1
|
Wang P, Si H, Li C, Xu Z, Guo H, Jin S, Cheng H. Plant genetic transformation: achievements, current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2034-2058. [PMID: 40052992 PMCID: PMC12120897 DOI: 10.1111/pbi.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 05/31/2025]
Abstract
Regeneration represents a fundamental biological process wherein an organism's tissues or organs repair and replace themselves following damage or environmental stress. In plant systems, injured tree branches can regenerate adventitious buds and develop new crowns through propagation techniques like cuttings and canopy pruning, while transgenic plants emerge via tissue culture in genetic engineering processes intimately connected to plant regeneration mechanisms. The advancement of plant regeneration technology is critical for addressing complex and dynamic climate challenges, ultimately ensuring global agricultural sustainability. This review comprehensively synthesizes the latest genetic transformation technologies, including transformation systems across woody, herbaceous and algal species, organellar genetic modifications, crucial regeneration factors facilitating Agrobacterium-mediated transformations, the intricate hormonal networks regulating plant regeneration, comparative analyses of transient transformation approaches and marker gene dynamics throughout transformation processes. Ultimately, the review offers novel perspectives on current transformation bottlenecks and proposes future research trajectories.
Collapse
Affiliation(s)
- Peilin Wang
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Huan Si
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Chenhui Li
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Huiming Guo
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongmei Cheng
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
2
|
Jaiboon K, Chouwatat P, Napathorn SC. Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp. SCN-KJ. Int J Biol Macromol 2024; 281:136556. [PMID: 39406327 DOI: 10.1016/j.ijbiomac.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated that Burkholderia sp. SCN-KJ is a promising novel species for the biovalorization of crude glycerol to polyhydroxybutyrate (PHB) and galactose-rich heteroexopolysaccharide (EPS). Whole-genome and genetic evolution analyses revealed separation of the different clades according to the ANIb and dDDH analyses, which confirmed that Burkholderia sp. SCN-KJ is a novel species. The highest PHB production from crude glycerol was 12.9 ± 0.4 g/L (72.9 ± 2.1 % w/w), with a productivity of 0.46 g/L/h and YP/S of 0.3 g/g at 28 h in a 10 L fermenter. The galactose-rich hetero-EPS began to be produced after nitrogen depletion, resulting in a concentration of 22.4 ± 0.2 g/L at 38 h. Examination of the carbon-to‑nitrogen ratio (C/N) showed that nitrogen-rich condition (C/N 20) was optimal for PHB production, whereas nitrogen-depleted condition promoted EPS production, showing two different extrema. The findings showed that Burkholderia sp. SCN-KJ has the potential to transform the landscape of biovalorization for sustainable production.
Collapse
Affiliation(s)
- Kanokjun Jaiboon
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Patcharida Chouwatat
- Bangchak Corporation Public Company Limited, M Tower Building, 8(th) Floor, Sukhumvit Rd, Phra Khanong, Bangkok 10260, Thailand.
| | - Suchada Chanprateep Napathorn
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Oh SJ, Lee HJ, Hwang JH, Kim HJ, Shin N, Lee SH, Seo SO, Bhatia SK, Yang YH. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli. J Microbiol Biotechnol 2024; 34:700-709. [PMID: 37919866 PMCID: PMC11016755 DOI: 10.4014/jmb.2306.06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Zhang F, Zhang K, Xian XY, Chen HQ, Chen XW, Zhang Z, Wu YR. Elimination of carbon catabolite repression through gene-modifying a solventogenic Clostridium sp. strain WK to enhance butanol production from the galactose-rich red seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160559. [PMID: 36574546 DOI: 10.1016/j.scitotenv.2022.160559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
With the determination of the Leloir pathway in a solventogenic wild-type strain WK through the transcriptional analysis, two pivotal genes (galK and galT) were systematically co-expressed to demonstrate a significantly enhanced galactose utilization for butanol production with the elimination of carbon catabolite repression (CCR). The gene-modified strain WK-Gal-4 could effectively co-utilize galactose and glucose by directly using an ultrasonication-assisted butyric acid-pretreated Gelidium amansii hydrolysate (BAU) as the substrate, exhibiting the optimal sugar consumption and butanol production from BAU of 20.31 g/L and 7.8 g/L with an increment by 62.35 % and 61.49 % over that by strain WK, respectively. This work for the first time develops a feasible approach to utilizing red algal biomass for butanol fermentation through exploring the metabolic regulation of carbohydrate catabolism, also offering a novel route to develop the future biorefinery using the cost-effective and sustainable marine feedstocks.
Collapse
Affiliation(s)
- Feifei Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China; Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Kan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xing-You Xian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Hai-Qi Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiao-Wei Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China.
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China.
| |
Collapse
|
5
|
Oliveira-Filho ER, de Macedo MA, Lemos ACC, Adams F, Merkel OM, Taciro MK, Gomez JGC, Silva LF. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. Int J Biol Macromol 2022; 213:902-914. [PMID: 35690163 DOI: 10.1016/j.ijbiomac.2022.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 12/26/2022]
Abstract
Burkholderia sacchari LFM101 LMG19450T is a Brazilian bacterium isolated from sugarcane crops soil and a promising biotechnological platform for bioprocesses. It is an efficient producer of poly(3-hydroxybutyrate) from carbohydrates including xylose. In the present work, the expression of B. sacchari xylose consumption genes (xylA, xylB and tktA) was combined with the expression of Aeromonas sp. phaC (PHA synthase), aiming to increase both the growth rates in xylose and the 3-hydroxyhexanoate (3HHx) molar fractions in the produced PHA. Genes were cloned into pBBR1MCS-2 vectors and then expressed in the B. sacchari PHA- mutant LFM344. Maximum specific growth rates on xylose and PHA accumulation capacity of all recombinants were evaluated. In bioreactor experiments, up to 55.5 % CDW was accumulated as copolymer, hexanoate conversion to 3HHx raised from 2 % to 54 % of the maximum theoretical value, compared to wild type. 3HHx mol% ranged from 8 to 35, and molecular weights were between 111 and 220 kg/mol. Thermal analysis measurement showed a decrease in Tg and Tm values with higher 3HHx fraction, indicating improved thermomechanical characteristics. Recombinants construction and bioreactor strategies allowed the production of P(3HB-co-3HHx) with controlled monomeric composition from xylose and hexanoate, allowing its application in diverse fields, including the medical area.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Matheus A de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline C C Lemos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Friederike Adams
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Wang S, Ma Y, Li Y, Ge X, Lu C, Cai C, Yang Y, Zhao Y, Liang G, Guo X, Cao G, Li B, Gao P. Long non-coding RNAs in <i>Sus scrofa</i> ileum under starvation stress. Anim Biosci 2022; 35:975-988. [PMID: 35240026 PMCID: PMC9271390 DOI: 10.5713/ab.21.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 11/27/2022] Open
Abstract
Objective In this study, we aimed to identify long non-coding RNAs (lncRNAs) that play important roles in starvation stress, analyze their functions, and discover potential molecular targets to alleviate starvation stress to provide a theoretical reference for subsequent in-depth research. Methods We generated a piglet starvation stress animal model. Nine Yorkshire weaned piglets were randomly divided into a long-term starvation stress group (starved for 72 h), short-term starvation stress group (starved for 48 h), and the control group. LncRNA libraries were constructed using high-throughput sequencing of piglet ileums. Results We obtained 11,792 lncRNAs, among which, 2,500 lncRNAs were novel. In total, 509 differentially expressed (DE)lncRNAs were identified in this study. Target genes of DElncRNAs were predicted via cis and trans interactions, and functional and pathway analyses were performed. Gene ontology functions and Kyoto encyclopedia of genes and genomes analysis revealed that lncRNA-targeted genes mainly participated in metabolic pathways, cellular processes, immune system processes, digestive systems, and transport activities. To reveal the mechanism underlying starvation stress, the interaction network between lncRNAs and their targets was constructed based on 26 DElncRNAs and 72 DEmRNAs. We performed an interaction network analysis of 121 DElncRNA–DEmRNA pairs with a Pearson correlation coefficient greater than 0.99. Conclusion We found that MSTRG.19894.13, MSTRG.16726.3, and MSTRG.12176.1 might play important roles in starvation stress. This study not only generated a library of enriched lncRNAs in piglets, but its outcomes also provide a strong foundation to screen key lncRNAs involved in starvation stress and a reference for subsequent in-depth research.
Collapse
|
7
|
Miyamoto RY, de Melo RR, de Mesquita Sampaio IL, de Sousa AS, Morais ER, Sargo CR, Zanphorlin LM. Paradigm shift in xylose isomerase usage: a novel scenario with distinct applications. Crit Rev Biotechnol 2021; 42:693-712. [PMID: 34641740 DOI: 10.1080/07388551.2021.1962241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.
Collapse
Affiliation(s)
- Renan Yuji Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences (FCF), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Edvaldo Rodrigo Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Cintia Regina Sargo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
8
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
9
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
10
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
11
|
Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, Lynch MD. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab Eng 2021; 64:26-40. [PMID: 33460820 DOI: 10.1016/j.ymben.2021.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 20-fold and 90-fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and an NADPH generation pathway, consisting of pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over the regulation of the membrane bound transhydrogenase as well as NADPH production through pyruvate ferredoxin oxidoreductase to broadly enable improved NADPH dependent bioconversions or production via NADPH dependent metabolic pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Chemistry, Duke University, USA
| | - Zhixia Ye
- Department of Biomedical Engineering, Duke University, USA
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, USA
| | | | | | - Tian Yang
- Department of Biomedical Engineering, Duke University, USA
| | | |
Collapse
|
12
|
Lipid Accumulation by Xylose Metabolism Engineered Mucor circinelloides Strains on Corn Straw Hydrolysate. Appl Biochem Biotechnol 2020; 193:856-868. [PMID: 33200265 DOI: 10.1007/s12010-020-03427-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022]
Abstract
Previously, we presented a novel approach for increasing the consumption of xylose and the lipid yield by overexpressing the genes coding for xylose isomerase (XI) and xylulokinase (XK) in Mucor circinelloides. In the present study, an in-depth analysis of lipid accumulation by xylose metabolism engineered M. circinelloides strains (namely Mc-XI and Mc-XK) using corn straw hydrolysate was to be explored. The results showed that the fatty acid contents of the engineered M. circinelloides strains were, respectively, increased by 19.8% (in Mc-XI) and 22.3% (in Mc-XK) when compared with the control strain, even though a slightly decreased biomass in these engineered strains was detected. Moreover, the xylose uptake rates of engineered strains in the corn straw hydrolysate were improved significantly by 71.5% (in Mc-XI) and 68.8% (in Mc-XK), respectively, when compared with the control strain. Maybe the increased utilization of xylose led to an increase in lipid synthesis. When the recombinant M. circinelloides strains were cultured in corn straw hydrolysate medium with the carbon-to-nitrogen ratio (C/N ratio) of 50 and initial pH of 6.0, at 30 °C and 500 rpm for 144 h, a total biomass of 12.6-12.9 g/L with a lipid content of 17.2-17.7% (corresponding to a lipid yield of 2.17-2.28 g/L) was achieved. Our study provides a foundation for the further application of the engineered M. circinelloides strains to produce lipid from lignocelluloses.
Collapse
|
13
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
14
|
Oliveira-Filho ER, Silva JGP, de Macedo MA, Taciro MK, Gomez JGC, Silva LF. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Front Bioeng Biotechnol 2020; 7:416. [PMID: 31970153 PMCID: PMC6960187 DOI: 10.3389/fbioe.2019.00416] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson G P Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Arjona de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol 2019; 49:161-168. [DOI: 10.1016/j.nbt.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/05/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022]
|
16
|
Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb Cell Fact 2018; 17:74. [PMID: 29764418 PMCID: PMC5952831 DOI: 10.1186/s12934-018-0924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022] Open
Abstract
Background Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. Results First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). Conclusions These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari.![]()
Collapse
|