1
|
Reuning L, Hildebrandt L, Kersting DK, Pröfrock D. High levels of microplastics and microrubber pollution in a remote, protected Mediterranean Cladocora caespitosa coral bed. MARINE POLLUTION BULLETIN 2025; 217:118070. [PMID: 40328134 DOI: 10.1016/j.marpolbul.2025.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Coral reefs are increasingly threatened by anthropogenic stressors, including plastic pollution. This study investigates the abundance and possible ecological impact of microplastics (MPs) and microrubber pollution in sediments from a Cladocora caespitosa coral bed in the north-western Mediterranean. Despite being located in a remote marine protected area with no local plastic pollution sources, our results indicate exceptionally high MP concentrations (mean: 1514 particles/kg dry weight), attributed to long-distance transport of plastics by the Northern Current. Laser Directs Infrared (LDIR) Chemical Imaging and ATR-FTIR spectroscopy were used to characterize the MPs in terms of size, shape and polymer types. Most MPs are fragments (96 %), while fibers contribute only 4 %. The most abundant polymers were polyethylene (PE, 28 %), polyethylene terephthalate (PET, 25 %), and polystyrene (PS, 19 %), with significant contributions from polyurethane (PU) and microrubber. Particle size analysis showed that 92 % of MPs were smaller than 250 μm, with a median particle size varying by polymer type. Notably, polymers with heteroatoms in their main chain, such as PET and polyurethane, exhibited significantly smaller median sizes compared to polyolefins, possibly suggesting different degradation pathways. The high MP concentrations measured in sediments within coral colonies suggests that MPs could have adverse effects on heterotrophic feeding in C. caespitosa, a critical energy source during stress events. This study underscores the urgent need for targeted research on MP effects on the resilience of C. caespitosa and for increased global and regional efforts to curb plastic pollution mitigation in order to conserve coral populations in the Mediterranean.
Collapse
Affiliation(s)
- Lars Reuning
- Institute for Geosciences, CAU Kiel University, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Diego K Kersting
- Global Change, Conservation and Genetics of Marine Species, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre de la Sal S/N, 12595 Ribera de Cabanes, Spain
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
2
|
Li M, Liu Q, Wang J, Deng L, Yang D, Qian X, Fan Y. Exploring the response of bacterial community functions to microplastic features in lake ecosystems through interpretable machine learning. ENVIRONMENTAL RESEARCH 2025; 271:121098. [PMID: 39938630 DOI: 10.1016/j.envres.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Microplastics (MPs) are ubiquitous and have various characteristics. However, their impacts on bacterial community functions in lakes remain elusive. In this study, we identified 33 different MPs features including their abundance, shape, color, size, and polymer type, from Taihu Lake, China. These features were used to construct 48 machine learning models, utilizing four types of machine learning regression algorithms, to investigate how different MP features influence human health, carbon/nitrogen cycling, and energy source-related functions of bacterial communities. The XGBoost models provided the best performance with an average R2 of 0.85 in explaining the abundance of functions. Yellow-, fragment-, and polyethylene terephthalate (PET) MPs were the most important features by Shapley values. Yellow- and PET-MPs mainly had primarily negative impacts on human pathogens pneumonia and chemoheterotrophy, respectively. Fragment-MPs had a primarily positive impact, which shifted from positive to negative at a proportion of 0.5 for methanol oxidation. Moreover, MPs may affect community structure by filtering for functional traits. These findings are important for understanding the effects of MP pollution on bacterial community function and its role in the global carbon and nitrogen cycling and human health and help us to determine the potential impacts of MP pollution on ecosystems.
Collapse
Affiliation(s)
- Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Daojun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Phaksopa J, Worachananant S, Thamrongnawasawat T, Tanapivattanakul K, Kumnuandao S, Chamcha-Em T, Khamrueang A, Chaimongkol T. Microplastic pollution and risk assessment around coral reefs of the Eastern Part, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12441-12454. [PMID: 40295380 DOI: 10.1007/s11356-025-36439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Microplastic pollution, driven by widespread plastic use and poor management, poses a growing threat to marine ecosystems, particularly coral reefs. This study examined microplastic pollution and risk assessment in the surface waters around coral reefs in the Eastern Economic Corridor (EEC) in Eastern Part, Thailand. Microplastics were widespread, with concentrations ranging from 0.05 to 0.54 items/m3 and an average of 0.22 ± 0.16 items/m3. The distribution varied among the reefs, with over 80% of the microplastics exceeding 3 mm in size. The most common shapes were fibers and sheets, with polypropylene (31.25%), polyethylene (19.35%), and PET (18.45%) being the predominant polymers. Si-Chang Island had the highest microplastic abundance, likely due to pollution from residential, industrial, and tourism activities. Risk assessments indicated that Lan Island faced a higher risk of microplastic contamination compared to other areas. While the overall abundance of microplastics was relatively low, the potential impact on coral reefs warrants concern. Periodic monitoring, removal, and mitigation efforts are recommended to address this issue.
Collapse
Affiliation(s)
- Jitraporn Phaksopa
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Suchai Worachananant
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Thon Thamrongnawasawat
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Suriya Kumnuandao
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Tinhapat Chamcha-Em
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Apichayanan Khamrueang
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Thitipong Chaimongkol
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Fong J, Kumar AS, Choy ZY, Tan YH, Gowidjaja JAP, Neo ML. Accumulation of microplastics in various organs of fiddler crabs and sea cucumbers across the coastal habitats in Singapore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125773. [PMID: 39892458 DOI: 10.1016/j.envpol.2025.125773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Microplastics (or MPs) are an emergent threat to marine organisms. This study assessed MP contamination in the major organs of four species from Singapore's coastal habitats: Orange Fiddler Crab (Gelasimus vocans) and Porcelain Fiddler Crab (Austruca annulipes) from mangroves, Garlic Bread Sea Cucumber (Holothuria scabra) from seagrass beds and Synaptid Sea Cucumber (Synaptula recta) from coral reefs. MPs were prevalent in all species and their organs. Mean MP concentrations in fiddler crabs were 6.63 ± 0.97 MP individual-1 in G. vocans and 12.18 ± 3.38 MP individual-1 in A. annulipes, where their female crabs had significantly more MPs than males. This study also confirmed the translocation of MPs to the crabs' hepatopancreas, which had the highest MP concentrations compared to gills and digestive tracts. These observations suggest that the fiddler crabs' sexual dimorphism could influence feeding efficiency and behaviour. In contrast, the sea cucumbers had lower MP concentrations in their organs, where the average MP concentrations were 10.00 ± 2.32 MP individual-1 in H. scabra and 6.33 ± 0.69 MP individual-1 in S. recta. For H. scabra only, their respiratory trees showed the highest MP levels compared to their digestive tracts. Across the species, MPs were predominantly <1,000 μm in size, in fibre shape and polyethylene (PE). These findings provide critical baseline data on MP contamination across different organs in marine organisms, serving as proxies for MP pollution levels in the environment.
Collapse
Affiliation(s)
- Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore.
| | - Ashwini Suresh Kumar
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore
| | - Zhen Yu Choy
- Republic Polytechnic, 9 Woodlands Avenue 9, Singapore, 738964, Singapore
| | - Yi Hong Tan
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore
| | | | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore.
| |
Collapse
|
5
|
Gonçalves GRL, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Invisible Peril: Assessing microplastic pollution in Ghanaian mangroves. MARINE POLLUTION BULLETIN 2025; 211:117361. [PMID: 39631189 DOI: 10.1016/j.marpolbul.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Mangroves are key providers of crucial ecological services. This study's aim is to investigate the levels of microplastic (MP) contamination in mangroves from Ghana's Western and Central regions. A total of 1303 particles were analysed from sediment and water samples, 65 % comprising MPs. West and Central regions had notable differences in MPs abundance. Sediment had the highest number of MPs (703 MPs), with concentrations ranging from 0.01 to 2.23 MPs/g·dw, whilst concentrations in water ranged from 0.2 to 3.75 MPs/l. Fibre shapes were the most abundant MP (67 %) followed by fragments. Ten different groups of polymers were found, with polyester, polyethylene and polypropylene being the most abundant. Synthetic hair, textile and water sachets/small plastic bags were expected to be the source of most MPs collected. High population abundance was shown to be related to high levels of MPs. Our findings suggest reducing single-use plastics, waste management/treatment, and clean drinking water, could reduce the impact of MPs in Ghana.
Collapse
Affiliation(s)
- Geslaine R L Gonçalves
- The Scottish Association for Marine Science (SAMS), Oban, Argyll, Scotland PA37 1QA, UK.
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana.
| | | |
Collapse
|
6
|
Fraga Filho CAD. Analysis of Brazilian plastic waste management in the global context and case study of the City of Vitória, Espírito Santo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5645-5684. [PMID: 39961932 DOI: 10.1007/s11356-024-35865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/25/2024] [Indexed: 03/18/2025]
Abstract
This review analyses Brazil's current stage of plastic waste management, comparing it to what is being carried out worldwide. The Brazilian National Solid Waste Policy established principles and guidelines for solid waste management. However, a decade after its implementation, the results demonstrate timid results about those expected. Brazil's official solid waste and plastics recycling rates are around 4% and 1%, respectively, considerably behind countries with comparable economic growth levels. This work dedicates considerable attention to microplastic pollution, a worldwide concern with potential effects on water bodies, the atmosphere, soils, human health, and vegetal and animal lives. A case study on the solid waste management system in Vitória City, the capital of Espírito Santo, was developed. Besides, a portrait of the pollution in Vitória and Espírito Santo Bays in the atmosphere and mangrove areas is presented. The more critical issues found were the low adherence of the population's city in the selective waste collection (what is reflected in the low solid waste recycling rates), plastic debris, and tiny plastic in the waters, coexisting with heavy metals and hydrocarbons-originated from industrial and anthropogenic activities; microplastics are present in the atmosphere, adding their adverse effects to those of the pollutants already existing in the air and the illegal disposal of waste and the anthropogenic activities which degrade the mangrove ecosystems. A global treaty is being discussed at the United Nations. It's expected that their definitions, initially promised by the end of 2024, will be able to eradicate plastic pollution effectivelly.
Collapse
|
7
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
8
|
Abd El-Hack ME, Ashour EA, AlMalki F, Khafaga AF, Moustafa M, Alshaharni MO, Youssef IM, Elolimy AA, Świątkiewicz S. Harmful impacts of microplastic pollution on poultry and biodegradation techniques using microorganisms for consumer health protection: A review. Poult Sci 2025; 104:104456. [PMID: 39546917 PMCID: PMC11609547 DOI: 10.1016/j.psj.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Microplastics (MPs) are small plastic particles less than five millimeters in size. Microplastic pollution poses a serious threat to ecosystems, affecting both biotic and abiotic components. Current techniques used to eliminate microplastics include recycling, landfilling, incineration, and biodegradation. Microplastics have been detected in various animal species, including poultry, fish, mammals, and invertebrates, indicating widespread exposure and potential bioaccumulation. In the Middle East, MPs contamination was discovered in chicken purchased from food shops, chain supermarkets, and open markets. The contamination levels ranged from 0.03±0.04 to 1.19±0.72 particles per gram of chicken meat. In poultry, microplastics negatively affect production and harm vital organs such as the kidneys, spleen, and lungs. In humans, exposure to microplastics can lead to inflammation, immune responses, metabolic disturbances, DNA damage, neurological damage, and even cancer upon contact with mucosal membranes or absorption into the body. Several studies have explored the use of microorganisms, including bacteria, fungi, and algae, to degrade microplastics, offering an economical and environmentally friendly solution. Different polymers were cultured with strains of Bacillus spp. (SB-14 and SC-9) and Streptococcus spp. (SC-56) for a duration of 40 days. Degradation rates for LDPE were 11.8 %, 4.8 %, and 9.8 %. The rates of deterioration for HDPE were 11.7 %, 3.8 %, and 13.7 %. Rates for polyester beads were 17.3 %, 9.4 %, and 5.8 %. This review focuses on the effects of microorganisms in removing microplastic pollution, the detrimental impact of microplastics on poultry production, and the connection between microplastic pollution and human health.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fatemah AlMalki
- Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra Universit, Al Quwaiiyah 19257, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | | |
Collapse
|
9
|
Hong R, Shi Y, Fan Z, Gao Y, Chen H, Pan C. Chronic exposure to polystyrene microplastics induces renal fibrosis via ferroptosis. Toxicology 2024; 509:153996. [PMID: 39532264 DOI: 10.1016/j.tox.2024.153996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
With the increasing prevalence of microplastics (MPs) in the environment, human health has become a growing concern. After entering the human body, MPs accumulate in the kidneys, indicating that the kidneys are their major target organs. This study investigated nephrotoxicity associated with MPs, with a specific focus on polystyrene (PS) MPs and amino-functionalized polystyrene (PS-NH2) MPs. Although previous studies have documented the nephrotoxic effects associated with short-term exposure to MPs, the mechanisms of kidney toxicity caused by chronic long-term exposure to MPs remain largely unclear. In animal models, mice were exposed to MPs (10 mg/L) at concentrations that are accessible to humans, administered via drinking water over a period of six months. These findings indicate that MPs can induce renal fibrosis by facilitating the onset of inflammation and accumulation of a substantial number of inflammatory cells. Our in vitro study showed that long-term exposure to MPs (60 μg/mL) induced ferroptosis in renal tubular epithelial cells via ferritinophagy and secreted TGF-β1, leading to renal fibroblast activation. Conversely, the application of Fer-1, a ferroptosis inhibitor, prevents ferroptosis in renal epithelial cells and reverses the activation of renal fibroblasts. Our study identified a novel toxicity mechanism for renal fibrosis induced by MPs exposure, offering new insights into the detrimental effects of environmental MPs on human health.
Collapse
Affiliation(s)
- Runyang Hong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yajie Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
11
|
Wāng Y, Jiang Y. Drosophila melanogaster as a tractable eco-environmental model to unravel the toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2024; 192:109012. [PMID: 39332284 DOI: 10.1016/j.envint.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Micro- and nanoplastics have emerged as pervasive environmental pollutants with potential ecotoxicological impacts on various organisms, including the model organismDrosophila melanogaster. Here we comprehensively synthesize current research on the adverse effects of micro- and nanoplastics onDrosophila, highlighting key findings and identifying gaps in the literature. Micro- and nanoplastics can lead to physical damage, oxidative stress, inflammation, genotoxicity, epigenetic changes, apoptosis, and necrosis inDrosophila. Exposure to plastic debris affects nutrient absorption, energy metabolism, and reproductive health, often in a sex-specific manner. For instance, male flies are generally more susceptible to the toxic effects of polystyrene microplastics than female flies, showing greater mortality and metabolic disruptions. Furthermore, the combined exposure of plastics with heavy metals can exacerbate toxic effects, leading to enhanced oxidative stress, genotoxicity, and gut damage. While antagonistic effects have been identified particularly with silver compounds, where polystyrene microplastics reduce the bioavailability and toxicity of silver. The adverse effects of plastic particles onDrosophiladepend on size, with smaller particles penetrating deeper into tissues and eliciting stronger toxic responses. The chemical composition of the plastics and the presence of additives also play crucial roles in determining toxicity levels. Chronic exposure to low levels can be as harmful as acute high-dose exposure, highlighting the need for comprehensive, long-term studies to fully understand the ecological and biological impacts of plastic pollution.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yang Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Mohan Viswanathan P, Mishra A, Singam DR, John J. Assessment of microplastics in highland rock salts of Northern Borneo. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122207. [PMID: 39180824 DOI: 10.1016/j.jenvman.2024.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Mountain salts produced from the highland region in NE Sarawak have a market value and also provide basic income to the communities. During the salt-making process, microplastics (MPs) may enter into commercial table salts from various sources, which has not been explored yet. Hence, the current research investigates the presence of MPs in the rock salts produced from the highland saline water in two different locations (L1 and L2) in NE Sarawak. Among the brine water and rock salt samples analysed, the highest concentrations of MPs were detected from the salt samples. It has been revealed that both the water and salt samples have the highest concentration of MPs occurring within the size range of 1-1000 μm. Transparent MPs are the most common colour observed in both salt and water samples, followed by white, blue, red, and black. The most prevalent shapes of MPs are fibers, which account for almost 47% in water samples and 87% in salt samples. Based on the ATR-FTIR study, polyethylene (PE) is the most prevalent polymer observed in salt samples, followed by polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). In water samples, PP is the most dominating polymer, followed by PE and PS. Through SEM microphotographs, fiber-type MPs have smooth surfaces, fragment-type MPs have rough edges, and sheet-type MPs have layered surfaces. EDX analysis revealed that carbon (C) and oxygen (O) are the most abundant elements, followed by aluminium (Al) and sodium (Na) in MPs. Based on the results, it is inferred that the MPs in the rock salts are mainly sourced from the different stages of salt-making production. This preliminary study shed light on the presence and characteristics of MPs in rock salts in this region. The research outcomes could support sustainable management plans to improve the salt quality and enhance the market value.
Collapse
Affiliation(s)
- Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Anshuman Mishra
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Dayarnan Raj Singam
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Jaithish John
- Department of Mineral and Geoscience Malaysia, Jabatan Mineral Dan Geosains, Sarawak, Malaysia
| |
Collapse
|
13
|
Li H, Lu H, Feng S, Xue Y, Sun T, Yan Y, Zhang X, Yan P. Environmental fate of microplastics in high-altitude basins: the insights into the Yarlung Tsangpo River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121623. [PMID: 38943743 DOI: 10.1016/j.jenvman.2024.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) have been found in remote high-altitude areas, but the main source and migration process remained unclear. This work explored the characteristics and potential sources of MPs in the Yarlung Tsangpo River Basin. The average abundances of MPs in water, sediment, and soil samples were 728.26 ± 100.53 items/m3, 43.16 ± 5.82 items/kg, and 61.92 ± 4.29 items/kg, respectively, with polypropylene and polyethylene as the main polymers. The conditional fragmentation model revealed that the major source of MPs lower than 4000 m was human activities, while that of higher than 4500 m was atmospheric deposition. Community analysis was further conducted to explore the migration process and key points of MPs among different compartments in the basin. It was found that Lhasa (3600 m) and Shigatse (4100 m) were vital sources of MPs inputs in the midstream and downstream, respectively. This work would provide new insights into the fate of MPs in high-altitude areas.
Collapse
Affiliation(s)
- Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| | - Yiming Yan
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| |
Collapse
|
14
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
15
|
Ahsan WA, Lin C, Hussain A, Sheraz M. Sustainable struggling: decoding microplastic released from bioplastics-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:554. [PMID: 38760486 DOI: 10.1007/s10661-024-12721-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.
Collapse
Affiliation(s)
- Wazir Aitizaz Ahsan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
| | - Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Mahshab Sheraz
- Advanced Textile R&D, Department Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| |
Collapse
|
16
|
Ledet J, Tan C, Guan XH, Yong CLX, Ying L, Todd P. Trapping of microplastics and other anthropogenic particles in seagrass beds: Ubiquity across a vertical and horizontal sampling gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106487. [PMID: 38583358 DOI: 10.1016/j.marenvres.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.
Collapse
Affiliation(s)
- Janine Ledet
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Chloe Tan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Xing Hua Guan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Clara Lei Xin Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Lynette Ying
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Peter Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558.
| |
Collapse
|
17
|
Wei Y, Jiao M, Zhao Z, Tang L, Wang Y, Deng J, Peng G, Li R, Wang Y. Secreted salt and hydrodynamic factors combine to affect dynamic fluctuations of microplastics on mangrove leaves. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133698. [PMID: 38335603 DOI: 10.1016/j.jhazmat.2024.133698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Mangrove leaves have been acknowledged as crucial sink for coastal microplastics (MPs). Whereas, the temporal dynamics of MPs intercepted by mangrove leaves have remained poorly understood. Here, we detected MPs intercepted by submerged and non-submerged mangrove leaves over time and the potential driving factors. Abundance and characteristics of MPs interception by mangrove leaves exhibited dynamic fluctuations, with the coefficient of variation (CV) of submerged mangrove leaves (CV = 0.604; 1.76 n/g to 15.45 n/g) being approximately twofold higher than non-submerged mangrove leaves (CV = 0.377; 0.74 n/g to 3.28 n/g). Partial least squares path model (PLS-PM) analysis further illustrated that MPs abundance on submerged mangrove leaves were negative correlated to hydrodynamic factors (i.e., current velocity and tidal range). Intriguingly, secreted salt as a significantly driver of MPs intercepted by mangrove leaves. Results of this work highlights that MPs intercepted by mangrove leaves is characterized by dynamic fluctuations and reveals the importance of hydrodynamic factors and secreted salt. Overall, this work identifies the pivotal buffering role played by mangrove leaves in intercepting MPs, which provides basic knowledge for better understanding of microplastic pollution status and control from mangrove plants.
Collapse
Affiliation(s)
- Yihua Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Liangdong Tang
- Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530004, China
| | - Yijin Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yinghui Wang
- Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530004, China.
| |
Collapse
|
18
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
19
|
Aguirre-Sanchez A, Purca S, Cole M, Indacochea AG, Lindeque PK. Prevalence of microplastics in Peruvian mangrove sediments and edible mangrove species. MARINE POLLUTION BULLETIN 2024; 200:116075. [PMID: 38335630 DOI: 10.1016/j.marpolbul.2024.116075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Mangrove ecosystems have been hypothesised as a potential sink of microplastic debris, which could pose a threat to mangrove biota and ecological function. In this field-study we establish the prevalence of microplastics in sediments and commercially-exploited Anadara tuberculosa (black ark) and Ucides occidentalis (mangrove crab) from five different zones in the mangrove ecosystem of Tumbes, Peru. Microplastic were evident in all samples, with an average of 726 ± 396 microplastics/kg for the sediment, although no differences between the different zones of the mangrove ecosystem were observed. Microplastic concentrations were 1.6± 1.1 items/g for the black ark and 1.9 ± 0.9 microplastics/g for the mangrove crab, with a difference in the microplastic abundance between species (p < 0.05), and between the gills and stomachs of the crab (p < 0.01). Human intake of microplastics from these species, for the population in Tumbes, is estimated at 431 items per capita per year. The outcomes of this work highlight that the mangrove ecosystem is widely contaminated with microplastics, presenting a concern for the marine food web and food security.
Collapse
Affiliation(s)
- Angelica Aguirre-Sanchez
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru.
| | - Sara Purca
- Área Funcional de Investigaciones Marino Costeras (AFIMC), Dirección General de Investigaciones en Acuicultura (DGIA), Instituto del Mar del Peru (IMARPE), Callao, Peru
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| | - Aldo G Indacochea
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
20
|
Long K, Chen Z, Zhang H, Zhang M. Spatiotemporal disturbances and attribution analysis of mangrove in southern China from 1986 to 2020 based on time-series Landsat imagery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169157. [PMID: 38061141 DOI: 10.1016/j.scitotenv.2023.169157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
As one of the most productive ecosystems in the world, mangrove has a critical role to play in both the natural ecosystem and the human economic and social society. However, two thirds of the world's mangrove have been irreversibly damaged over the past 100 years, as a result of ongoing human activities and climate change. In this paper, adopting Landsat for the past 36 years as the data source, the detection of spatiotemporal changes of mangrove in southern China was carried out based on the Google Earth Engine (GEE) cloud platform using the LandTrendr algorithm. In addition, the attribution of mangrove disturbances was analyzed by a random forest algorithm. The results indicated the area of mangrove recovery (5174.64 hm2) was much larger than the area of mangrove disturbances (1625.40 hm2) over the 35-year period in the study area. The disturbances of mangrove in southern China were dominated by low and low-to-medium-level disturbances, with an area of 1009.89 hm2, accounting for 57.50 % of the total disturbances. The mangrove recovery was also dominated by low and low-to-medium-level recovery, with an area of 3239.19 hm2, accounting for 62.61 % of the total recovery area. Both human and natural factors interacted and influenced each other, together causing spatiotemporal disturbances of mangrove in southern China during 1986-2020. The mangrove disturbances in the Phase I (1986-2000) and Phase III (2011-2020) were characterized by human-induced (50.74 % and 58.86 %), such as construction of roads and aquaculture ponds. The mangrove disturbances in the Phase II (2001-2010) were dominated by natural factors (55.73 %), such as tides, flooding, and species invasions. It was also observed that the area of mangrove recovery in southern China increased dramatically from 1986 to 2020 due to the promulgation and implementation of the Chinese government's policy on mangrove protection, as well as increased human awareness of mangrove wetland protection.
Collapse
Affiliation(s)
- Kexin Long
- Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China; Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China
| | - Zhaojun Chen
- Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China; Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China
| | - Huaiqing Zhang
- Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Zhang
- Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China; Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China.
| |
Collapse
|
21
|
Jittalerk R, Babel S. Microplastic contamination in Thai vinegar crabs (Episesarma mederi), giant mudskippers (Periophthalmodon schlosseri), and their surrounding environment from the Bang Pu mangrove forests, Samut Prakan province, Thailand. MARINE POLLUTION BULLETIN 2024; 198:115849. [PMID: 38056288 DOI: 10.1016/j.marpolbul.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The mangrove ecosystem becomes the receptacle for both land- and marine-based plastic waste. This study examines MPs contamination in the Bang Pu mangrove forests (BPMFs) in the inner Gulf of Thailand. For this, Thai vinegar crabs (TVCs) (Episesarma mederi) and giant mudskippers (GMs) (Periophthalmodon schlosseri) were investigated with their surrounding environment in both rainy and dry seasons. Two-step digestion was employed for biota samples. MPs abundance ranged from 7.5 ± 3.8 to 15.9 ± 6.7 items/individual in TVCs and 6.2 ± 5.0 to 10.6 ± 2.6 items/individual in GMs. MPs in small-size ranges (<0.5 mm) were predominant. Fiber MPs were mostly detected in the rainy season. Most MPs were transparent with polyethylene and polypropylene as dominant polymers in all samples. Bioaccumulation was not observed in GMs. The results indicated the imperiled status of MPs contamination in TVCs and GMs with contaminated surrounding environments.
Collapse
Affiliation(s)
- Rungpilin Jittalerk
- School of Bio-Chemical Engineering & Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit Campus, 99 Moo 18, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sandhya Babel
- School of Bio-Chemical Engineering & Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit Campus, 99 Moo 18, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
22
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
23
|
Abd Rahim NH, Cannicci S, Ibrahim YS, Not C, Idris I, Mohd Jani J, Dahdouh-Guebas F, Satyanarayana B. Commercially important mangrove crabs are more susceptible to microplastic contamination than other brachyuran species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166271. [PMID: 37586534 DOI: 10.1016/j.scitotenv.2023.166271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Brachyuran crabs are ecologically and economically important macrofauna in mangrove habitats. However, they are exposed to various contaminants, including plastics, which bioaccumulate in relation to their feeding modes. Setiu Wetlands is a unique place on the east coast of Peninsular Malaysia where different ecosystems such as mangroves, lagoon, beaches, etc., are duly connected and influencing each other. In recent years, the shifted river mouth has threatened these wetlands, causing severe hydrodynamic changes in the lagoon, especially in the core mangrove zone. The present study tested microplastics (MPs) contamination in the mangroves through brachyuran crabs as indicators. Three sampling sites, namely Pulau Layat, Kampung Pengkalan Gelap, and Pulau Sutung were chosen. The four abundant crab species Parasesarma eumolpe, Metaplax elegans, Austruca annulipes, and Scylla olivacea, which display different feeding behaviours were collected from all sites covering the dry (Feb-Mar 2021) and the wet (Dec 2021-Jan 2022) seasonal periods. There were significant differences in the seasonal abundance of MPs among crab species. The highest accumulation of MPs in the crab stomachs in the dry season could be linked to subdued water circulation and poor material dispersion. Besides the lower MPs in the wet period due to improved water exchange conditions, its significant presence in the stomachs of S. olivacea indicates the role of its feeding behaviour as a carnivore. In addition, the micro-Fourier transform infrared spectroscopy (micro-FTIR) revealed the widespread occurrence of polymers such as rayon and polyester in all species across the sites. Given the fact that crabs like S. olivacea are commercially important and the ones contaminated with MPs can cause detrimental effects on the local community's health, further managerial actions are needed to assure sustainable management of the Setiu Wetlands.
Collapse
Affiliation(s)
- Nur Hannah Abd Rahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia.
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019 Florence, Italy; Swire Institute for Marine Science, The University of Hong Kong, Hong Kong; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom
| | - Yusof Shuaib Ibrahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Christelle Not
- Environmental Geochemistry & Oceanography Research Group, Department of Earth Sciences, The University of Hong Kong, Hong Kong
| | - Izwandy Idris
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; South China Sea Repository and Reference Centre, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Jarina Mohd Jani
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Biodiversity Conservation and Management Program, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Farid Dahdouh-Guebas
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium; Ecology & Biodiversity Research Unit, Department of Biology, Vrije Universiteit Brussel-VUB, 1050 Brussels, Belgium
| | - Behara Satyanarayana
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium.
| |
Collapse
|
24
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
25
|
Deep SS, Nasnodkar MR. Metal speciation in sediments and bioaccumulation in edible bivalves to assess metal toxicity in a sand mining impacted tropical (Aghanashini) estuary, southern India. MARINE POLLUTION BULLETIN 2023; 194:115455. [PMID: 37651887 DOI: 10.1016/j.marpolbul.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The study aims to understand the metal toxicity through the relationship between bioavailability in sediments and bioaccumulation in edible bivalves in an estuary subjected to extensive sand mining. The higher deposition of total Fe, Mn, Ni and Zn in the middle region (core M) was ascribed to estuarine processes and proximity to anthropogenic sources. EF revealed moderate to severe enrichment of Ni and Cu in sediments. Igeo showed moderate degree of pollution from Co, moderate to strong pollution from Ni and strong to extreme level of pollution from Cu. In core N, the average bioavailable concentration of Fe, Mn, Zn, Cu, Co and Ni was 1.76 %, 43.18 %, 59.14 %, 62.11 %, 60.42 % and 27.33 % respectively. The average bioavailable concentration of Fe (61.23 %), Mn (56.87 %), Cu (67.98 %), Co (69.77 %) and Ni (40.99 %) was higher in the core M as compared to core N except for Zn (56.98 %). The significant (>25.00 %) proportion of metals in bioavailable fractions in cores N and M construed their non-natural sources. Metal speciation study indicated bioavailability to fauna that likely to enhance by extensive sand mining. The level of Fe, Mn, Zn, Cu and Ni in Saccostrea cucullate, Meretrix casta and Villorita cyprinoides revealed toxicity to bivalves and probably to humans.
Collapse
Affiliation(s)
- Sarang S Deep
- Marine Science, School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao 403206, Goa, India
| | | |
Collapse
|
26
|
H Valido I, Fuentes-Cebrian V, Hernández A, Valiente M, López-Mesas M. Validated method for polystyrene nanoplastic separation in aqueous matrices by asymmetric-flow field flow fraction coupled to MALS and UV-Vis detectors. Mikrochim Acta 2023; 190:285. [PMID: 37418024 PMCID: PMC10328892 DOI: 10.1007/s00604-023-05851-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
Plastics with nanosize (nanoplastics, NPLs) must be characterized, since they can be toxic or act as carriers of organic and inorganic pollutants, but there is a lack of reference materials and validated methods in the nanosize range. Therefore, this study has focused on the development and validation of a separation and size characterization methodology of polystyrene latex nanospheres, by using an asymmetric-flow field flow fraction system coupled to multi-angle light scattering and ultraviolet-visible detectors (AF4-MALS-UV). Hence, this work presents a fully validated methodology in the particle size range 30 to 490 nm, with bias between 95 and 109%, precision between 1 and 18%, LOD and LOQ below 0.2 and 0.3 µg respectively, except for 30-nm standard, for both detectors, and showing stable results for 100 analyses.
Collapse
Affiliation(s)
- Iris H Valido
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Victor Fuentes-Cebrian
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Montserrat López-Mesas
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
27
|
Utami DA, Reuning L, Schwark L, Friedrichs G, Dittmer L, Nurhidayati AU, Al Fauzan A, Cahyarini SY. Plastiglomerates from uncontrolled burning of plastic waste on Indonesian beaches contain high contents of organic pollutants. Sci Rep 2023; 13:10383. [PMID: 37369801 DOI: 10.1038/s41598-023-37594-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports on plastiglomerate and other new forms of plastic pollution in the tropical marine continent of Indonesia. Twenty-five samples were collected from an island beach in the Java Sea where plastiglomerate, plasticrusts, and pyroplastic were formed by the uncontrolled burning of plastic waste. The most common plastic types were polyethylene and polypropylene (PE/PP), as shown by ATR-FTIR spectroscopy. However, acrylates/polyurethane/varnish (PU) and a copolymer of styrene and acrylonitrile were found as well. This suggests that plastiglomerates can form from a wider variety of plastic polymers than previously reported. FTIR analysis also indicates thermo-oxidative weathering, making the charred plastic more brittle and susceptible to microplastic formation. A subset of the samples was analyzed for associated chemical contaminants. One plastiglomerate with a PU matrix showed high concentrations of phthalates. All samples had high concentrations of polycyclic aromatic hydrocarbons (PAHs), likely due to the burning of the plastic in open fires. The burning leads to a change in the physical and chemical properties of the plastics contained in the plastiglomerates. Plastiglomerate and plastic waste of similar origin are therefore often more weathered and contaminated with organic pollutants than their parent polymers. The highest PAH concentration was found in a plastitar sample. Plastitar is defined as an agglomerate of tar and plastics that adheres to coastal rocks. In contrast, our study documents a more mobile, clastic plastitar type. This clastic plastitar could pose an additional ecological risk because of its mobility. These new types of plastic pollution could be an important vector for chemical contamination of nearby coastal habitats such as coral reefs, seagrass meadows, and mangroves.
Collapse
Affiliation(s)
- Dwi Amanda Utami
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia.
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany.
| | - Lars Reuning
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Lorenz Schwark
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Gernot Friedrichs
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ludwig Dittmer
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ayu Utami Nurhidayati
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| | - Ahmad Al Fauzan
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
- Oceanography Study Program, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Sri Yudawati Cahyarini
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| |
Collapse
|
28
|
Zhang W, Sik Ok Y, Bank MS, Sonne C. Macro- and microplastics as complex threats to coral reef ecosystems. ENVIRONMENT INTERNATIONAL 2023; 174:107914. [PMID: 37028266 DOI: 10.1016/j.envint.2023.107914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The impacts of macroplastics (macro-), microplastics (MPs, <5mm), and nanoplastics (NPs, <100 nm) on corals and their complex reef ecosystems are receiving increased attention and visibility. MPs represent a major, contemporary, sustainability challenge with known and unknown effects on the ocean, and coral reef ecosystems worldwide. However, the fate and transport processes of macro-, MPs, and NPs and their direct and indirect impacts on coral reef ecosystems remains poorly understood. In this study, we verify and briefly summarize MPs distribution and pollution patterns in coral reefs from various geographical regions and discuss potential risks. The main interaction mechanisms show that MPs may substantially affect coral feeding performance, proper skeletal formation, and overall nutrition and, thus, there is an urgent need to address this rapidly growing environmental problem. From a management perspective, macro-, MPs, and NPs should, ideally, all be included in environmental monitoring frameworks, as possible, to aid in identifying those geographical areas that are most heavily impacted and to support future prioritization of conservation efforts. The potential solutions to the macro-, MP, and NP pollution problem include raising public awareness of plastic pollution, developing robust, environmental, conservation efforts, promoting a circular economy, and propelling industry-supported technological innovations to reduce plastic use and consumption. Global actions to curb plastic inputs, and releases of macro-, MP, and NP particles, and their associated chemicals, to the environment are desperately needed to secure the overall health of coral reef ecosystems and their inhabitants. Global scale horizon scans, gap analyses, and other future actions are necessary to gain and increase momentum to properly address this massive environmental problem and are in good accordance with several relevant UN sustainable development goals to sustain planetary health.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea.
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
29
|
Li K, Naviaux JC, Lingampelly SS, Wang L, Monk JM, Taylor CM, Ostle C, Batten S, Naviaux RK. Historical biomonitoring of pollution trends in the North Pacific using archived samples from the Continuous Plankton Recorder Survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161222. [PMID: 36584956 DOI: 10.1016/j.scitotenv.2022.161222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
First started in 1931, the Continuous Plankton Recorder (CPR) Survey is the longest-running and most geographically extensive marine plankton sampling program in the world. This pilot study investigates the feasibility of biomonitoring the spatiotemporal trends of marine pollution using archived CPR samples from the North Pacific. We selected specimens collected from three different locations (British Columbia Shelf, Northern Gulf of Alaska, and Aleutian Shelf) in the North Pacific between 2002 and 2020. Comprehensive profiling of the plankton chemical exposome was conducted using liquid and gas chromatography coupled with tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Our results show that phthalates, plasticizers, persistent organic pollutants (POPs), pesticides, pharmaceuticals, and personal care products were present in the plankton exposome, and that many of these pollutants have decreased in amount over the last two decades, which was most pronounced for tri-n-butyl phosphate. In addition, the plankton exposome differed significantly by regional human activities, with the most polluted samples coming from the nearshore area. Exposome-wide association analysis revealed that bioaccumulation of environmental pollutants was highly correlated with the biomass of different plankton taxa. Overall, this study demonstrates that exposomic analysis of archived samples from the CPR Survey is effective for long-term biomonitoring of the spatial and temporal trends of environmental pollutants in the marine environment.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Neurosciences, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Sai Sachin Lingampelly
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Claire M Taylor
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Clare Ostle
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), Sidney, BC V8L 4B2, Canada
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| |
Collapse
|
30
|
Wang Y, Jiao M, Li T, Li R, Liu B. Role of mangrove forest in interception of microplastics (MPs): Challenges, progress, and prospects. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130636. [PMID: 37056008 DOI: 10.1016/j.jhazmat.2022.130636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/19/2023]
Abstract
Mangroves receive microplastics (MPs) from terrestrial, marine and atmospheric sources, acting as a huge filter for environmental MPs between land and sea. Due to the high primary production and complex hydrodynamic conditions in mangroves, MPs are extensively intercepted in various ways while flowing through mangroves, leading to a long-standing but fiercely increasing MPs accumulation. However, current researches mainly focused on the occurrence, source and fate of MPs pollution in mangroves, ignoring the role of mangrove forests in the interception of MPs. Our study firstly demonstrates that mangrove ecosystems have significantly greater MPs interception capacity than their surrounding environments. Then, the current status of studies related to the interception of MPs in mangrove ecosystems is comprehensively reviewed, with the main focus on the interception process and mechanisms. At last, the most pressing shortcomings of current research are highlighted regarding the intercepted flux, interception mechanisms, retention time and ecological risks of MPs in mangrove ecosystems and the relevant future perspectives are provided. This review is expected to emphasize the critical role of mangrove forests in the interception of MPs and provide the foundational knowledge for evaluating the MPs interception effect of mangrove forests globally.
Collapse
Affiliation(s)
- Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
31
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
32
|
Huang Z, Hu B, Wang H. Analytical methods for microplastics in the environment: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:383-401. [PMID: 36196263 PMCID: PMC9521859 DOI: 10.1007/s10311-022-01525-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/21/2022] [Indexed: 05/06/2023]
Abstract
Microplastic pollution is a recently discovered threat to ecosystems requiring the development of new analytical methods. Here, we review classical and advanced methods for microplastic analysis. Methods include visual analysis, laser diffraction particle, dynamic light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermal analysis, mass spectrometry, aptamer and in vitro selection, and flow cytometry.
Collapse
Affiliation(s)
- Zike Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Bo Hu
- School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JW UK
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| |
Collapse
|
33
|
Sajid M, Ihsanullah I, Tariq Khan M, Baig N. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Unnikrishnan V, Valsan G, Amrutha K, Sebastian JG, Rangel-Buitrago N, Khaleel R, Chandran T, Reshma SR, Warrier AK. A baseline study of microplastic pollution in a Southern Indian Estuary. MARINE POLLUTION BULLETIN 2023; 186:114468. [PMID: 36516607 DOI: 10.1016/j.marpolbul.2022.114468] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Knowledge on the processes controlling the vertical distribution of microplastics (MPs) in estuaries is less. This research was carried out to determine the MP distribution in the surface, middle, and bottom layers of the Udyavara River Estuary in southwest India. The mean (± standard deviation) concentrations were 320.83 (± 98.30), 514.55 (± 352.16), and 755.03 (± 400.96) particles/m3, respectively. Fibres, films, and fragments dominated, and 57 % of the MPs had a size range of 0.3-1 mm, while 43 % had a size of 1-5 mm. The main polymers were high-density polyethylene and polyethylene terephthalate. A positive correlation (r = 0.421, p = 0.0205, n = 30) exists between the MPs and salinity, suggesting that the MPs are held by dense saline waters. The mean pollution load index value was 2.25 indicating severe pollution. Microplastic pollution is due to harbour, fishing, industrial activities, the effects of southwest monsoon rain, and tidal currents.
Collapse
Affiliation(s)
- Vishnu Unnikrishnan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K Amrutha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Joju George Sebastian
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia; Programa de Biologia, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| | - Rizwan Khaleel
- Department of Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thara Chandran
- Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Department of Public Health Dentistry, Mangalore 574199, Karnataka, India
| | - S R Reshma
- Department of Geology, Central University of Karnataka, Kadaganchi, Kalaburagi 585367, Karnataka, India
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for Climate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
35
|
Walther BA, Bergmann M. Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Emerg Top Life Sci 2022; 6:371-387. [PMID: 36214383 DOI: 10.1042/etls20220017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023]
Abstract
Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future.
Collapse
Affiliation(s)
- Bruno Andreas Walther
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Melanie Bergmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
36
|
Kang B, Lin L, Li Y, Peng X, Sun J. Facing marine debris in China. MARINE POLLUTION BULLETIN 2022; 184:114158. [PMID: 36166860 DOI: 10.1016/j.marpolbul.2022.114158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
China is one of the largest waste importers and producers in the world, with land-based discharges mainly from domestic sewage and industrial wastes being the main source of marine debris (MD) including three distributional types as stranding on the beach (BMD), floating on the water surface (FMD), and submerging into sediments (SMD). Fishery-related activities are also one of the main sources of marine debris: intensive aquaculture, fishing, and related household activities. Marine debris, showing different ways of leaching, degradation and fragmentation, can be ingested, incorporated and accumulated by marine organisms through the food chain, and ultimately pose risks to the ecological environment, economic benefits and human health. Comprehensive countermeasures, from awareness to practices and from the government to the public, are now being implemented in China and have achieved remarkable results especially in domestic waste incineration, but greater commitment and stronger execution are urgently required.
Collapse
Affiliation(s)
- Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao CN-266003, Shandong, China
| | - Li Lin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao CN-266003, Shandong, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen CN-361005, Fujian, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou CN-310012, Zhejiang, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao CN-266003, Shandong, China.
| |
Collapse
|
37
|
Chen B. Current status and trends of research on microplastic fugacity characteristics and pollution levels in mangrove wetlands. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.1021274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Microplastics have been widely detected in the environment, while mangrove wetlands are considered barriers to land-based plastic transport to the ocean, requiring special attention. However, the current literature is distributed and broad besides limited information on the fate characteristics and pollution levels. This study uses a systematic literature review method to analyze the current research status and future trends. In this study, the literature is summarized and concluded that Characteristics including color, shape, size, polymer chemistry and surface microstructure are the basic information for microplastic research in mangrove wetlands. Size is the key to studying distribution and convergence without international standards. The shape is vital to study its sources and environmental processes. Color affects biological predation and is important information for studying ecological risk. The chemical composition of plastics is the key to studying microplastics’ fingerprint information, source, and sink. The surface microstructure is an important basis for studying adsorption behavior and aging processes. Mangrove microplastic studies in China are mainly on the southern and southeastern coasts, and microplastic pollution is more severe in Fujian, Guangdong, and Guangxi than in Hainan. In contrast, studies on mangrove microplastics abroad are mainly concentrated in Southeast Asia, the Middle East, and South America. Overall, microplastic contamination was detected in the major distribution areas of mangroves worldwide and was correlated with mangrove density and human activities.
Collapse
|
38
|
Li M, Wang Y, Xue H, Wu L, Wang Y, Wang C, Gao X, Li Z, Zhang X, Hasan M, Alruqi M, Bokhari A, Han N. Scientometric analysis and scientific trends on microplastics research. CHEMOSPHERE 2022; 304:135337. [PMID: 35714953 DOI: 10.1016/j.chemosphere.2022.135337] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the environmental pollution of microplastics has attracted much attention. To date, there have been a lot of researches on microplastics and a series of studies published. In this study, by bibliometric analysis method to evaluated the development and evolution on microplastics research trends and hot spots. A total of 2872 literature information was collected from the Web of Science (2004-2020), which was used for bibliometric visual analysis by CiteSpace. It was possible to see the contributing countries, institutions, authors, keywords, and future study directions in the microplastics sectors by looking at the visual representation of the results. (1) Since 2004, scientific advancements in this sector have advanced significantly, with a significant increase in speed since 2012. (2) China and the United States are the world's leading researchers in microplastics. (3) The study of microplastics was multidisciplinary, comprising researchers from the fields of ecology, chemistry, molecular biology, environmental science, and oceanography. (4) In recent years, researchers have concentrated their attention on the distribution and toxicity of microplastics in the environment, as well as their coupled pollution with heavy metal contaminants. In conclusion microplastics study in environmental science has become increasingly popular in recent years. Topics include dispersion, toxicity, and coupled pollution with heavy metal pollutants. Researchers in a wide range of fields are involved in microplastics research. Furthermore, policies and regulations about microplastics in global were summarized, and membrane technology has potential to remove microplastics from water. The above findings help to clearly grasp the content and development trend of microplastics research, point out the future research direction for scholars, and promote microplastics research and pollution prevention and control.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China; College of New Energy and Environmental Engineering, Nanchang Institute of Technology, Nanchang, 330044, PR China
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Lei Wu
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Ying Wang
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Chunqing Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Xingai Gao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhonghe Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xi Zhang
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, J. De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium.
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Mansoor Alruqi
- Department of Mechanical Engineering, College of Engineering, Shaqra University, Al Riyadh, 11911, Saudi Arabia
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, 54000, Punjab, Lahore, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
39
|
Zhang Y, Wu H, Xu L, Liu H, An L. Promising indicators for monitoring microplastic pollution. MARINE POLLUTION BULLETIN 2022; 182:113952. [PMID: 35908487 DOI: 10.1016/j.marpolbul.2022.113952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution is a global crisis. This requires a better understanding of microplastic abundance, distribution, and accumulation to prevent potential risks in the future. However, it is very difficult to accurately identify all polymers of microplastics due to the limits of present detection technologies, which might result in overestimation and underestimation of microplastic pollution. Moreover, it also doesn't meet the growing demand for regular monitoring. Herein, we propose an alternative approach to regularly monitoring microplastics in all environmental mediums. The results could meet the urgent need for understanding the spatiotemporal pattern of microplastic pollution. Environmental policy-makers can use it to monitor microplastic pollutants and then rapidly evaluate the environmental level of microplastic pollution.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhi Liu
- Chinese Society For Environmental Sciences, Beijing 100082, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
40
|
Magalhães S, Alves L, Romano A, Medronho B, Rasteiro MDG. Extraction and Characterization of Microplastics from Portuguese Industrial Effluents. Polymers (Basel) 2022; 14:polym14142902. [PMID: 35890677 PMCID: PMC9318256 DOI: 10.3390/polym14142902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Microplastics (MPs) are contaminants present in the environment. The current study evaluates the contribution of different well-established industrial sectors in Portugal regarding their release of MPs and potential contamination of the aquifers. For each type of industry, samples were collected from wastewater treatment plants (WWTP), and different parameters were evaluated, such as the potential contamination sources, the concentration, and the composition of the MPs, in both the incoming and outcoming effluents. The procedures to extract and identify MPs in the streams entering or leaving the WWTPs were optimized. All industrial effluents analysed were found to contribute to the increase of MPs in the environment. However, the paint and pharmaceutical activities were the ones showing higher impact. Contrary to many reports, the textile industry contribution to aquifers contamination was not found to be particularly relevant. Its main impact is suggested to come from the numerous washing cycles that textiles suffer during their lifetime, which is expected to strongly contribute to a continuous release of MPs. The predominant chemical composition of the isolated MPs was found to be polyethylene terephthalate (PET). In 2020, the global need for PET was 27 million tons and by 2030, global PET demand is expected to be 42 million tons. Awareness campaigns are recommended to mitigate MPs release to the environment and its potential negative impact on ecosystems and biodiversity.
Collapse
Affiliation(s)
- Solange Magalhães
- CIEPQPF, Department of Chemical Engineering Pólo II–R. Silvio Lima, University of Coimbra, 3030-790 Coimbra, Portugal;
| | - Luís Alves
- CIEPQPF, Department of Chemical Engineering Pólo II–R. Silvio Lima, University of Coimbra, 3030-790 Coimbra, Portugal;
- Correspondence: (L.A.); (B.M.); (M.d.G.R.)
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139 Faro, Portugal;
| | - Bruno Medronho
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139 Faro, Portugal;
- FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- Correspondence: (L.A.); (B.M.); (M.d.G.R.)
| | - Maria da Graça Rasteiro
- CIEPQPF, Department of Chemical Engineering Pólo II–R. Silvio Lima, University of Coimbra, 3030-790 Coimbra, Portugal;
- Correspondence: (L.A.); (B.M.); (M.d.G.R.)
| |
Collapse
|
41
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Ding DS, Hsieh S, Chen CW, Dong CD. Exposure of Goniopora columna to polyethylene microplastics (PE-MPs): Effects of PE-MP concentration on extracellular polymeric substances and microbial community. CHEMOSPHERE 2022; 297:134113. [PMID: 35227744 DOI: 10.1016/j.chemosphere.2022.134113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L-1) of polyethylene microplastics (PE-MPs; 40-48 μm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L-1, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index. Humic- and fulvic-like substances were identified as critical EPS components produced by microbial activity. The results have shed new insights into short-term responses of G. columna during exposure to different PE-MP concentrations and reveal important coral-MP-microbiome interactions in coral reef ecosystems. Results demonstrated that the coral-MPs interactions should be further evaluated to gain a deeper understanding of the underlying ecotoxicological risks.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
42
|
Microplastics: impacts on corals and other reef organisms. Emerg Top Life Sci 2022; 6:81-93. [PMID: 35137913 PMCID: PMC9023018 DOI: 10.1042/etls20210236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1–5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.
Collapse
|