1
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Zhang Y, Wang Y, Wang B, Xia X, Wang T, Lu Y. Mild PET degradation by enzymes coupled with magnetic and optical manipulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138663. [PMID: 40412319 DOI: 10.1016/j.jhazmat.2025.138663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Regarding the issue of polyethylene terephthalate (PET) waste proliferation, various methods-including physical, chemical, and biological approaches-have been proposed for PET depolymerization, with bio-enzymatic degradation emerging as a sustainable solution. However, this process is hindered by slow kinetics and enzyme thermal instability, necessitating the development of more efficient and mild strategies. This study innovatively explored enhancing the efficiency of enzyme-catalyzed PET degradation by utilizing magnetic nanoparticle modulation and the photothermal effects of photo-responsive materials. Hydrophobic Fe3O4 nanoparticles (NPs) formed nanochains that exhibited whirlpool motion under a rotating magnetic field, enhancing hydrolytic enzyme activity through microreaction. It revealed that at a concentration of 1 mg/mL Fe3O4 NPs and a magnetic field strength of 2 mT, hydrolysis efficiency increased by 38 %. Furthermore, exposure to light radiation significantly altered the physicochemical properties of plastics, including crystallinity, hydrophobicity, surface functional groups, and morphology. Photo-responsive materials exhibited a photothermal effect, increasing the temperature of the enzyme-catalyzed system and thereby enhancing degradation efficiency. Light pretreatment of MXene followed by PET hydrolase improved degradation efficiency by 148 %. The successful implementation of this innovative strategy holds promise for further advancing the practical application of bio-enzyme degradation of PET and making a substantial contribution to environmental protection efforts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yi Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanjie Xia
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Ordos Laboratory, Ordos, Inner Mongolia 017000, China.
| |
Collapse
|
3
|
Kumar V, Wimmer R, Varrone C. Efficient Bioprocess for Mixed PET Waste Depolymerization Using Crude Cutinase. Polymers (Basel) 2025; 17:763. [PMID: 40292627 PMCID: PMC11946107 DOI: 10.3390/polym17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
In recent years, several plastic-degrading enzymes with efficient depolymerization abilities for PET have been reported. Here, we report a bioprocess for mixed PET waste depolymerization using crude extracellularly expressed enzymes in E. coli. The enzymes, namely FastPETase, LCC, and LCCICCG, were screened to depolymerize amorphous PET powder and films of different sizes and crystallinity. FastPETase, LCC, and LCCICCG achieved approximately 25, 34, and 70% depolymerization, respectively, when applied to 13 g L-1 of PET film, powder, or mixed waste in optimized enzyme conditions without any pH control. The yield of terephthalic acid in the hydrolytic process was maximum for LCCICCG followed by LCC and FastPETase. Finally, extracellular LCCICCG-producing E. coli cells were cultivated using minimal media supplemented with 0.1% ammonium chloride and 1% glycerol as nitrogen and carbon sources in a bioreactor with a final protein content and specific activity of 119 ± 5 mg L-1 and 1232 ± 18 U mg-1, respectively. Nearly complete depolymerization of 13 g L-1 PET and 23.8 g L-1 post-consumer PET was achieved in 50 h using crude LCCICCG supernatant, without enzyme purification, at 62 °C. A bioprocess was thus developed to depolymerize 100 g L-1 mixed PET trays and bottle waste (MW1 and MW2), reaching 78% and 50% yield at 62 °C with a crude enzyme loading of 2.32 mg g-1 PET in 60 h. The results demonstrate an easy PET depolymerization strategy that could be exploited in large-scale facilities for efficient plastic waste treatment.
Collapse
Affiliation(s)
| | | | - Cristiano Varrone
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (V.K.); (R.W.)
| |
Collapse
|
4
|
Zaker A, Auclair K. Impact of Ball Milling on the Microstructure of Polyethylene Terephthalate. CHEMSUSCHEM 2025; 18:e202401506. [PMID: 39374337 PMCID: PMC11826142 DOI: 10.1002/cssc.202401506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Polyethylene terephthalate (PET) is a semi-crystalline polymer that finds broad use. Consequently, it contributes to the accumulation of plastics in the environment, warranting PET recycling technologies. Ball milling is a commonly used technique for the micronization of plastics before transformation. It has also recently been reported as an efficient mixing strategy for the enzymatic hydrolysis of plastics in moist-solid mixtures. However, the effect of milling on the microstructure of PET has not been systematically investigated. Thus, the primary objective of this study is to characterize the changes to the PET microstructure caused by various ball milling conditions. PET of different forms was examined, including pre- and post-consumer PET, as well as textiles. The material was treated to a range of milling frequencies and duration, before analysis of particle size, crystallinity by differential scanning calorimetry and powder X-ray diffraction, and morphology by scanning electron microscopy. Interestingly, our results suggest the convergence of crystallinity to ~30 % within 15 minutes of milling at 30 Hz. These results are consistent with an equilibrium between amorphous and crystalline regions of the polymer being established during ball milling. The combined data constitutes a reference guide for PET milling and recycling research.
Collapse
Affiliation(s)
- Ali Zaker
- Department of ChemistryMcGill UniversityMontréal, QCH3A 0B8Canada
| | - Karine Auclair
- Department of ChemistryMcGill UniversityMontréal, QCH3A 0B8Canada
| |
Collapse
|
5
|
Berselli A, Menziani MC, Muniz-Miranda F. Structure and Energetics of PET-Hydrolyzing Enzyme Complexes: A Systematic Comparison from Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8236-8257. [PMID: 39432831 DOI: 10.1021/acs.jcim.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Discovered in 2016, the enzyme PETase, secreted by bacterial Ideonella Sakaiensis 201-F6, has an excellent hydrolytic activity toward poly(ethylene terephthalate) (PET) at room temperature, while it decreases at higher temperatures due to the low thermostability. Many variants have been engineered to overcome this limitation, which hinders industrial application. In this work, we systematically compare PETase wild-type (WT) and four mutants (DuraPETase, ThermoPETase, FastPETase, and HotPETase) using standard molecular dynamics (MD) simulations and unbinding free energy calculations. In particular, we analyze the enzymes' structural characteristics and binding to a tetrameric PET chain (PET4) under two temperature conditions: T1─300 K and T2─350 K. Our results indicate that (i) PET4 forms stable complexes with the five enzymes at room temperature (∼300 K) and (ii) most of the interactions are localized close to the active site of the protein, where the W185 and Y87 residues interact with the aromatic rings of the substrate. Specifically, (iii) the W185 side-chain explores different conformations in each variant (a phenomenon known in the literature as "W185 wobbling"). This suggests that the binding pocket retains structural plasticity and flexibility among the variants, facilitating substrate recognition and localization events at moderate temperatures. Moreover, (iv) PET4 establishes aromatic interactions with the catalytic H237 residue, stabilizing the catalytic triad composed of residues S160-H237-D206, and helping the system achieve an effective configuration for the hydrolysis reaction. Conversely, (v) the binding affinity decreases at a higher temperature (∼350 K), retaining moderate interactions only for HotPETase. Finally, (vi) MD simulations of complexes formed with poly(ethylene-2,5-furan dicarboxylate) (PEF) show no persistent interactions, suggesting that these enzymes are not yet optimized for binding this alternative semiaromatic plastic polymer. Our study offers valuable insights into the structural stability of these enzymes and the molecular determinants driving PET binding onto their surfaces, sheds light on the mechanistic steps that precede the onset of hydrolysis, and provides a foundation for future enzyme optimization.
Collapse
Affiliation(s)
- Alessandro Berselli
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| | - Francesco Muniz-Miranda
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
6
|
Rincon I, Hidalgo T, Armani G, Rojas S, Horcajada P. Enzyme_Metal-Organic Framework Composites as Novel Approach for Microplastic Degradation. CHEMSUSCHEM 2024; 17:e202301350. [PMID: 38661054 DOI: 10.1002/cssc.202301350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is one of the main worldwide environmental concerns. Our lifestyle involves persistent plastic consumption, aggravating the low efficiency of wastewater treatment plants in its removal. Nano/microplastics are accumulated in living beings, pushing to identify new water remediation strategies to avoid their harmful effects. Enzymes (e. g., Candida rugosa-CrL) are known natural plastic degraders as catalysts in depolymerization reactions. However, their practical use is limited by their stability, recyclability, and economical concerns. Here, enzyme immobilization in metal-organic frameworks (CrL_MOFs) is originally presented as a new plastic degradation approach to achieve a boosted plastic decomposition in aqueous systems while allowing the catalyst cyclability. Bis-(hydroxyethyl)terephthalate (BHET) was selected as model substrate for decontamination experiments for being the main polyethylene terephthalate (PET) degradation product. Once in contaminated water, CrL_MOFs can eliminate BHET (37 %, 24 h), following two complementary mechanisms: enzymatic degradation (CrL action) and byproducts adsorption (MOF effect). As a proof-of-concept, the capacity of a selected CrL_MOF composite to eliminate the BHET degradation products and its reusability are also investigated. The potential of these systems is envisioned in terms of improving enzyme cyclability, reducing costs along with feasible co-adsorption of plastic byproducts and other harmful contaminants, to successfully remove them in a single step.
Collapse
Affiliation(s)
- Irene Rincon
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Giacomo Armani
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| |
Collapse
|
7
|
Pham VHT, Kim J, Chang S. A Valuable Source of Promising Extremophiles in Microbial Plastic Degradation. Polymers (Basel) 2024; 16:2109. [PMID: 39125136 PMCID: PMC11314448 DOI: 10.3390/polym16152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Plastics have accumulated in open environments, such as oceans, rivers, and land, for centuries, but their effect has been of concern for only decades. Plastic pollution is a global challenge at the forefront of public awareness worldwide due to its negative effects on ecological systems, animals, human health, and national economies. Therefore, interest has increased regarding specific circular economies for the development of plastic production and the investigation of green technologies for plastic degradation after use on an appropriate timescale. Moreover, biodegradable plastics have been found to contain potential new hazards compared with conventional plastics due to the physicochemical properties of the polymers involved. Recently, plastic biodegradation was defined as microbial conversion using functional microorganisms and their enzymatic systems. This is a promising strategy for depolymerizing organic components into carbon dioxide, methane, water, new biomass, and other higher value bioproducts under both oxic and anoxic conditions. This study reviews microplastic pollution, the negative consequences of plastic use, and the current technologies used for plastic degradation and biodegradation mediated by microorganisms with their drawbacks; in particular, the important and questionable role of extremophilic multi-enzyme-producing bacteria in synergistic systems of plastic decomposition is discussed. This study emphasizes the key points for enhancing the plastic degradation process using extremophiles, such as cell hydrophobicity, amyloid protein, and other relevant factors. Bioprospecting for novel mechanisms with unknown information about the bioproducts produced during the plastic degradation process is also mentioned in this review with the significant goals of CO2 evolution and increasing H2/CH4 production in the future. Based on the potential factors that were analyzed, there may be new ideas for in vitro isolation techniques for unculturable/multiple-enzyme-producing bacteria and extremophiles from various polluted environments.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
8
|
Feng J, Li H, Lu Y, Li R, Cavaco-Paulo A, Fu J. Non-ionic surfactant PEG: Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2024; 273:133049. [PMID: 38857727 DOI: 10.1016/j.ijbiomac.2024.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Yuzheng Lu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; Mechanical Engineering College, Tarim University, Alar, Xinjiang, China
| | - Rong Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | | | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| |
Collapse
|
9
|
Feng S, Xue M, Xie F, Zhao H, Xue Y. Characterization of Thermotoga maritima Esterase Capable of Hydrolyzing Bis(2-hydroxyethyl) Terephthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12045-12056. [PMID: 38753963 DOI: 10.1021/acs.jafc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.
Collapse
Affiliation(s)
- Sizhong Feng
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengke Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fang Xie
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongyang Zhao
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
10
|
Sahihi M, Fayon P, Nauton L, Goujon F, Devémy J, Dequidt A, Hauret P, Malfreyt P. Probing Enzymatic PET Degradation: Molecular Dynamics Analysis of Cutinase Adsorption and Stability. J Chem Inf Model 2024; 64:4112-4120. [PMID: 38703106 DOI: 10.1021/acs.jcim.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Understanding the mechanisms influencing poly(ethylene terephthalate) (PET) biodegradation is crucial for developing innovative strategies to accelerate the breakdown of this persistent plastic. In this study, we employed all-atom molecular dynamics simulation to investigate the adsorption process of the LCC-ICCG cutinase enzyme onto the PET surface. Our results revealed that hydrophobic, π-π, and H bond interactions, specifically involving aliphatic, aromatic, and polar uncharged amino acids, were the primary driving forces for the adsorption of the cutinase enzyme onto PET. Additionally, we observed a negligible change in the enzyme's tertiary structure during the interaction with PET (RMSD = 1.35 Å), while its secondary structures remained remarkably stable. Quantitative analysis further demonstrated that there is about a 24% decrease in the number of enzyme-water hydrogen bonds upon adsorption onto the PET surface. The significance of this study lies in unraveling the molecular intricacies of the adsorption process, providing valuable insights into the initial steps of enzymatic PET degradation.
Collapse
Affiliation(s)
- Mehdi Sahihi
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Pierre Fayon
- CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Florent Goujon
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Julien Devémy
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Patrice Hauret
- Manufacture Francaise des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Wu Y, Hu Q, Che Y, Niu Z. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Chem Sci 2024; 15:6200-6217. [PMID: 38699266 PMCID: PMC11062090 DOI: 10.1039/d4sc00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.
Collapse
Affiliation(s)
- Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
13
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
14
|
Malunavicius V, Padaiga A, Stankeviciute J, Pakalniskis A, Gudiukaite R. Engineered Geobacillus lipolytic enzymes - Attractive polyesterases that degrade polycaprolactones and simultaneously produce esters. Int J Biol Macromol 2023; 253:127656. [PMID: 37884253 DOI: 10.1016/j.ijbiomac.2023.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Plastic pollution is one of the biggest environmental problems plaguing the modern world. Polyester-based plastics contribute significantly to this ecological safety concern. In this study, lipolytic biocatalysts GD-95RM and GDEst-lip developed based on lipase/esterase produced by Geobacillus sp. 95 strain were applied for the degradation of polycaprolactone films (Mn 45.000 (PCL45000) and Mn 80.000 (PCL80000)). The degradation efficiency was significantly enhanced by the addition of short chain alcohols. Lipase GD-95RM (1 mg) can depolymerize 264.0 mg and 280.7 mg of PCL45000 and PCL80000, films respectively, in a 24 h period at 30 °C, while the fused enzyme GDEst-lip (1 mg) is capable of degrading 145.5 mg PCL45000 and 134.0 mg of PCL80000 films in 24 h. The addition of ethanol (25 %) improves the degradation efficiency ~2.5 fold in the case of GD-95RM. In the case of GDEst-lip, 50 % methanol was found to be the optimal alcohol solution and the degradation efficiency was increased by ~3.25 times. The addition of alcohols not only increased degradation speeds but also allowed for simultaneous synthesis of industrially valuable 6-hydroxyhexonic acid esters. The suggested system is an attractive approach for removing of plastic waste and supports the principles of bioeconomics.
Collapse
Affiliation(s)
- Vilius Malunavicius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Antanas Padaiga
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Jonita Stankeviciute
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Andrius Pakalniskis
- Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
15
|
Mallick K, Sahu A, Dubey NK, Das AP. Harvesting marine plastic pollutants-derived renewable energy: A comprehensive review on applied energy and sustainable approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119371. [PMID: 37925980 DOI: 10.1016/j.jenvman.2023.119371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
The inevitable use of plastics in the existing standard of life makes its way to ecosystems, predominantly into the marine ecosystem. Recent research on energy recycling from marine discarded plastics through biological, chemical, and thermal processes is summarized, which degrade plastic debris and transform it into energy-efficient products. In a system-oriented approach, different boundaries like carbon efficiency, global warming potential, cumulative energy demand, and cost of the product have been evaluated. Even these technologies may successfully reduce the yearly volume of marine plastics by up to 89% while reducing greenhouse gas emissions by 30%. Conversely, recycling a ton of marine discarded plastics may save 915 cubic feet of landfill space, 6500 kWh of energy, and barrels of oil. Energy may be recovered up to 79% from waste plastics using various techniques. Up to 84% liquid fuel had been generated, with a maximum calorific power of 45 MJ/kg. It has been shown that in Asian countries, the power generation capacity of throw-away facemask wastes regularly varies from 2256 kWh/day to 18.52 million kWh/day. Hence, the conversion of marine plastics into biofuel, syngas, biochar, hydrocarbons, electricity, and value-added functional materials by various biotechnological and chemical processes like biodegradation, pyrolysis, gasification, methanolysis, and hydrolysis should be improvised as a source of alternative energy in the immediate future. Our review signifies the potential benefits of energy harvesting technologies from marine plastics pollutants to overcome the growing challenge of energy demands and provide a long-term solution to underdeveloped and developing countries as a sustainable source of energy. Endorsing current strategies to harvest energy from marine plastic wastes that enhance power generation technologies will help in building a more sustainable and greener environment that imparts a healthy and circular economy while shielding natural resources.
Collapse
Affiliation(s)
- Krishnamayee Mallick
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Aishwarya Sahu
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | | | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Huang Q, Kimura S, Iwata T. Thermal Embedding of Humicola insolens Cutinase: A Strategy for Improving Polyester Biodegradation in Seawater. Biomacromolecules 2023; 24:5836-5846. [PMID: 37940601 DOI: 10.1021/acs.biomac.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
By thermal embedding of the commercially available enzyme Humicola insolens cutinase (HiC), this study successfully enhanced the biodegradability of various polyesters (PBS, PBSA, PCL, PBAT) in seawater, which otherwise show limited environmental degradability. Melt extrusion above the melting temperature was used for embedding HiC in the polyesters. The overall physical properties of the HiC-embedded films remained almost unchanged compared to those of the neat films. In the buffer, embedding HiC allowed rapid polymer degradation into water-soluble hydrolysis products. Biochemical oxygen demand tests showed that the HiC-embedded polyester films exhibited similar or much higher biodegradability than the biodegradable cellulose standard in natural seawater. Thermal embedding of HiC aims to accelerate the biodegradation of plastics that are already biodegradable but have limited environmental biodegradability, potentially reducing their contribution to environmental problems such as marine microplastics.
Collapse
Affiliation(s)
- QiuYuan Huang
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Jiang W, Sun J, Dong W, Zhou J, Jiang Y, Zhang W, Xin F, Jiang M. Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capable of catabolism bis (2-hydroxyethyl) terephthalate. ENVIRONMENTAL RESEARCH 2023; 238:117240. [PMID: 37783328 DOI: 10.1016/j.envres.2023.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Bis (2-hydroxyethyl) terephthalate (BHET) is one of the main compounds produced by enzymatic hydrolysis or chemical depolymerization of polyethylene terephthalate (PET). However, the lack of understanding on BHET microbial metabolism is a main factor limiting the bio-upcycling of PET. In this study, BHET-degrading strains of Rhodococcus biphenylivorans GA1 and Burkholderia sp. EG1 were isolated and identified, which can grow with BHET as the sole carbon source. Furthermore, a novel esterase gene betH was cloned from strain GA1, which encodes a BHET hydrolyzing esterase with the highest activity at 30 °C and pH 7.0. In addition, the co-culture containing strain GA1 and strain EG1 could completely degrade high concentration of BHET, eliminating the inhibition on strain GA1 caused by the accumulation of intermediate metabolite ethylene glycol (EG). This work will provide potential strains and a feasible strategy for PET bio-upcycling.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
18
|
Torabi H, Javi F, Deisenroth TW, Pho TV, Barbright V, Abbaspourrad A. Mechanism and kinetics of enzymatic degradation of polyester microparticles using a shrinking particle-shrinking core model. LAB ON A CHIP 2023; 23:4456-4465. [PMID: 37740368 DOI: 10.1039/d3lc00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Generalized shrinking particle (SPM) and shrinking core (SCM) models were developed to the kinetics of heterogenous enzymatic degradation of polymer microparticles in a continuous microflow system. This enzymatic degradation was performed in a microfluidic device designed to both physically separate and immobilize the microparticles. Then time-resolved measurements were made using image processing of the physical changes of the particles during degradation. The kinetics of enzyme-polymer intermediate formation, enzymatic bond cleavage, and enzyme diffusion through the layer of degraded substrate (SCM only) were mathematically derived to predict the time-resolved degradation of the substrate. The proposed models were tested against the degradation of 15-25 μm particles of polycaprolactone (PCL) and poly (butylene adipate-co-terephthalate) (PBAT) by cutinase enzyme from Humicola insolens. Degradation of PCL microparticles followed the SPM model and its kinetics were found to be zero-order, while the SCM model applied to PBAT microparticles showed first-order kinetics. Further, the degradation of polybutylene succinate (PBS), and poly butylene-sebacate-co-terephthalate (PBSeT) microparticles demonstrated wide applicability of the method. The use of image processing simplifies the required analysis by eliminating the need to remove aliquots or concentrate effluent for additional analytical characterization.
Collapse
Affiliation(s)
- Hooman Torabi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, 14853, USA.
| | - Farhad Javi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, 14853, USA.
| | - Ted W Deisenroth
- BASF Corporation, 500 White Plains Road, Tarrytown, New York 10591, USA
| | - Toan V Pho
- BASF Corporation, 500 White Plains Road, Tarrytown, New York 10591, USA
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, 14853, USA.
| |
Collapse
|
19
|
Li A, Sheng Y, Cui H, Wang M, Wu L, Song Y, Yang R, Li X, Huang H. Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling. Nat Commun 2023; 14:4169. [PMID: 37443360 PMCID: PMC10344914 DOI: 10.1038/s41467-023-39929-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Although considerable research achievements have been made to address the plastic crisis using enzymes, their applications are limited due to incomplete degradation and low efficiency. Herein, we report the identification and subsequent engineering of BHETases, which have the potential to improve the efficiency of PET recycling and upcycling. Two BHETases (ChryBHETase and BsEst) are identified from the environment via enzyme mining. Subsequently, mechanism-guided barrier engineering is employed to yield two robust and thermostable ΔBHETases with up to 3.5-fold enhanced kcat/KM than wild-type, followed by atomic resolution understanding. Coupling ΔBHETase into a two-enzyme system overcomes the challenge of heterogeneous product formation and results in up to 7.0-fold improved TPA production than seven state-of-the-art PET hydrolases, under the conditions used here. Finally, we employ a ΔBHETase-joined tandem chemical-enzymatic approach to valorize 21 commercial post-consumed plastics into virgin PET and an example chemical (p-phthaloyl chloride) for achieving the closed-loop PET recycling and open-loop PET upcycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
- University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Rongrong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
20
|
Brackmann R, de Oliveira Veloso C, de Castro AM, Langone MAP. Enzymatic post-consumer poly(ethylene terephthalate) (PET) depolymerization using commercial enzymes. 3 Biotech 2023; 13:135. [PMID: 37124991 PMCID: PMC10130296 DOI: 10.1007/s13205-023-03555-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) is a synthetic polymer widely used globally. The high PET resistance to biotic degradation and its improper destination result in the accumulation of this plastic in the environment, largely affecting terrestrial and aquatic animals. This work investigated post-consumer PET (PC-PET) degradation using five commercial hydrolase enzymes (Novozym 51032, CalB, Palatase, Eversa, Lipozyme TL). Humicola insolens cutinase (HiC, Novozym 51032) was the most active among the enzymes studied. Several important reaction parameters (enzyme type, dual enzyme system, enzyme concentration, temperature, ultrasound treatment) were evaluated in PC-PET hydrolysis using HiC. The concentration and the proportion (molar ratio) of hydrolysis products, terephthalic acid (TPA), mono(2-hydroxyethyl) terephthalate (MHET), and bis(2-hydroxyethyl) terephthalate (BHET), were significantly changed depending on the reaction temperature. The TPA released at 70 °C was 3.65-fold higher than at 50 °C. At higher temperatures, the conversion of MHET into TPA was favored. The enzymatic PET hydrolysis by HiC was very sensitive to the enzyme concentration, indicating that it strongly adsorbs on the polymer surface. The concentration of TPA, MHET, and BHET increased as the enzyme concentration increased, and a maximum was achieved using 40-50 vol % of HiC. The presented results add relevant data to optimizing enzyme-based PET recycling technologies.
Collapse
Affiliation(s)
- Rodrigo Brackmann
- Chemistry Institute, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524, PHLC, IQ, Sl.310, Rio de Janeiro, RJ CEP 20550-013 Brazil
- Federal University of Technology Paraná (UTFPR), Curitiba, Brazil
| | - Cláudia de Oliveira Veloso
- Chemistry Institute, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524, PHLC, IQ, Sl.310, Rio de Janeiro, RJ CEP 20550-013 Brazil
| | | | - Marta Antunes Pereira Langone
- Chemistry Institute, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524, PHLC, IQ, Sl.310, Rio de Janeiro, RJ CEP 20550-013 Brazil
- Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Malafatti-Picca L, Bucioli EC, de Barros Chaves MR, de Castro AM, Valoni É, de Oliveira VM, Marsaioli AJ, Govone JS, de Franceschi de Angelis D, Brienzo M, Attili-Angelis D. Fungal Screening for Potential PET Depolymerization. Polymers (Basel) 2023; 15:polym15061581. [PMID: 36987362 PMCID: PMC10053415 DOI: 10.3390/polym15061581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Approximately 400 billion PET bottles are produced annually in the world, of which from 8 to 9 million tons are discarded in oceans. This requires developing strategies to urgently recycle them. PET recycling can be carried out using the microbial hydrolysis of polymers when monomers and oligomers are released. Exploring the metabolic activity of fungi is an environmentally friendly way to treat harmful polymeric waste and obtain the production of monomers. The present study addressed: (i) the investigation of potential of strains with the potential for the depolymerization of PET bottles from different manufacturers (crystallinity of 35.5 and 10.4%); (ii) the search for a culture medium that favors the depolymerization process; and (iii) gaining more knowledge on fungal enzymes that can be applied to PET recycling. Four strains (from 100 fungal strains) were found as promising for conversion into terephthalic acid from PET nanoparticles (npPET): Curvularia trifolii CBMAI 2111, Trichoderma sp. CBMAI 2071, Trichoderma atroviride CBMAI 2073, and Cladosporium cladosporioides CBMAI 2075. The fermentation assays in the presence of PET led to the release of terephthalic acid in concentrations above 12 ppm. Biodegradation was also confirmed using mass variation analyses (reducing mass), scanning electron microscopy (SEM) that showed evidence of material roughness, FTIR analysis that showed band modification, enzymatic activities detected for lipase, and esterase and cutinase, confirmed by monomers/oligomers quantification using high performance liquid chromatography (HPLC-UV). Based on the microbial strains PET depolymerization, the results are promising for the exploration of the selected microbial strain.
Collapse
Affiliation(s)
- Lusiane Malafatti-Picca
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Elaine Cristina Bucioli
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Michel Ricardo de Barros Chaves
- Coordination of Natural Sciences, Federal University of Maranhão (UFMA), Av. João Alberto, 700, Bacabal 65700-000, MA, Brazil
| | - Aline Machado de Castro
- Department of Biotechnology, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro 21941-915, RJ, Brazil
| | - Érika Valoni
- Department of Biotechnology, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro 21941-915, RJ, Brazil
| | - Valéria Maia de Oliveira
- Division of Microbial Resources, CPQBA, State University of Campinas (Unicamp), Rua Alexandre Cazellato, 999, Paulínia 13148-218, SP, Brazil
| | - Anita Jocelyne Marsaioli
- Institute of Chemistry, State University of Campinas (Unicamp), P.O. Box 6154, Campinas 13084-971, SP, Brazil
| | - José Silvio Govone
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Michel Brienzo
- Institute For Research in Bioenergy (IPBEN), São Paulo State University (UNESP), R. 10, 2527, Santana, Rio Claro 13500-230, SP, Brazil
| | - Derlene Attili-Angelis
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
- Division of Microbial Resources, CPQBA, State University of Campinas (Unicamp), Rua Alexandre Cazellato, 999, Paulínia 13148-218, SP, Brazil
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| |
Collapse
|
22
|
Determinants for an Efficient Enzymatic Catalysis in Poly(Ethylene Terephthalate) Degradation. Catalysts 2023. [DOI: 10.3390/catal13030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The enzymatic degradation of the recalcitrant poly(ethylene terephthalate) (PET) has been an important biotechnological goal. The present review focuses on the state of the art in enzymatic degradation of PET, and the challenges ahead. This review covers (i) enzymes acting on PET, (ii) protein improvements through selection or engineering, (iii) strategies to improve biocatalyst–polymer interaction and monomer yields. Finally, this review discusses critical points on PET degradation, and their related experimental aspects, that include the control of physicochemical parameters. The search for, and engineering of, PET hydrolases, have been widely studied to achieve this, and several examples are discussed here. Many enzymes, from various microbial sources, have been studied and engineered, but recently true PET hydrolases (PETases), active at moderate temperatures, were reported. For a circular economy process, terephtalic acid (TPA) production is critical. Some thermophilic cutinases and engineered PETases have been reported to release terephthalic acid in significant amounts. Some bottlenecks in enzyme performance are discussed, including enzyme activity, thermal stability, substrate accessibility, PET microstructures, high crystallinity, molecular mass, mass transfer, and efficient conversion into reusable fragments.
Collapse
|
23
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
24
|
Aristizábal-Lanza L, Mankar SV, Tullberg C, Zhang B, Linares-Pastén JA. Comparison of the enzymatic depolymerization of polyethylene terephthalate and AkestraTM using Humicola insolens cutinase. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1048744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The enzymatic depolymerization of synthetic polyesters has become of great interest in recycling plastics. Most of the research in this area focuses on the depolymerization of polyethylene terephthalate (PET) due to its widespread use in various applications. However, the enzymatic activity on other commercial polyesters is less frequently investigated. Therefore, AkestraTM attracted our attention, which is a copolymer derived from PET with a partially biobased spirocyclic acetal structure. In this study, the activity of Humicola insolens cutinase (HiCut) on PET and AkestraTM films and powder was investigated. HiCut showed higher depolymerization activity on amorphous PET films than on Akestra™ films. However, an outstanding performance was achieved on AkestraTM powder, reaching 38% depolymerization in 235h, while only 12% for PET powder. These results are consistent with the dependence of the enzymes on the crystallinity of the polymer since Akestra™ is amorphous while the PET powder has 14% crystallinity. On the other hand, HiCut docking studies and molecular dynamic simulations (MD) suggested that the PET-derived mono (hydroxyethyl)terephthalate dimer (MHET)2 is a hydrolyzable ligand, producing terephthalic acid (TPA), while the Akestra™-derived TPA-spiroglycol ester is not, which is consistent with the depolymerization products determined experimentally. MD studies also suggest ligand-induced local conformational changes in the active site.
Collapse
|
25
|
Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by Yarrowia lipolytica: A Comparison between Hydrolysis Using Cell-Free Enzymatic Extracts and Microbial Submerged Cultivation. Molecules 2022; 27:7502. [PMID: 36364329 PMCID: PMC9655755 DOI: 10.3390/molecules27217502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
Several microorganisms have been reported as capable of acting on poly(ethylene terephthalate) (PET) to some extent, such as Yarrowia lipolytica, which is a yeast known to produce various hydrolases of industrial interest. The present work aims to evaluate PET depolymerization by Y. lipolytica using two different strategies. In the first one, biocatalysts were produced during solid-state fermentation (SSF-YL), extracted and subsequently used for the hydrolysis of PET and bis(2-hydroxyethyl terephthalate) (BHET), a key intermediate in PET hydrolysis. Biocatalysts were able to act on BHET, yielding terephthalic acid (TPA) (131.31 µmol L-1), and on PET, leading to a TPA concentration of 42.80 µmol L-1 after 168 h. In the second strategy, PET depolymerization was evaluated during submerged cultivations of Y. lipolytica using four different culture media, and the use of YT medium ((w/v) yeast extract 1%, tryptone 2%) yielded the highest TPA concentration after 96 h (65.40 µmol L-1). A final TPA concentration of 94.3 µmol L-1 was obtained on a scale-up in benchtop bioreactors using YT medium. The conversion obtained in bioreactors was 121% higher than in systems with SSF-YL. The results of the present work suggest a relevant role of Y. lipolytica cells in the depolymerization process.
Collapse
Affiliation(s)
- Julio Cesar Soares Sales
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| | - Aline Machado de Castro
- Divisão de Biotecnologia, Centro de Pesquisa e Desenvolvimento, PETROBRAS, Av. Horácio Macedo, 950. Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Bernardo Dias Ribeiro
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| | - Maria Alice Zarur Coelho
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
26
|
Khairul Anuar NFS, Huyop F, Ur-Rehman G, Abdullah F, Normi YM, Sabullah MK, Abdul Wahab R. An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. Int J Mol Sci 2022; 23:12644. [PMID: 36293501 PMCID: PMC9603852 DOI: 10.3390/ijms232012644] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Plastic or microplastic pollution is a global threat affecting ecosystems, with the current generation reaching as much as 400 metric tons per/year. Soil ecosystems comprising agricultural lands act as microplastics sinks, though the impact could be unexpectedly more far-reaching. This is troubling as most plastic forms, such as polyethylene terephthalate (PET), formed from polymerized terephthalic acid (TPA) and ethylene glycol (EG) monomers, are non-biodegradable environmental pollutants. The current approach to use mechanical, thermal, and chemical-based treatments to reduce PET waste remains cost-prohibitive and could potentially produce toxic secondary pollutants. Thus, better remediation methods must be developed to deal with plastic pollutants in marine and terrestrial environments. Enzymatic treatments could be a plausible avenue to overcome plastic pollutants, given the near-ambient conditions under which enzymes function without the need for chemicals. The discovery of several PET hydrolases, along with further modification of the enzymes, has considerably aided efforts to improve their ability to degrade the ester bond of PET. Hence, this review emphasizes PET-degrading microbial hydrolases and their contribution to alleviating environmental microplastics. Information on the molecular and degradation mechanisms of PET is also highlighted in this review, which might be useful in the future rational engineering of PET-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Nurul Fatin Syamimi Khairul Anuar
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ghani Ur-Rehman
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Khalizan Sabullah
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
27
|
Eugenio EDQ, Campisano ISP, Dias AG, Castro AMD, Coelho MAZ, Langone MAP. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET. J Biotechnol 2022; 358:102-110. [PMID: 36063976 DOI: 10.1016/j.jbiotec.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022]
Abstract
Poly(ethylene terephthalate) (PET) is one of the main synthetic plastics produced worldwide. The extensive use of this polymer causes several problems due to its low degradability. In this scenario, biocatalysts dawn as an alternative to enhance PET recycling. The enzymatic hydrolysis of PET results in a mixture of terephthalic acid (TPA), ethylene glycol (EG), mono-(2-hydroxyethyl) terephthalate (MHET) and bis-(2-hydroxyethyl) terephthalate (BHET) as main products. This work developed a new methodology to quantify the hydrolytic activity of biocatalysts, using BHET as a model substrate. The protocol can be used in screening enzymes for PET depolymerization reactions, amongst other applications. The very good fitting (R2 = 0.993) between experimental data and the mathematical model confirmed the feasibility of the Michaelis-Menten equation to analyze the effect of BHET concentration (8-200 mmol L-1) on initial hydrolysis rate catalyzed by Humicola insolens cutinase (HiC). In addition to evaluating the effects of enzyme and substrate concentration on the enzymatic hydrolysis of BHET, a novel and straightforward method for MHET synthesis was developed using an enzyme load of 0.025 gprotein gBHET-1 and BHET concentration of 60 mmol L-1 at 40 °C. MHET was synthesized with high selectivity (97 %) and yield (82 %). The synthesized MHET properties were studied using differential scanning calorimetry (DSC), thermogravimetry (TGA), and proton nuclear magnetic resonance (1H NMR), observing the high purity of the final product (86.7 %). As MHET is not available commercially, this synthesis using substrate and enzyme from open suppliers adds new perspectives to monitoring PET hydrolysis reactions.
Collapse
Affiliation(s)
- Erika de Queiros Eugenio
- Chemical School, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Faculty of Technology, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Ayres Guimarães Dias
- Chemistry Institute, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | | | - Marta Antunes Pereira Langone
- Chemistry Institute, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil; Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Meyer Cifuentes IE, Wu P, Zhao Y, Liu W, Neumann-Schaal M, Pfaff L, Barys J, Li Z, Gao J, Han X, Bornscheuer UT, Wei R, Öztürk B. Molecular and Biochemical Differences of the Tandem and Cold-Adapted PET Hydrolases Ple628 and Ple629, Isolated From a Marine Microbial Consortium. Front Bioeng Biotechnol 2022; 10:930140. [PMID: 35935485 PMCID: PMC9350882 DOI: 10.3389/fbioe.2022.930140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Polybutylene adipate terephthalate (PBAT) is a biodegradable alternative to polyethylene and can be broadly used in various applications. These polymers can be degraded by hydrolases of terrestrial and aquatic origin. In a previous study, we identified tandem PETase-like hydrolases (Ples) from the marine microbial consortium I1 that were highly expressed when a PBAT blend was supplied as the only carbon source. In this study, the tandem Ples, Ple628 and Ple629, were recombinantly expressed and characterized. Both enzymes are mesophilic and active on a wide range of oligomers. The activities of the Ples differed greatly when model substrates, PBAT-modified polymers or PET nanoparticles were supplied. Ple629 was always more active than Ple628. Crystal structures of Ple628 and Ple629 revealed a structural similarity to other PETases and can be classified as member of the PETases IIa subclass, α/β hydrolase superfamily. Our results show that the predicted functions of Ple628 and Ple629 agree with the bioinformatic predictions, and these enzymes play a significant role in the plastic degradation by the consortium.
Collapse
Affiliation(s)
- Ingrid E. Meyer Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pan Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yipei Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Lara Pfaff
- Junior Research Group Plastic Biodegradation, Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Justyna Barys
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Zhishuai Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jian Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xu Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Başak Öztürk,
| |
Collapse
|
29
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
30
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
31
|
Lusty Beech J, Clare R, Kincannon WM, Erickson E, McGeehan JE, Beckham GT, DuBois JL. A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. RSC Adv 2022; 12:8119-8130. [PMID: 35424733 PMCID: PMC8982334 DOI: 10.1039/d2ra00612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Esterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size. In this work, we have adapted a UV/visible assay using pH-sensitive sulfonphthalein dyes for the real-time quantification of ester hydrolysis of bis-(2-hydroxyethyl) terephthalate (BHET), a subunit of polyethylene terephthalate (PET) plastic. We applied this method to a diverse set of known PET hydrolases and commercial esterases in a microplate format. The approach identified four PET hydrolases and one commercial esterase with high levels of specificity for BHET hydrolysis. Five additional PET hydrolases and three commercial esterases, including a thermophilic enzyme, effectively hydrolyzed both BHET and its monoester product MHET (mono-(2-hydroxyethyl) terephthalate). Specific activities were discernible within one hour and reactions reached an unequivocal endpoint well within 24 hours. The results from the UV/visible method correlated well with conventional HPLC analysis of the reaction products. We examined the suitability of the method toward variable pH, temperature, enzyme preparation method, mono- and multi-ester substrate type, and level of sensitivity versus stringency, finding the assay to be easily adaptable to diverse screening conditions and kinetic measurements. This method offers an accurate, easily accessible, and cost-effective route towards high-throughput library screening to support the discovery, directed evolution, and protein engineering of these critical biocatalysts.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Rita Clare
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - William M Kincannon
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth Portsmouth PO1 2DY UK
- BOTTLE Consortium Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| |
Collapse
|
32
|
Guo B, Vanga SR, Lopez-Lorenzo X, Saenz-Mendez P, Ericsson SR, Fang Y, Ye X, Schriever K, Bäckström E, Biundo A, Zubarev RA, Furó I, Hakkarainen M, Syrén PO. Conformational Selection in Biocatalytic Plastic Degradation by PETase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Boyang Guo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sudarsana Reddy Vanga
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ximena Lopez-Lorenzo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sara Rönnblad Ericsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yuan Fang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinchen Ye
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Karen Schriever
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Bäckström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonino Biundo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
- SciLifeLab, SE-171 21 Solna, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - István Furó
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
33
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
34
|
Dhaka V, Singh S, Anil AG, Sunil Kumar Naik TS, Garg S, Samuel J, Kumar M, Ramamurthy PC, Singh J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1777-1800. [PMID: 35039752 PMCID: PMC8755403 DOI: 10.1007/s10311-021-01384-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/29/2021] [Indexed: 05/31/2023]
Abstract
Polyethylene terephthalate is a common plastic in many products such as viscose rayon for clothing, and packaging material in the food and beverage industries. Polyethylene terephthalate has beneficial properties such as light weight, high tensile strength, transparency and gas barrier. Nonetheless, there is actually increasing concern about plastic pollution and toxicity. Here we review the properties, occurrence, toxicity, remediation and analysis of polyethylene terephthalate as macroplastic, mesoplastic, microplastic and nanoplastic. Polyethylene terephthalate occurs in groundwater, drinking water, soils and sediments. Plastic uptake by humans induces diseases such as reducing migration and proliferation of human mesenchymal stem cells of bone marrow and endothelial progenitor cells. Polyethylene terephthalate can be degraded by physical, chemical and biological methods.
Collapse
Affiliation(s)
- Vaishali Dhaka
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Amith G. Anil
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012 India
| | - T. S. Sunil Kumar Naik
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Shashank Garg
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jastin Samuel
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi, Jharkhand 835205 India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
35
|
De Jesus R, Alkendi R. A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Front Microbiol 2022; 13:1066133. [PMID: 36938133 PMCID: PMC10018190 DOI: 10.3389/fmicb.2022.1066133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 03/06/2023] Open
Abstract
Accumulating plastics in the biosphere implicates adverse effects, raising serious concern among scientists worldwide. Plastic waste in nature disintegrates into microplastics. Because of their minute appearance, at a scale of <5 mm, microplastics easily penetrate different pristine water bodies and terrestrial niches, posing detrimental effects on flora and fauna. The potential bioremediative application of microbial enzymes is a sustainable solution for the degradation of microplastics. Studies have reported a plethora of bacterial and fungal species that can degrade synthetic plastics by excreting plastic-degrading enzymes. Identified microbial enzymes, such as IsPETase and IsMHETase from Ideonella sakaiensis 201-F6 and Thermobifida fusca cutinase (Tfc), are able to depolymerize plastic polymer chains producing ecologically harmless molecules like carbon dioxide and water. However, thermal stability and pH sensitivity are among the biochemical limitations of the plastic-degrading enzymes that affect their overall catalytic activities. The application of biotechnological approaches improves enzyme action and production. Protein-based engineering yields enzyme variants with higher enzymatic activity and temperature-stable properties, while site-directed mutagenesis using the Escherichia coli model system expresses mutant thermostable enzymes. Furthermore, microalgal chassis is a promising model system for "green" microplastic biodegradation. Hence, the bioremediative properties of microbial enzymes are genuinely encouraging for the biodegradation of synthetic microplastic polymers.
Collapse
Affiliation(s)
- Rener De Jesus
- College of Graduate Studies, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ruwaya Alkendi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Ruwaya Alkendi,
| |
Collapse
|
36
|
Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Comput Struct Biotechnol J 2022; 20:459-470. [PMID: 35070168 PMCID: PMC8761609 DOI: 10.1016/j.csbj.2021.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) has caused serious environmental concerns but could be degraded at high temperature. Previous studies show that cutinase from Thermobifida fusca KW3 (TfCut2) is capable of degrading and upcycling PET but is limited by its thermal stability. Nowadays, Popular protein stability modification methods rely mostly on the crystal structures, but ignore the fact that the actual conformation of protein is complex and constantly changing. To solve these problems, we developed a computational approach to design variants with enhanced protein thermal stability by mining Molecular Dynamics simulation trajectories using Machine Learning methods (MDL). The optimal classification accuracy and the optimal Pearson correlation coefficient of MDL model were 0.780 and 0.716, respectively. And we successfully designed variants with high ΔTm values using MDL method. The optimal variant S121P/D174S/D204P had the highest ΔTm value of 9.3 °C, and the PET degradation ratio increased by 46.42-fold at 70℃, compared with that of wild type TfCut2. These results deepen our understanding on the complex conformations of proteins and may enhance the plastic recycling and sustainability at glass transition temperature.
Collapse
|
37
|
Abstract
Abstract
The serious issue of textile waste accumulation has raised attention on biodegradability as a possible route to support sustainable consumption of textile fibers. However, synthetic textile fibers that dominate the market, especially poly(ethylene terephthalate) (PET), resist biological degradation, creating environmental and waste management challenges. Because pure natural fibers, like cotton, both perform well for consumer textiles and generally meet certain standardized biodegradability criteria, inspiration from the mechanisms involved in natural biodegradability are leading to new discoveries and developments in biologically accelerated textile waste remediation for both natural and synthetic fibers. The objective of this review is to present a multidisciplinary perspective on the essential bio-chemo-physical requirements for textile materials to undergo biodegradation, taking into consideration the impact of environmental or waste management process conditions on biodegradability outcomes. Strategies and recent progress in enhancing synthetic textile fiber biodegradability are reviewed, with emphasis on performance and biodegradability behavior of poly(lactic acid) (PLA) as an alternative biobased, biodegradable apparel textile fiber, and on biological strategies for addressing PET waste, including industrial enzymatic hydrolysis to generate recyclable monomers. Notably, while pure PET fibers do not biodegrade within the timeline of any standardized conditions, recent developments with process intensification and engineered enzymes show that higher enzymatic recycling efficiency for PET polymer has been achieved compared to cellulosic materials. Furthermore, combined with alternative waste management practices, such as composting, anaerobic digestion and biocatalyzed industrial reprocessing, the development of synthetic/natural fiber blends and other strategies are creating opportunities for new biodegradable and recyclable textile fibers.
Article Highlights
Poly(lactic acid) (PLA) leads other synthetic textile fibers in meeting both performance and biodegradation criteria.
Recent research with poly(ethylene terephthalate) (PET) polymer shows potential for efficient enzyme catalyzed industrial recycling.
Synthetic/natural fiber blends and other strategies could open opportunities for new biodegradable and recyclable textile fibers.
Collapse
|
38
|
Tamoor M, Samak NA, Jia Y, Mushtaq MU, Sher H, Bibi M, Xing J. Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution. Front Microbiol 2021; 12:777727. [PMID: 34917057 PMCID: PMC8670383 DOI: 10.3389/fmicb.2021.777727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET's carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail.
Collapse
Affiliation(s)
- Muhammad Tamoor
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Biofilm Centre, Aquatic Microbiology Department, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Umar Mushtaq
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Hassan Sher
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Maryam Bibi
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, China
| |
Collapse
|
39
|
Experimental and mathematical modeling approaches for biocatalytic post-consumer poly(ethylene terephthalate) hydrolysis. J Biotechnol 2021; 341:76-85. [PMID: 34534594 DOI: 10.1016/j.jbiotec.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022]
Abstract
The environmental impact arising from poly(ethylene terephthalate) (PET) waste is notable worldwide. Enzymatic PET hydrolysis can provide chemicals that serve as intermediates for value-added product synthesis and savings in the resources. In the present work, some reaction parameters were evaluated on the hydrolysis of post-consumer PET (PC-PET) using a cutinase from Humicola insolens (HiC). The increase in PC-PET specific area leads to an 8.5-fold increase of the initial enzymatic hydrolysis rate (from 0.2 to 1.7 mmol L-1 h-1), showing that this parameter plays a crucial role in PET hydrolysis reaction. The effect of HiC concentration was investigated, and the enzymatic PC-PET hydrolysis kinetic parameters were estimated based on three different mathematical models describing heterogeneous biocatalysis. The model that best fits the experimental data (R2 = 0.981) indicated 1.68 mgprotein mL-1 as a maximum value of the enzyme concentration to optimize the reaction rate. The HiC thermal stability was evaluated, considering that it is a key parameter for its efficient use in PET degradation. The enzyme half-life was shown to be 110 h at 70 ºC and pH 7.0, which outperforms most of the known enzymes displaying PET hydrolysis activity. The results evidence that HiC is a very promising biocatalyst for efficient PET depolymerization.
Collapse
|
40
|
Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites. ENERGIES 2021. [DOI: 10.3390/en14217306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plastics are versatile materials used in a variety of sectors that have seen a rapid increase in their global production. Millions of tonnes of plastic wastes are generated each year, which puts pressure on plastic waste management methods to prevent their accumulation within the environment. Recycling is an attractive disposal method and aids the initiative of a circular plastic economy, but recycling still has challenges to overcome. This review starts with an overview of the current European recycling strategies for solid plastic waste and the challenges faced. Emphasis lies on the recycling of polyolefins (POs) and polyethylene terephthalate (PET) which are found in plastic packaging, as packaging contributes a signification proportion to solid plastic wastes. Both sections, the recycling of POs and PET, discuss the sources of wastes, chemical and mechanical recycling, effects of recycling on the material properties, strategies to improve the performance of recycled POs and PET, and finally the applications of recycled POs and PET. The review concludes with a discussion of the future potential and opportunities of recycled POs and PET.
Collapse
|
41
|
Gautom T, Dheeman D, Levy C, Butterfield T, Alvarez Gonzalez G, Le Roy P, Caiger L, Fisher K, Johannissen L, Dixon N. Structural basis of terephthalate recognition by solute binding protein TphC. Nat Commun 2021; 12:6244. [PMID: 34716322 PMCID: PMC8556258 DOI: 10.1038/s41467-021-26508-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
Biological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism offers an attractive route for bio-based molecular recycling and bioremediation applications. A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been shown to be dependent upon the presence of the key tphC gene. However, little is known from a biochemical and structural perspective about the encoded solute binding protein, TphC. Here, we report the biochemical and structural characterisation of TphC in both open and TPA-bound closed conformations. This analysis demonstrates the narrow ligand specificity of TphC towards aromatic para-substituted dicarboxylates, such as TPA and closely related analogues. Further phylogenetic and genomic context analysis of the tph genes reveals homologous operons as a genetic resource for future biotechnological and metabolic engineering efforts towards circular plastic bio-economy solutions.
Collapse
Affiliation(s)
- Trishnamoni Gautom
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Royal School of Bio-Sciences, Royal Global University, Guwahati, Assam, India
| | - Dharmendra Dheeman
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Thomas Butterfield
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Guadalupe Alvarez Gonzalez
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Philip Le Roy
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Lewis Caiger
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Linus Johannissen
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
42
|
Magalhães RP, Cunha JM, Sousa SF. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Int J Mol Sci 2021; 22:11257. [PMID: 34681915 PMCID: PMC8540959 DOI: 10.3390/ijms222011257] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
Collapse
Affiliation(s)
- Rita P. Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Jorge M. Cunha
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
43
|
Zhang Y, Peng Y, Peng C, Wang P, Lu Y, He X, Wang L. Comparison of Detection Methods of Microplastics in Landfill Mineralized Refuse and Selection of Degradation Degree Indexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13802-13811. [PMID: 34586798 DOI: 10.1021/acs.est.1c02772] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A landfill is an important sink of plastic waste and potential sources of microplastics (MPs) when mineralized refuse is reused. However, limitations are still present in quantifying MPs in mineralized refuse and assessing their degradation degree. In this study, laser direct infrared spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify MPs of mineralized refuse from a landfill. Although 25-113 items/g MPs were detected in particles subjected to flotation, 37.9-674 μg/g polyethylene terephthalate (PET) and 0.0716-1.01 μg/g polycarbonate (PC) were detected in the residual solids by LC-MS/MS, indicating a great amount of plastic polymers still presented in the residue. This suggests that the commonly used flotation-counting method will lead to significant underestimation of MP pollution in mineralized refuse, which might be due to the aging and aggregation process caused by the long-term landfill process. The ratio of "bisphenol A/PC" and "plasticizer/MPs" was found to be positively correlated and negatively correlated with the landfill age, respectively. Therefore, in addition to the spectral index such as the carbonyl index, new indexes based on the concentrations of polymers, free monomers, and plasticizers were proposed to characterize the degradation degree of MPs in a landfill.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yawen Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
44
|
Kim HT, Hee Ryu M, Jung YJ, Lim S, Song HM, Park J, Hwang SY, Lee H, Yeon YJ, Sung BH, Bornscheuer UT, Park SJ, Joo JC, Oh DX. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. CHEMSUSCHEM 2021; 14:4251-4259. [PMID: 34339110 PMCID: PMC8519047 DOI: 10.1002/cssc.202100909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Indexed: 05/13/2023]
Abstract
Chemo-biological upcycling of poly(ethylene terephthalate) (PET) developed in this study includes the following key steps: chemo-enzymatic PET depolymerization, biotransformation of terephthalic acid (TPA) into catechol, and its application as a coating agent. Monomeric units were first produced through PET glycolysis into bis(2-hydroxyethyl) terephthalate (BHET), mono(2-hydroxyethyl) terephthalate (MHET), and PET oligomers, and enzymatic hydrolysis of these glycolyzed products using Bacillus subtilis esterase (Bs2Est). Bs2Est efficiently hydrolyzed glycolyzed products into TPA as a key enzyme for chemo-enzymatic depolymerization. Furthermore, catechol solution produced from TPA via a whole-cell biotransformation (Escherichia coli) could be directly used for functional coating on various substrates after simple cell removal from the culture medium without further purification and water-evaporation. This work demonstrates a proof-of-concept of a PET upcycling strategy via a combination of chemo-biological conversion of PET waste into multifunctional coating materials.
Collapse
Affiliation(s)
- Hee Taek Kim
- Department of Food Science and TechnologyChungnam National UniversityDaejeon34134 (Republic ofKorea
| | - Mi Hee Ryu
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Ye Jean Jung
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Sooyoung Lim
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Hye Min Song
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeyoung Park
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Sung Yeon Hwang
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Hoe‐Suk Lee
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Young Joo Yeon
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141 (Republic ofKorea
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Si Jae Park
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeong Chan Joo
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Department of BiotechnologyThe Catholic University of KoreaBucheon-siGyeonggi-do14662 (Republic ofKorea
| | - Dongyeop X. Oh
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| |
Collapse
|
45
|
Moyses DN, Teixeira DA, Waldow VA, Freire DMG, Castro AM. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using Penicillium species. 3 Biotech 2021; 11:435. [PMID: 34603913 DOI: 10.1007/s13205-021-02988-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
Poly(ethylene terephthalate) (PET) is a petroleum-based plastic that is massively produced and used worldwide. A promising PET recycling process to circumvent petroleum feedstock consumption and help to reduce environmental pollution is microbial or enzymatic biodegradation of post-consumer (PC) PET packages to its monomers-terephthalic acid (TPA) and ethylene glycol (EG)-or to key intermediates in PET synthesis-such as mono- and bis-(2-hydroxyethyl) terephthalate (MHET and BHET). Two species of filamentous fungi previously characterized as lipase producers (Penicillium restrictum and P. simplicissimum) were evaluated in submerged fermentation for induction of lipase production by two inducers (BHET and amorphous PET), and for biodegradation of two substrates (BHET and PC-PET). BHET induced lipase production in P. simplicissimum, achieving a peak of 606.4 U/L at 49 h (12.38 U/L.h), representing an almost twofold increase in comparison to the highest peak in the control (without inducers). Microbial biodegradation by P. simplicissimum after 28 days led to a 3.09% mass loss on PC-PET fragments. In contrast, enzymatic PC-PET depolymerization by cell-free filtrates from a P. simplicissimum culture resulted in low concentrations of BHET, MHET and TPA (up to 9.51 µmol/L), suggesting that there are mechanisms at the organism level that enhance biodegradation. Enzymatic BHET hydrolysis revealed that P. simplicissimum extracellular enzymes catalyze the release of MHET as the predominant product. Our results show that P. simplicissimum is a promising biodegrader of PC-PET that can be further explored for monomer recovery in the context of feedstock recycling processes.
Collapse
|
46
|
Cui L, Qiu Y, Liang Y, Du C, Dong W, Cheng C, He B. Excretory expression of IsPETase in E. coli by an enhancer of signal peptides and enhanced PET hydrolysis. Int J Biol Macromol 2021; 188:568-575. [PMID: 34371048 DOI: 10.1016/j.ijbiomac.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The PET hydrolase from Ideonella sakaiensis (IsPETase) is efficient for PET degradation, which provides a promising solution for environmental contamination by plastics. This study focuses on improving the excretion of IsPETase from E. coli by signal peptide (SP) engineering. A SP enhancer B1 (MERACVAV) was fused to the N-terminal of commonly-used SP (PelB, MalE, LamB, and OmpA) to mediate excretion of IsPETase. Strikingly, the modified SP B1OmpA, B1PelB, and B1MalE significantly increased the excretion of IsPETase, while IsPETase was basically expressed in periplasmic space without enhancer B1. The excretion efficiency of IsPETase mediated by B1PelB was improved by 62 folds compared to that of PelB. The hydrolysis of PET by crude IsPETase in culture solution was also enhanced. Furthermore, the amount of released MHET/TPA from PET by IsPETase was increased by 2.7 folds with pre-incubation of hydrophobin HFBII. Taken together, this work may provide a feasible strategy for the excretion and application of the IsPETase.
Collapse
Affiliation(s)
- Lupeng Cui
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yumeng Qiu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yu Liang
- 2011 College, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Chunjie Du
- 2011 College, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
47
|
Carniel A, Waldow VDA, Castro AMD. A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. Biotechnol Adv 2021; 52:107811. [PMID: 34333090 DOI: 10.1016/j.biotechadv.2021.107811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Plastics production and recycling chains must be refitted to a circular economy. Poly(ethylene terephthalate) (PET) is especially suitable for recycling because of its hydrolysable ester bonds and high environmental impact due to employment in single-use packaging, so that recycling processes utilizing enzymes are a promising biotechnological route to monomer recovery. However, enzymatic PET depolymerization still faces challenges to become a competitive route at an industrial level. In this review, PET characteristics as a substrate for enzymes are discussed, as well as the analytical methods used to evaluate the reaction progress. A comprehensive view on the biocatalysts used is discussed. Subsequently, different strategies pursued to improve enzymatic PET depolymerization are presented, including enzyme modification through mutagenesis, utilization of multiple enzymes, improvement of the interaction between enzymes and the hydrophobic surface of PET, and various reaction conditions (e.g., particle size, reaction medium, agitation, and additives). All scientific developments regarding these different aspects of PET depolymerization are crucial to offer a scalable and competitive technology. However, they must be integrated into global processes from upstream to downstream, discussed here at the final sections, which must be evaluated for their economic feasibility and life cycle assessment to check if PET recycling chains can be broadly incorporated into the future circular economy.
Collapse
Affiliation(s)
- Adriano Carniel
- School of Chemistry, Federal University of Rio de Janeiro (UFRJ) - Cidade Universitária, Rio de Janeiro, RJ CEP 21949-900, Brazil
| | - Vinicius de Abreu Waldow
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil
| | - Aline Machado de Castro
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil.
| |
Collapse
|
48
|
Meyer-Cifuentes IE, Öztürk B. Mle046 Is a Marine Mesophilic MHETase-Like Enzyme. Front Microbiol 2021; 12:693985. [PMID: 34381429 PMCID: PMC8351946 DOI: 10.3389/fmicb.2021.693985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulation of plastics in the oceans presents a major threat to diverse ecosystems. The introduction of biodegradable plastics into the market aims to alleviate the ecological burden caused by recalcitrant plastics. Poly (butylene adipate-co-terephthalate) (PBAT) is a biodegradable commercial plastic that can be biodegraded similarly to polyethylene terephthalate (PET) by PETase-like enzymes and MHETases. The role of MHETases is to hydrolyze the intermediate degradation product of PET, mono-2-hydroxyethyl terephthalate (MHET) to its monomers. We recently identified a homolog of the MHETase of the PET-degrading bacterium Ideonella sakaiensis, Mle046, from a marine microbial consortium. In this consortium, Mle046 was highly expressed when a PBAT-based blend film (PF) was supplied as the sole carbon source. In this study, we recombinantly expressed and biochemically characterized Mle046 under different conditions. Mle046 degrades MHET but also 4-(4-hydroxybutoxycarbonyl) benzoic acid (Bte), the intermediate of PF degradation. Mle046 is a mesophilic enzyme adapted to marine conditions, which rapidly degrades MHET to terephthalate and ethylene glycol at temperatures between 20 and 40°C. Mle046 degradation rates were similar for Bte and MHET. Despite its mesophilic tendency, Mle046 retains a considerable amount of activity at temperatures ranging from 10 to 60°C. In addition, Mle046 is active at a range of pH values from 6.5 to 9. These characteristics make Mle046 a promising candidate for biotechnological applications related to plastic recycling.
Collapse
Affiliation(s)
- Ingrid E Meyer-Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
49
|
Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET). Bioprocess Biosyst Eng 2021; 44:2277-2287. [PMID: 34165618 DOI: 10.1007/s00449-021-02603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Since plastic pollution emerged as an urgent environmental problem, different biocatalysts have been tested for poly(ethylene terephthalate) (PET) hydrolysis. This work evaluated three different possible inducers for lipases and/or esterases, two natural sources of biopolymers (apple peels and commercial cork) and PET, as supplements in the solid-state fermentation of soybean bran by Yarrowia lipolytica. The obtained enzymatic extracts displaying different levels of lipase and esterase activities were then tested for PET depolymerization. Supplementation with 5 or 20 wt% of commercial cork led to an increase of 16% in lipase activity and to an increase of 131% in esterase activity, respectively. PET supplementation also led to an increase in the esterase activity of the enzymatic extracts (up to 69%). Enzymes produced in the screening step were able to act as biocatalysts in PET hydrolysis. Enzymatic extracts obtained in fermentation samples supplemented with 20 wt% PET and 20 wt% apple peels led to the highest terephthalic acid concentration (21.2 µmol L-1) in 7 days, whereas enzymes produced in commercial cork media were more efficient for bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis, one of the key-PET hydrolysis intermediates. Results suggest a good potential of the biocatalysts produced by Y. lipolytica IMUFRJ 50,682 in a low-cost media for subsequent utilization in PET depolymerization reactions. This is one of the few reports on the use of a yeast for this application.
Collapse
|
50
|
Sales JCS, Santos AG, de Castro AM, Coelho MAZ. A critical view on the technology readiness level (TRL) of microbial plastics biodegradation. World J Microbiol Biotechnol 2021; 37:116. [DOI: 10.1007/s11274-021-03089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
|