliable measurements, making research on ureolytic bacteria for Microbial Induced Calcite Precipitation more efficient. The assay could be adapted to other enzymes, which have a strong impact on the pH value.
Collapse
Affiliation(s)
- Frédéric M. Lapierre
- Munich University of Applied Sciences HM, Munich, Germany
- *Correspondence: Frédéric M. Lapierre, ; Robert Huber,
| | - Isabel Bolz
- Munich University of Applied Sciences HM, Munich, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Robert Huber
- Munich University of Applied Sciences HM, Munich, Germany
- *Correspondence: Frédéric M. Lapierre, ; Robert Huber,
| |
Collapse
|
23
|
Harnpicharnchai P, Mayteeworakoon S, Kitikhun S, Chunhametha S, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S. High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and non-ureolytic bacterial strains. Lett Appl Microbiol 2022; 75:888-898. [PMID: 35611563 DOI: 10.1111/lam.13748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
This study demonstrates a remarkably high level of microbial-induced calcium carbonate precipitation (MICP) using a mixed culture containing TBRC 1396 (Priestia megaterium), TBRC 8147 (Neobacillus drentensis), and ATCC 11859 (Sporosarcina pasteurii) bacterial strains. The mixed culture produced CaCO3 weights 1.4 times higher than those obtained from S. pasteurii, the gold standard for efficient MICP processes. The three strains were selected after characterization of various Bacillus spp. and related species for their ability to induce the MICP process, especially in an alkaline and high temperature environment. Results showed that TBRC 1396 and TBRC 8147 strains, as well as TBRC 5949 (Bacillus subtilis) and TBRC 8986 (Priestia aryabhattai) strains, could generate calcium carbonate at pH 9-12 and temperature 30-40 °C, which is suitable for construction and consolidation purposes. The TBRC 8147 strain also exhibited CaCO3 precipitation at 45 °C. The TBRC 8986 and TBRC 8147 strains are non-ureolytic bacteria capable of MICP in the absence of urea, which can be used to avoid the generation of undesirable ammonia associated with the ureolytic MICP process. These findings facilitate the successful use of MICP as a sustainable and environmentally friendly technology for the development of various materials, including self-healing concrete and soil consolidation.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supattra Kitikhun
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Suwanee Chunhametha
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
24
|
A Experimental Study on Engineered Cementitious Composites (ECC) Incorporated with Sporosarcina pasteurii. BUILDINGS 2022. [DOI: 10.3390/buildings12050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) has been successfully applied to self-healing concrete with improved mechanical properties, while the performance of engineered cementitious composites (ECC) incorporated with bacteria is still lacking. In this study, Sporosarcina pasteurii, which has a strong ability to produce calcium carbonate, was introduced into engineered cementitious composites (ECC) with mechanical properties analyzed in detail. A multiscale study including compression, tension and fiber pullout tests was carried out to explore the Sporosarcina pasteurii incorporation effect on ECC mechanical properties. Compared with the control group, the compressive strength of S.p.-ECC specimens cured for 7 days was increased by almost 10% and the regained strength after self-healing was increased by 7.31%. Meanwhile, the initial crack strength and tensile strength of S.p.-ECC increased by 10.25% and 12.68%, respectively. Interestingly, the crack pattern of ECC was also improved to some extent, e.g., bacteria seemed to minimize crack width. The addition of bacteria failed to increase the ECC tensile strain, which remained at about 4%, in accordance with engineering practice. Finally, matrix/fiber interface properties were altered in S.p.-ECC with lower chemical bond and higher frictional bond strength. The results at the microscopic scale explain well the property improvements of ECC composites based on the fine-scale mechanical theory.
Collapse
|
25
|
Dikshit R, Gupta N, Dey A, Viswanathan K, Kumar A. Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants. PLoS One 2022; 17:e0266415. [PMID: 35421143 PMCID: PMC9009621 DOI: 10.1371/journal.pone.0266415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/20/2022] [Indexed: 12/02/2022] Open
Abstract
We demonstrate that Microbial Induced Calcite Precipitation (MICP) can be utilized for creation of consolidates of Martian Simulant Soil (MSS) and Lunar Simulant Soil (LSS) in the form of a 'brick'. A urease producer bacterium, Sporosarcina pasteurii, was used to induce the MICP process for the both simulant soils. An admixture of guar gum as an organic polymer and NiCl2, as bio- catalyst to enhance urease activity, was introduced to increase the compressive strength of the biologically grown bricks. A casting method was utilized for a slurry consisting of the appropriate simulant soil and microbe; the slurry over a few days consolidated in the form of a 'brick' of the desired shape. In case of MSS, maximum strength of 3.3 MPa was obtained with 10mM NiCl2 and 1% guar gum supplementation whereas in case of LSS maximum strength of 5.65 Mpa was obtained with 1% guar gum supplementation and 10mM NiCl2. MICP mediated consolidation of the simulant soil was confirmed with field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and thermogravimetry (TG). Our work demonstrates a biological approach with an explicit casting method towards manufacturing of consolidated structures using extra-terrestrial regolith simulant; this is a promising route for in situ development of structural elements on the extra-terrestrial habitats.
Collapse
Affiliation(s)
- Rashmi Dikshit
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Nitin Gupta
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Arjun Dey
- Thermal Systems Group, U. R. Rao Satellite Centre (Formerly ISRO Satellite Centre), Bangalore, India
| | - Koushik Viswanathan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Zhao J, Csetenyi L, Gadd GM. Fungal-induced CaCO 3 and SrCO 3 precipitation: a potential strategy for bioprotection of concrete. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151501. [PMID: 34762953 DOI: 10.1016/j.scitotenv.2021.151501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Biomineralization of CaCO3 by microorganisms is a well-documented process considered applicable to concrete self-healing and metal bioremediation. Urea hydrolysis is the most widely explored and efficient pathway regarding concrete bioprotection. However, the potential of fungi has received relatively little attention compared to bacteria. In this work, we show that Fusarium cerealis, Phoma herbarum and Mucor hiemalis, isolated from concrete, could produce 828.6-941.3 mg L-1 ammonium‑nitrogen in liquid media through urea hydrolysis indicating significant urease activity, and could grow in moderate (pH 8.3) or even extremely alkaline (pH 10.6) conditions. After culture in media containing 50 mM CaCl2, at least 48.8% Ca2+ was removed from solution by the selected fungi as calcite. The accumulation of Ca by the biomass was around 83.64-114.21 mg g-1. In addition, all fungi could mediate strontium carbonate formation with F. cerealis processing the highest ability for Sr removal, with ~61% added Sr being removed from solution. Scanning electron microscopy showed carbonate biominerals were encrusted on hyphae or aggregated in fungal pellets. When equivalent concentrations of Ca2+ and Sr2+ were supplemented to the media, CaCO3 with incorporated Sr formed with F. cerealis and M. hiemalis, and Sr(Sr, Ca)(CO3)2 with P. herbarum. Our results demonstrate the potential of fungi in providing carbonate coatings for concrete surfaces and simultaneous immobilization of Sr. We anticipate our work will promote further practical field research on porous cementitious materials protection by fungi and immobilization of potentially toxic metals from metal-laden ingredients, such as fly ash and granulated ground blast furnace slag.
Collapse
Affiliation(s)
- Jiayue Zhao
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Science and Environment, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
27
|
A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of cracks, owing to a relatively lower tensile strength of concrete, diverse loading, and environmental factors driving the deterioration of structures, is an inescapable key concern for engineers. Reparation and maintenance operations are thus extremely important to prevent cracks from spreading and mitigating the lifetime of structures. However, ease of access to the cracked zone may be challenging, and it also needs funds and manual power. Hence, autonomous sealing of cracks employing microorganisms into the concrete sans manual intervention is a promising solution to the dilemma of the sustainable improvement of concrete. ‘Ureolytic bacteria’, key organism species in rumen-producing ‘urease’ enzymes such as Bacillus pasteurii or subtilis—when induced—are capable of producing calcium carbonate precipitations into the concrete. As their cell wall is anionic, CaCO3 accumulation on their surface is extensive, and the whole cell, therefore, becomes crystalline and ultimately plugs pores and cracks. This natural induction technique is an environmentally friendly method that researchers are studying intensively. This manuscript reviews the application process of bacterial healing to manufacture autonomous self-healing bacterial concrete. Additionally, it provides a brief review of diverse attributes of this novel concrete which demonstrate the variations with the auto-addition of different bacteria, along with an evaluation of crack healing as a result of the addition of these bacteria directly into concrete or after encapsulation in a protective shell. Comparative assessment techniques for autonomous, bio-based self-healing are also discussed, accompanied by progress, potential, modes of application of this technique, and its resultant benefits in the context of strength and durability. Imperatives for quantitative sustainability assessment and industrial adoption are identified, along with the sealing of artificially cracked cement mortar with sand as a filling material in given spaces, as well as urea and CaCl2 medium treatment with Bacillus pasteurii and Sporosarcina bacteria. The assessment of the impact on the compressive strength and rigidity of cement mortar cubes after the addition of bacteria into the mix is also considered. Scanning electron microscope (SEM) images on the function of bacteria in mineral precipitation that is microbiologically induced are also reviewed. Lastly, future research scope and present gaps are recognised and discussed.
Collapse
|
28
|
Li W, Yang Y, Achal V. Biochemical composite material using corncob powder as a carrier material for ureolytic bacteria in soil cadmium immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149802. [PMID: 34464799 DOI: 10.1016/j.scitotenv.2021.149802] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Corncob powder possessing its superiority in environmental sustainability and cost, was approved with strong capability of being a replacement of biochar in facilitating the microbial carbonate precipitation process. In this study, the ureolytic bacterial strain Bacillus sp. WA isolated from a pre-acquired metal contaminated soil in Guiyu, China, was showed to be well attached on the surfaces of corncob powder, indicating the carrier's role as a durable shelter for bacterial cells. The efficient immobilization helped develop biochemical composite material (BCM) and proven to function better the calcite precipitation. Afterwards, the mechanism and multi-directional benefits of BCM in edaphic cadmium remediation were examined through pot experiment and compared with corncob powder/bacterial strain/nutrient media as control groups. Integrated lab-scale analyses emphasized the advantages of BCM by the maximum soil urease activity (up to 3.440 U/mg and increased by 214% in 28 days), maximal bacterial propagation (most abundant population in fluorescence microscopy), richest surface functional group (most remarkable OC bond and CO bond in FTIR result), notable calcite precipitation (clear calcite crystals on the surface of BCM compared to control group under SEM-EDS), and highest Cd immobilization rate (exchangeable Cd decreased by 68.54%), among all treatments. The pH and electroconductivity measurements additionally led to the mechanism of corncob powder and NBU promoting pre-existed ureolytic bacteria in soil, which demonstrated the added value of corncob to be fine carbon source and residence shelter for soil microorganism, revealing its potential in developing agricultural materials.
Collapse
Affiliation(s)
- Weila Li
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yifan Yang
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Varenyam Achal
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
29
|
|
30
|
Wu Y, Li H, Li Y. Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms 2021; 9:2396. [PMID: 34835521 PMCID: PMC8621315 DOI: 10.3390/microorganisms9112396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Biomineralization has emerged as a novel and eco-friendly technology for artificial mineral formation utilizing the metabolism of organisms. Due to its highly efficient urea degradation ability, Sporosarcina pasteurii(S. pasteurii) is arguably the most widely investigated organism in ureolytic biomineralization studies, with wide potential application in construction and environmental protection. In emerging, large-scale commercial engineering applications, attention was also paid to practical challenges and issues. In this review, we summarize the features of S. pasteurii cells contributing to the biomineralization reaction, aiming to reveal the mechanism of artificial mineral formation catalyzed by bacterial cells. Progress in the application of this technology in construction and environmental protection is discussed separately. Furthermore, the urgent challenges and issues in large-scale application are also discussed, along with potential solutions. We aim to offer new ideas to researchers working on the mechanisms, applications and challenges of biomineralization.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (H.L.); (Y.L.)
| | | | | |
Collapse
|
31
|
Improvement of Organic Soil Shear Strength through Calcite Precipitation Method Using Soybeans as Bio-Catalyst. CRYSTALS 2021. [DOI: 10.3390/cryst11091044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic soil has a high content of water and compressibility. Besides that, it has a low specific gravity, density, and shear strength. This study evaluates the applicability of the soybean crude urease for calcite precipitation (SCU-CP) method and its effectiveness in organic soil as a soil-amelioration technique. Various soybean concentrations were mixed with a reagent composed of urea and calcium chloride to produce the treatment solution. Its effect on the hydrolysis rate, pH, and amount of precipitated calcite was evaluated through test-tube experiments. SEM-EDS tests were performed to observe the mineralogy and morphology of the untreated and treated samples. The treatment solution composed of the reagent and various concentrations of soybeans was applied to organic soil. The increasing strength of the organic soil was evaluated using direct shear (DS) and unconfined compression (UCS) tests. The test-tube results show that a hydrolysis rate of 1600 u/g was obtained when using 50 g/L of soybeans with a precipitation ratio of 100%. The mechanical tests show a significant enhancement in the parameters of the organic soil’s shear strength. A shear strength improvement of 50% was achieved in this study. A UCS of 148 kPa and cohesion of 50 kPa was obtained in the treated samples of organic soil. This research elucidates that the SCU-CP is an effective technique for improving organic soil’s shear strength.
Collapse
|
32
|
Testing the Capacity of Staphylococcus equorum for Calcium and Copper Removal through MICP Process. MINERALS 2021. [DOI: 10.3390/min11080905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.
Collapse
|
33
|
Zhang K, Zhang D, Wu X, Xue Y. Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125800. [PMID: 33836328 DOI: 10.1016/j.jhazmat.2021.125800] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Traditional sewage treatment technology cannot remove heavy metals, which needs to be improved urgently. Lysinibacillus with the function of bio-mineralization was screened and loaded on granular sludge to form a phosphate-mineralized bacterial consortium, which demonstrated the ability of self-regulating pH and automatic solid-liquid separation. Heavy metals could be fixed on the bacterial consortium to produce stable and harmless phosphate minerals. The highest removal efficiency of Pb(Ⅱ), Cd(Ⅱ), and Ni(Ⅱ) were 97.9%, 70%, and 40%, respectively. Organic matter and other metal ions in actual polluted water had little effect on the Pb(Ⅱ) removal efficiency. Mechanism analysis was conducted through 3D-EEM, XRD, SEM-EDS, XPS, FTIR, and high-throughput sequencing analyses. The bacterial consortium was a multi-species coexistence system, but Lysinibacillus played a major role in removing Pb(Ⅱ). C-O and O-H bonds of tyrosine and phosphorous organics were broken by enzyme catalysis and the metal-oxygen bond (Pb-O) was formed. Mineral crystals in the reactor accumulated, transforming from the initial phase non-crystalline structure to the metaphase Pb3(PO4)2 and eventually to the Pb5(PO4)3OH. This research obtained a promising technique for immobilizing Pb(Ⅱ) or other hazardous metals continuously and efficiently.
Collapse
Affiliation(s)
- Kejing Zhang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Dawei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xuejiao Wu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
Šovljanski O, Pezo L, Stanojev J, Bajac B, Kovač S, Tóth E, Ristić I, Tomić A, Ranitović A, Cvetković D, Markov S. Comprehensive Profiling of Microbiologically Induced CaCO 3 Precipitation by Ureolytic Bacillus Isolates from Alkaline Soils. Microorganisms 2021; 9:1691. [PMID: 34442771 PMCID: PMC8400936 DOI: 10.3390/microorganisms9081691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
Microbiologically induced CaCO3 precipitation (MICP) is a well-known bio-based solution with application in environmental, geotechnical, and civil engineering. The significance of the MICP has increased explorations of process efficiency and specificity via natural bacterial isolates. In this study, comprehensive profiling of five soil ureolytic Bacillus strains was performed through a newly formed procedure that involved six steps from selection and identification, through kinetic study, to the characterization of the obtained precipitates, for the first time. To shorten the whole selection procedure of 43 bioagents with the MICP potential, Standard Score Analysis was performed and five selected bacteria were identified as Bacillus muralis, B. lentus, B. simplex, B. firmus, and B. licheniformis by the MALDI-TOF mass spectrometry. Despite following the targeted activity, kinetic studies were included important aspects of ureolysis and the MICP such as cell concentration, pH profiling, and reduction in calcium ion concentration. At the final step, characterization of the obtained precipitates was performed using FTIR, XRD, Raman, DTA/TGA, and SEM analysis. Although all tested strains showed significant potential in terms of precipitation of calcite or calcite and vaterite phase, the main differences in the MICP behavior can be observed at the bacterial strain level. B. licheniformis showed favorable behavior compared to the reference Sporosarcina pasteurii DSM 33.
Collapse
Affiliation(s)
- Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, Studenski Trg 12/V, 11000 Belgrade, Serbia;
| | - Jovana Stanojev
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia; (J.S.); (B.B.)
| | - Branimir Bajac
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia; (J.S.); (B.B.)
| | - Sabina Kovač
- Department of Crystallography and Mineralogy, Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia;
| | - Elvira Tóth
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| | - Ivan Ristić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| | - Aleksandra Ranitović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| | - Dragoljub Cvetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| | - Siniša Markov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.R.); (A.T.); (A.R.); (D.C.); (S.M.)
| |
Collapse
|
35
|
Li W, Fishman A, Achal V. Ureolytic bacteria from electronic waste area, their biological robustness against potentially toxic elements and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112517. [PMID: 33836437 DOI: 10.1016/j.jenvman.2021.112517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ureolytic bacteria can be a promising mediator used for the immobilization of potentially toxic elements via microbially-induced carbonate precipitation (MICP) process from biodegradable ions to carbonate form. Electronic waste (E-waste) environment is very complex compared to general metal contaminated soil, however, MICP has not been studied under such an environment. In this study, three bacterial strains were successfully isolated from an E-waste area in Guiyu, China, and indicated to have positive ureolytic behavior with significant heavy metal resistance (specific to Cu and Pb), among which, a strain of Lysinibacillus sp. was proven to show a great persistence in heavy metal immobilization. This featured strain can tolerate up to 100 ppm copper and 1000 ppm lead according to minimal inhibitory concentration (MIC) results, and its urease activity was well-adapted to metal effects. Results also revealed the positive correlation (R2 = 0.9819) between metal concentrations and surface layer protein content present in bacterial cells. The underlying mechanism on the role of S-layer protein in heavy metal immobilization during biocalcification was elucidated. The metabolic system of heavy metal resistance for these E-waste derived isolates is novel and represents a point of interest for possible environmental applications to immobilize toxic heavy metals from electronic waste sites.
Collapse
Affiliation(s)
- Weila Li
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Varenyam Achal
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China.
| |
Collapse
|
36
|
Verma H, Ray A, Rai R, Gupta T, Mehta N. Ground improvement using chemical methods: A review. Heliyon 2021; 7:e07678. [PMID: 34401562 PMCID: PMC8353306 DOI: 10.1016/j.heliyon.2021.e07678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/28/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Ground improvement will be critically important in the present and future geotechnical practice for designing the structures in weak soil. This paper presents a review of the recent development in ground improvement techniques, especially chemical stabilisers. Various available chemical stabilisers are identified and compared with other available methods. Though the use of chemicals provides an excellent alternative to the traditional methods, they still lack proper understanding regarding their use, handling, application, and long-term effect on the environment. Various chemical stabilisers and their applicability conditions are summarised in the present paper. Insight of biochemical, electrochemical, inorganic, and organic stabilisers is presented with future scope of these methods along with the potential areas where a lot of efforts is needed to industrialise these methods are also discussed briefly. A need for developing a more environmentally friendly and safe method was felt while reviewing these methods. Lack of a large amount of data is a major concern for lesser use of these methods industrially. A lot of laboratory and field experiments should be conducted in different conditions to ensure safe results from chemical stabilisers.
Collapse
Affiliation(s)
- Harshal Verma
- Department of Mining Engineering, IIT(BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arunava Ray
- Department of Mining Engineering, IIT(BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rajesh Rai
- Department of Mining Engineering, IIT(BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tushar Gupta
- Department of Mining Engineering, National Institute of Technology Rourkela, Odisha 769001, India
| | - Neeraj Mehta
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
37
|
Chen M, Li Y, Jiang X, Zhao D, Liu X, Zhou J, He Z, Zheng C, Pan X. Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125103. [PMID: 33858089 DOI: 10.1016/j.jhazmat.2021.125103] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Soil structure is an important index to evaluate soil quality; however, previous researchers have only paid attention to the effect and economic benefits of soil heavy metal remediation. In this study, microbial-induced carbonate precipitation (MICP) technology was used to remediate soil Pb pollution, and its effect on soil structure was studied by sieving and X-ray computed tomography techniques. The results showed that the leaching amount of heavy metals in soil decreased by 76.34% after remediation. Interestingly, due to the addition of organic matter and microorganisms, the soil particle size changed from microaggregates to large aggregates, and the large soil particle size (diameter > 2 mm) increased significantly by 71.43%. The soil porosity increased by 73.78%, which enhanced the soil permeability and increased the soil hydraulic conductivity. Therefore, MICP bioremediation not only remediated soil heavy metal pollution but also promoted the soil aggregation structure, which has important significance for soil remediation and improvement.
Collapse
Affiliation(s)
- Minjie Chen
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Yafei Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Xiaoru Jiang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Dingran Zhao
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Xuefeng Liu
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Jianlin Zhou
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Zhanfei He
- Zhejiang University of Technology Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310014, People's Republic of China
| | - Chunli Zheng
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China; Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Baotou 014010, People's Republic of China.
| | - Xiangliang Pan
- Zhejiang University of Technology Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
38
|
Characterization of a Novel CaCO 3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules 2021; 26:molecules26102967. [PMID: 34067627 PMCID: PMC8156400 DOI: 10.3390/molecules26102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022] Open
Abstract
Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4–10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20–60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4–0.6 mm width.
Collapse
|
39
|
Khanjani M, Westenberg DJ, Kumar A, Ma H. Tuning Polymorphs and Morphology of Microbially Induced Calcium Carbonate: Controlling Factors and Underlying Mechanisms. ACS OMEGA 2021; 6:11988-12003. [PMID: 34056353 PMCID: PMC8153981 DOI: 10.1021/acsomega.1c00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Microbially precipitated calcium carbonate (CaCO3) has drawn broad attention due to its potential applications in various areas, for example, biocementation, medicine, and soil reinforcement. Sporosarcina pasteurii (S. pasteurii), formerly known as Bacillus pasteurii, has been investigated for CaCO3 biomineralization due to its high ureolytic activity. A high degree of supersaturation with respect to the presence of bacterial cell wall, extracellular polymeric substances, and organic byproducts of bacterial activity plays an important role in the formation and stabilization of CaCO3 polymorphs. Although microbially induced CaCO3 and its polymorphs have been investigated broadly, the mechanisms of polymorph selection and morphological evolution are not well understood. This study employs ex situ approaches to address the complication of biomineralization in the presence of living organisms and to elucidate how solution chemistry, bacterial activity, and precipitation kinetics alter the polymorphism and morphology of CaCO3 induced by S. pasteurii. The results indicate that in the presence of enough calcium ions and urea (as a carbonate source), the bacterial activity favors the formation and stabilization of vaterite. The morphological observations also provide valuable information on the particles' microstructure. The morphology of calcite evolves from single crystal to polycrystalline structures, and the morphology of vaterite evolved from spherical to oval-shaped structures on increasing the organic material concentration. Specific functional groups also exert morphological control on CaCO3 polymorphs. However, the sensitivity of the calcite polymorph to the composition and orientation of these functional groups is higher compared to that of the vaterite polymorph. These findings offer important insights that can be used to constrain a set of experimental conditions for synthesizing a certain polymorph ratio for vaterite/calcite or a particular morphology of each polymorph and shed light on the crystallization and phase transformation mechanisms in such complicated bioenvironments.
Collapse
Affiliation(s)
- Maryam Khanjani
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - David J. Westenberg
- Department
of Biological Sciences, Missouri University
of Science and Technology, Rolla, Missouri 65401, United States
| | - Aditya Kumar
- Department
of Materials Science and Engineering, Missouri
University of Science and Technology, Rolla, Missouri 65401, United States
| | - Hongyan Ma
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
40
|
Rajasekar A, Wilkinson S, Moy CK. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 6:100096. [PMID: 36159179 PMCID: PMC9488051 DOI: 10.1016/j.ese.2021.100096] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 05/25/2023]
Abstract
In the last two decades, developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastewater/heavy metal remediation. Microbially Induced Carbonate Precipitation (MICP) has led to numerous patented applications ranging from novel strains and nutrient sources for the precipitation of biominerals. Studies are being constantly published to optimize the process to become a promising, cost effective, ecofriendly approach when compared with the existing traditional remediation technologies which are implemented to solve multiple contamination/pollution issues. Heavy metal pollution still poses a major threat towards compromising the ecosystem. The removal of heavy metals is of high importance due to their recalcitrance and persistence in the environment. In that perspective, this paper reviews the current and most significant discoveries and applications of MICP towards the conversion of heavy metals into heavy metal carbonates and removal of calcium from contaminated media such as polluted water. It is evident from the literature survey that although heavy metal carbonate research is very effective in removal, is still in its early stages but could serve as a solution if the microorganisms are stimulated directly in the heavy metal environment.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Stephen Wilkinson
- Department of Civil Engineering, University of Wollongong in Dubai, Dubai, United Arab Emirates
| | - Charles K.S. Moy
- Department of Civil Engineering, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Melgarejo T, Oakley BB, Krumbeck JA, Tang S, Krantz A, Linde A. Assessment of bacterial and fungal populations in urine from clinically healthy dogs using next-generation sequencing. J Vet Intern Med 2021; 35:1416-1426. [PMID: 33739491 PMCID: PMC8162589 DOI: 10.1111/jvim.16104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Urine from clinically healthy dogs is not sterile. Characterizing microbial diversity and abundance within this population of dogs is important to define normal reference ranges for healthy urine. OBJECTIVES To establish composition and relative representation of bacterial and fungal microbiomes in urine of clinically healthy dogs. ANIMALS Fifty clinically healthy dogs. METHODS Analytic study. Urine sampling via cystocentesis. Comprehensive evaluation of urine including standard urinalysis, culture and sensitivity, next-generation sequencing (NGS), and bioinformatics to define bacterial and fungal microbiome. RESULTS Culture did not yield positive results in any samples. Next-generation sequencing of urine established low presence of bacteria, fungi, or both in all samples. Diversity and abundance of bacterial and fungal communities varied between urine samples from different dogs. Struvite crystals were associated with bacterial community structure (P = .07) and there was a positive correlation between struvite crystals and pH. CONCLUSIONS AND CLINICAL IMPORTANCE The microbiome in urine of clinically healthy dogs has diverse bacterial and fungal species These findings highlight limitations of conventional culture testing and the need for culture-independent molecular diagnostics to detect microorganisms in urine.
Collapse
Affiliation(s)
- Tonatiuh Melgarejo
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | - Brian B Oakley
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | | | | | - Adam Krantz
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | - Annika Linde
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| |
Collapse
|
42
|
Field Application of Microbial Self-Healing Cement Slurry in Chunguang 17-14 Well. ENERGIES 2021. [DOI: 10.3390/en14061544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Due to the inappropriate treatment of dairy wastewater, which can easily cause underground water pollution, there is an increasing need for a novel approach to reuse dairy wastewater. The technology of microbially induced calcium carbonate precipitation with environmentally friendly characteristics and high efficiency has been widely used for underground infrastructure remediation. However, there is a lack of in-depth research on the application of this technology under extreme underground environments, such as the borehole of oil wells with high temperature, high pressure, alkaline, and aerobic conditions. In addition, to reduce the cost of this technology when applied on a large scale, we adopted dairy wastewater to cultivate bacteria. Then, we put the bacterial solution into cement slurry in the borehole to improve the cementing quality. In this paper, the rheology properties, mechanical strength, permeability, porosity, and pore distribution of microbial cementing slurry were studied. Moreover, we applied this microbial cement slurry in the Chunguang 17-14 well of China, and the sealing channeling ability of cement sheath on site was evaluated. The results showed that dairy wastewater could serve as an alternative medium to provide nutrients and energy for the growth of bacteria with low cost. Additionally, the microbial cement slurry exhibited a good right-angle thickening performance and high mechanical strength. The field application displayed an anti-gas channeling ability after microbial remediation. The application of dairy wastewater incubated bacteria to cement slurry not only provides an alternative method for the reuse of dairy wastewater but is also conducive to prolonging the lifespan of oil wells.
Collapse
|
43
|
Zehner J, Røyne A, Sikorski P. Calcite seed-assisted microbial induced carbonate precipitation (MICP). PLoS One 2021; 16:e0240763. [PMID: 33561160 PMCID: PMC7872276 DOI: 10.1371/journal.pone.0240763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022] Open
Abstract
Microbial-induced calcium carbonate precipitation (MICP) is a biological process inducing biomineralization of CaCO3. This can be used to form a solid, concrete-like material. To be able to use MICP successfully to produce solid materials, it is important to understand the formation process of the material in detail. It is well known that crystallization surfaces can influence the precipitation process. Therefore, we present in this contribution a systematic study investigating the influence of calcite seeds on the MICP process. We focus on the changes in the pH and changes of the optical density (OD) signal measured with absorption spectroscopy to analyze the precipitation process. Furthermore, optical microscopy was used to visualize the precipitation processes in the sample and connect them to changes in the pH and OD. We show, that there is a significant difference in the pH evolution between samples with and without calcite seeds present and that the shape of the pH evolution and the changes in OD can give detailed information about the mineral precipitation and transformations. In the presented experiments we show, that amorphous calcium carbonate (ACC) can also precipitate in the presence of initial calcite seeds and this can have implications for consolidated MICP materials.
Collapse
Affiliation(s)
- Jennifer Zehner
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anja Røyne
- The Njord Centre, Department of Physics, University of Oslo (UiO), Oslo, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
44
|
Marín S, Cabestrero O, Demergasso C, Olivares S, Zetola V, Vera M. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Acta Biomater 2021; 120:304-317. [PMID: 33212232 DOI: 10.1016/j.actbio.2020.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
The advantages of microbial induced carbonate mineralization for soil-stabilization and building-material industries are under extensive investigation. The pH is one of the influential parameters on the desired calcium carbonate mineralization due to the resulting textures of this mineral. Moreover, the decrease in microbial growth under the extreme alkaline environment compatible with the sustainability of concrete has been the bottleneck for an effective application of Microbial Induced Carbonate Precipitation (MICP) in the concrete industry. Microbial consortia have shown more robustness in their resistance to environmental fluctuations than pure cultures. In addition, microorganisms obtained from alkaline environments could facilitate their adaptation to extreme alkalinity. The aim of this study was to obtain urease producing bacteria (UPB) able to maintain a high MICP performance under extremely alkaline conditions compatible with concrete by adapting native microorganisms obtained from extreme environments. The growth performance, urease activity, strength of the generated biocement, and CaCO3 mineralogy were compared with the best-performer urease-producing bacteria (UPB), S. pasteurii DSMZ 33. The native bacteria presented a similar performance in growth and urease activity than S. pasteurii under extreme alkaline conditions (pH 12.5). However, the generated biocement of native Sporosarcina sp. achieved 461 % more unconfined compressive strength (UCS) and 120 % more CaCO3 content than the biocement generated by S. pasteurii DSMZ 33. The careful adaptation process performed in this study for native UPB and S. pasteurii DSMZ 33 is an interesting approach with promising and projectable results for future engineering and biotechnological applications. These results have important implications for the design of engineering solutions involving MICP. STATEMENT OF SIGNIFICANCE: A consolidated and strong biocement was generated by a native species obtained from extreme ecosystems in an effort of bioprospecting to enhance the performance of biotechnological solutions for geotechnical applications in the concrete and soil-improvement industries. Biocement generated by the native species was stronger than the generated by one of the best-described biocementation performers. This native species was able to actively growing and do perform microbial-induced-carbonate-mineralization under extreme alkalinity conditions after a careful laboratory adaptation process. The native species presented unique and differentiating traits that gave it a better adaptability and biocementation performance. The same occurs with a priceless microbial diversity inhabiting little explored and unprotected extreme ecosystems. Extreme environments house a fascinating biodiversity with potential value for ecosystem services.
Collapse
Affiliation(s)
- Sabrina Marín
- Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile.
| | - Oscar Cabestrero
- Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile.
| | - Cecilia Demergasso
- Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile.
| | - Sarah Olivares
- Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile.
| | - Vicente Zetola
- Departamento de Gestión de la Construcción, Universidad Católica del Norte, Antofagasta, Chile.
| | - María Vera
- Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile; Departamento de Gestión de la Construcción, Universidad Católica del Norte, Antofagasta, Chile.
| |
Collapse
|
45
|
Lapierre FM, Schmid J, Ederer B, Ihling N, Büchs J, Huber R. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci Rep 2020; 10:22448. [PMID: 33384450 PMCID: PMC7775470 DOI: 10.1038/s41598-020-79904-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
Microbial induced calcite precipitation (MICP) based on ureolysis has a high potential for many applications, e.g. restoration of construction materials. The gram-positive bacterium Sporosarcina pasteurii is the most commonly used microorganism for MICP due to its high ureolytic activity. However, Sporosarcina pasteurii is so far cultivated almost exclusively in complex media, which only results in moderate biomass concentrations at the best. Cultivation of Sporosarcina pasteurii must be strongly improved in order to make technological application of MICP economically feasible. The growth of Sporosarcina pasteurii DSM 33 was boosted by detecting auxotrophic deficiencies (L-methionine, L-cysteine, thiamine, nicotinic acid), nutritional requirements (phosphate, trace elements) and useful carbon sources (glucose, maltose, lactose, fructose, sucrose, acetate, L-proline, L-alanine). These were determined by microplate cultivations with online monitoring of biomass in a chemically defined medium and systematically omitting or substituting medium components. Persisting growth limitations were also detected, allowing further improvement of the chemically defined medium by the addition of glutamate group amino acids. Common complex media based on peptone and yeast extract were supplemented based on these findings. Optical density at the end of each cultivation of the improved peptone and yeast extract media roughly increased fivefold respectively. A maximum OD600 of 26.6 ± 0.7 (CDW: 17.1 ± 0.5 g/L) was reached with the improved yeast extract medium. Finally, culture performance and media improvement was analysed by measuring the oxygen transfer rate as well as the backscatter during shake flask cultivation.
Collapse
Affiliation(s)
| | - Jakob Schmid
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Benjamin Ederer
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Nina Ihling
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Robert Huber
- Munich University of Applied Sciences, 80335, Munich, Germany
| |
Collapse
|
46
|
Mutitu DK, Muthengia JW, Mwirichia R, Thiong'o JK, Mulwa MO, Genson M. Microbial effect on water sorptivity and sulphate ingress by Bacillus megaterium on mortars prepared using Portland Pozzolana cement. J Appl Microbiol 2020; 131:528-542. [PMID: 33340219 DOI: 10.1111/jam.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
AIMS To determine the effect of direct embedment of Bacillus megaterium into Portland pozzolana cement mortars on water sorptivity and diffusivity coefficient of sulphate ions. METHODS AND RESULTS Prisms with a water/cement ratio of 0·5 were prepared by blending Portland Pozzolana cement with the requisite volume of a B. megaterium (microbial) solution whose concentration was 1·0 × 107 cells per ml. Mortar prisms of 160 mm × 40 mm × 40 mm were fabricated for this study. Mortars cured for 28 days were exposed to 0·2465 mol l-1 Na2 SO4 solution using accelerated ion migration test method for 36-h session using a 12V DC power source. Sulphate ion concentration was then determined through the ingressed mortar at 10 mm interval. A minimum water sorption gain of 0·61% was observed on the prism prepared with and cured in microbial solution. A maximum of 0·0289 and a minimum of 0·0093 water sorptivity coefficients were exhibited by the control prism and microbial prisms, respectively. The microbial prisms exhibited the lowest apparent diffusion coefficient (Dapp ) of 4·5179 × 10-11 m2 s-1 . CONCLUSIONS Direct incorporation of B. megaterium in mortar preparation, curing or both regimes significantly retarded water sorption and lowered sulphate ion ingress. The inclusion of this bacterial in the mortar further complements the pozzolana pore structure benefits. SIGNIFICANCE AND IMPACT OF THE STUDY This novel B. megaterium bacteria which can survive and cause biocementation within hydrating cement mortar when not encapsulated would result in a green innovation. Once adopted and applied in real-life scenario, it would promote construction of durable, safe, resilient and affordable shelter.
Collapse
Affiliation(s)
- D K Mutitu
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - J W Muthengia
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - R Mwirichia
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - J K Thiong'o
- Department of Chemistry, Kenyatta University, Nairobi, Kenya
| | - M O Mulwa
- Department of Chemistry, Kenyatta University, Nairobi, Kenya
| | - M Genson
- Department of Physical Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
47
|
Studies on Biocementation of Mortar and Identification of Causative Bacteria. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
A selected bacterial strain for the self-healing process in cementitious specimens without cell immobilization steps. Bioprocess Biosyst Eng 2020; 44:195-208. [PMID: 32892287 DOI: 10.1007/s00449-020-02435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The use of microorganisms capable of mediating the bioprecipitation process can be an important application in the self-healing processes of cement specimens. Thus, the present study identified and evaluated five Bacillus strains for potential application in the protocol of self-healing via bioprecipitation. Cell growth, enzyme production, and kinetic parameters conditions were evaluated during the fermentation process. Based on the analysis of 16S rDNA in conjunction with biochemical testing, results demonstrate that the strains are either Bacillus cereus or Bacillus thuringiensis. Strategically it was found that the addition of glycerol to fermentative medium was essential to increase the bacterial concentration (≈ 4.2 × 107 cells mL-1) and production of the enzyme urease (≈ 3.623,2 U.mL-1). The addition of this medium after 40 days of fermentation promoted the self-healing of cracks and increased compressive strength in ≈ 14.2% of the cementitious specimens; therefore, increasing the sustainability and engineering properties of cement-based materials.
Collapse
|
49
|
Dikshit R, Jain A, Dey A, Kumar A. Microbially induced calcite precipitation using Bacillus velezensis with guar gum. PLoS One 2020; 15:e0236745. [PMID: 32785276 PMCID: PMC7423064 DOI: 10.1371/journal.pone.0236745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mineral precipitation via microbial activity is a well-known process with applications in various fields. This relevance of microbially induced calcite precipitation (MICP) has pushed researchers to explore various naturally occurring MICP capable bacterial strains. The present study was performed to explore the efficiency of microbially induced calcite precipitation (MICP) via locally isolated bacterial strains and role of guar gum, which is a naturally occurring polymer, on the MICP process. The strains were isolated from local soil and screened for urease activity Further, the urease positive strain was subjected to urea and calcium chloride based medium to investigate the efficacy of isolated strain for microbial induced precipitation. Among screened isolates, the soil bacterium that showed urease positive behaviour and precipitated calcium carbonate was subjected to 16S rRNA gene sequencing. This strain was identified as Bacillus velezensis. Guar gum—a natural polymer, was used as a sole carbon source to enhance the MICP process. It was observed that the isolated strain was able to breakdown the guar gum into simple sugars resulting in two-fold increase in calcium carbonate precipitate. Major bio-chemical activities of isolated strain pertaining to MICP such as ammonium ion concentration, pH profiling, and total reducing sugar with time were explored under four different concentrations of guar gum (0.25%, 0.5%, 0.75% and 1% w/v). Maximum ammonium ion concentration (17.5 μg/ml) and increased pH was observed with 1% guar gum supplementation, which confirms augmented MICP activity of the bacterial strain. Microstructural analysis of microbial precipitation was performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, which confirmed the presence of calcium carbonate in different phases. Further, XRD and SEM based studies corroborated that guar gum supplemented media showed significant increase in stable calcite phase as compared to media without guar gum supplementation. Significant diverse group of nitrogenous compounds were observed in guar gum supplemented medium when subjected to Gas Chromatography–Mass spectrometry (GC-MS) profiling.
Collapse
Affiliation(s)
- Rashmi Dikshit
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Animesh Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Arjun Dey
- Thermal Systems Group, U. R. Rao Satellite Centre (formerly ISRO Satellite Centre), Indian Space Research Organisation, Bangalore, India
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
50
|
State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. SUSTAINABILITY 2020. [DOI: 10.3390/su12156281] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbial-induced calcite precipitation (MICP) is a promising new technology in the area of Civil Engineering with potential to become a cost-effective, environmentally friendly and sustainable solution to many problems such as ground improvement, liquefaction remediation, enhancing properties of concrete and so forth. This paper reviews the research and developments over the past 25 years since the first reported application of MICP in 1995. Historical developments in the area, the biological processes involved, the behaviour of improved soils, developments in modelling the behaviour of treated soil and the challenges associated are discussed with a focus on the geotechnical aspects of the problem. The paper also presents an assessment of cost and environmental benefits tied with three application scenarios in pavement construction. It is understood for some applications that at this stage, MICP may not be a cost-effective or even environmentally friendly solution; however, following the latest developments, MICP has the potential to become one.
Collapse
|