1
|
Yoon K, Kwon G, Kim E, Lee H, Lee DJ, Song H. Pyrolytic conversion of cattle manure into value-added products and application of biochar for adsorption of sulfamethoxazole. CHEMOSPHERE 2024; 366:143493. [PMID: 39374673 DOI: 10.1016/j.chemosphere.2024.143493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
This study investigated the thermochemical conversion of cattle manure (CM) to propose a sustainable platform for its valorization, and explored the applicability of CM-derived biochar (CMB) as an environmental medium for the adsorptive removal of sulfamethoxazole (SMZ). CM pyrolysis was conducted under two atmospheric conditions (N2 and CO2), and the pyrogenic products were quantified and characterized. Real-time syngas monitoring revealed that CO2 enhanced CO generation from the CM, leading to the formation of a highly porous carbon structure in the produced biochar (CMBCO2). The adsorptive removal of SMZ by CMBCO2 was highly dependent on the pH conditions. The adsorption kinetics of SMZ onto CMBCO2 reached equilibrium within 540 min, following a pseudo-second-order model. The SMZ adsorption isotherms fit the Langmuir-Freundlich model, highlighting the importance of chemisorption in the adsorption process. X-ray photoelectron spectroscopy revealed that SMZ was adsorbed by non-electrostatic mechanisms, including hydrogen bonding, Lewis acid-base interactions, surface complexation, and π-π electron-donor acceptor interactions. This study presents an exemplary strategy for converting livestock waste into valuable resources, enabling the harvesting of energy resources and the production of treatment media for environmental remediation.
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gihoon Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heuiyun Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong-Jun Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju 55365, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Sarker TR, Khatun ML, Ethen DZ, Ali MR, Islam MS, Chowdhury S, Rahman KS, Sayem NS, Akm RS. Recent evolution in thermochemical transformation of municipal solid wastes to alternate fuels. Heliyon 2024; 10:e37105. [PMID: 39296224 PMCID: PMC11408778 DOI: 10.1016/j.heliyon.2024.e37105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
The management of solid waste poses a worldwide obstacle in the pursuit of a sustainable society. This issue has intensified with the increase in waste production caused by rapid population expansion, industrialization, and urbanization. The continuously growing volume of municipal solid waste, particularly the substantial volume of organic waste, along with improper disposal practices, results in the release of greenhouse gases and other harmful airborne substances which simultaneously causes health risks and socioeconomic concerns. This article examines various waste-to-energy (energy production in the form of heat and electricity) concepts as well as waste-to-materials (various value-added materials including biofuel, biochemical, char, bio-oil, soil fertilizer, etc.) methods of converting municipal solid waste into environmentally friendly fuels, which appear to be economically feasible and attractive. It starts with a thorough analysis of the characteristics of municipal solid waste followed by the generation procedure. The study provides an overview of different thermochemical conversion methods including incineration, pyrolysis, co-pyrolysis, liquefaction, hydrothermal carbonization, gasification, combustion for transformation of municipal solid waste, and their recent advancement. The review comprehensively discussed the pros and cons of each method highlighting their strength, weakness, opportunities, and threats to transforming MSW. The current state of municipal solid waste management, including effective dumping and deviation, is comprehensively assessed, along with the prospects and challenges involved. Energy justice concepts and fuzzy logic tool is used to address the selection criteria for choosing the best waste treatment techniques. Moreover, several recommendations are offered to enhance the existing solid waste management system. This review could assist scholars, researchers, authorities, and stakeholders in making informed decisions regarding MSW management.
Collapse
Affiliation(s)
- Tumpa R Sarker
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Mst Lucky Khatun
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Dilshad Z Ethen
- Department of Agribusiness and Marketing, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Md Rostom Ali
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Md Shariful Islam
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Sagor Chowdhury
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Kazi Shakibur Rahman
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Nafis Sadique Sayem
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Rahman Samsur Akm
- Mechanical Engineering, New York City College of Technology, City University of New York, 186 Jay St, Brooklyn, NY 11201, USA
| |
Collapse
|
3
|
Razzak SA. Municipal Solid and Plastic Waste Co-pyrolysis Towards Sustainable Renewable Fuel and Carbon Materials: A Comprehensive Review. Chem Asian J 2024; 19:e202400307. [PMID: 38880993 DOI: 10.1002/asia.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The substantial rise in global energy demand, propelled by industrial expansion, population growth, and transportation needs, poses a formidable challenge. The concurrent urbanization places pressure on the disposal of solid municipal solid waste and the management of plastic waste. Addressing the global waste crisis requires innovative and sustainable garbage disposal solutions with an environmentally friendly approach. This review tackles the challenges of worldwide waste management, focusing on renewable and sustainable fuels and waste recycling through the exploration of co-pyrolysis as an innovative method. It explores the characteristics and environmental impact of municipal solid waste (MSW) and plastic waste (PW), delving into pyrolysis fundamentals, processes, and challenges. The primary emphasis is on co-pyrolysis, elucidating its integration of municipal and plastic waste, synergistic effects, and advantages. The manuscript thoroughly analyzes reaction kinetics, thermodynamics, and the feasibility of co-pyrolysis for energy recovery. It also delves into the synthesis of renewable fuels and valuable chemical intermediates, considering optimization of product distribution. Environmental and economic sustainability aspects, including impact assessment, greenhouse gas emissions, life cycle analysis, and cost analysis of co-pyrolysis processes, are comprehensively investigated. The review underscores the economic benefits of renewable fuel and chemical materials synthesis. The conclusion addresses challenges, proposes future directions, outlines limitations, technical challenges, environmental considerations, and recommends further exploration and integration with other waste management techniques. The manuscript emphasizes the ongoing importance of research in this critical field, aiming to contribute to the development of effective solutions for the escalating global waste management crisis.
Collapse
Affiliation(s)
- Shaikh Abdur Razzak
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Faitli J, Abdulfattah ZN, Kioko D, Nagy S. Fundamental drying and agglomeration experiments with bio-fraction and refuse derived fuel for the development of pyrolysis reactor feed. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:715-725. [PMID: 38501255 PMCID: PMC11373162 DOI: 10.1177/0734242x241237195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The EU's circular economy concept necessitates increasing the recycling ratio of municipal solid wastes. There are many existing mechanical-biological processing plants in Hungary for the preparation of residual municipal solid wastes (RMSWs). The two most important products of these plants are the bio-fraction and the refuse derived fuel (RDF). Currently, there are problems with both of these material streams in Hungary, since most of the bio-fraction is still landfilled, and the local thermal utilisation of the RDF has not been implemented yet. The high moisture content of the produced bio-fraction and RDF causes difficulties for the downstream operations; therefore, there is recent engineering interest in drying and agglomeration of these materials. The authors have carried out systematic and parallel drying and briquetting experimental series to study the effect of the material, material composition, mass (volume or surface) of the material, particle size distribution and pre-treatment with a cutting mill on drying intensity in a 1 m3 oven and their effect on briquettability by a laboratory briquette press. The initial slope of the relative moisture loss as function of time was determined. Process engineering design methods of convective hot air-drying can be further developed taking into account the research results. Results can be used for the design of the feed of a pyrolysis reactor once reactor experiments have provided the optimal feed requirements.
Collapse
Affiliation(s)
- József Faitli
- Institute of Raw Materials Preparation and Environmental Technology, University of Miskolc, Miskolc, Hungary
| | - Zainab Nassr Abdulfattah
- Institute of Raw Materials Preparation and Environmental Technology, University of Miskolc, Miskolc, Hungary
| | - Daniel Kioko
- Institute of Raw Materials Preparation and Environmental Technology, University of Miskolc, Miskolc, Hungary
| | - Sándor Nagy
- Institute of Raw Materials Preparation and Environmental Technology, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
5
|
Maytorena V, Buentello-Montoya D. Worldwide developments and challenges for solar pyrolysis. Heliyon 2024; 10:e35464. [PMID: 39170347 PMCID: PMC11336766 DOI: 10.1016/j.heliyon.2024.e35464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The solar pyrolysis of materials has emerged as a promising technology for their efficient conversion into solid char, syngas and oil. The technology has its challenges, however, as constraints such as solar intermittence and scalability must be overcame for solar pyrolysis to thrive. The present work presents a review of the developments in solar pyrolysis considering a such as development by country, solar technology employed, etcetera. Moreover, details on the challenges and potential future developments are presented. It was found that most of the development in solar pyrolysis has been focused on waste-handling, and that a particular challenge exists in an adequate control system to achieve the desired end products.
Collapse
Affiliation(s)
- V.M. Maytorena
- Universidad de Sonora, Departamento de Ingeniería Química y Metalurgia, 83000, Hermosillo, Mexico
| | | |
Collapse
|
6
|
Bauri S, Shekhar H, Sahoo H, Mishra M. Investigation of the effects of nanoplastic polyethylene terephthalate on environmental toxicology using model Drosophila melanogaster. Nanotoxicology 2024; 18:354-372. [PMID: 38958196 DOI: 10.1080/17435390.2024.2368004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.
Collapse
Affiliation(s)
- Samir Bauri
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| | - Himanshu Shekhar
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| |
Collapse
|
7
|
Liang DK, Prabu S, Chiang KY. Characteristics of hydrogen energy yield in steam gasification of coffee residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33807-33818. [PMID: 38684616 DOI: 10.1007/s11356-024-33499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Coffee residues (CRs) were gasified using a laboratory-scale fluidized bed gasifier with an air/steam mixture as the carrier gas. The gasification was conducted at an equivalence ratio (ER) of 0.3, and different operation temperatures (700, 800, and 900 °C) and steam-to-biomass (S/B) ratios (0, 0.75, and 1.5) were applied. Increasing temperature without steam boosted H2 and CO concentrations in producer gas, raising lower heating value (LHV) and cold gas efficiency (CGE) through endothermic reactions like Boudouard, tar cracking, and water-gas formation. At 900 °C, gas had LHV of 3.76 MJ/Nm3 and CGE of 22.47%. It was elevating temperature from 700 to 900 °C and S/B ratio to 1.5 raised H2 and CO concentrations from 2.04 to 8.60% and from 9.56 to 11.8%, respectively. This also increased LHV from 2.23 to 3.89 MJ/Nm3 and CGE from 11.28 to 25.08%. The steam gasification reaction was found to increase the H2 concentration and was thus considered effective in converting CRs to syngas and increasing energy production. Overall, the study successfully demonstrated the feasibility of steam gasification as a means of converting coffee residues to syngas and increasing energy production. The results also highlighted the importance of operating temperature and S/B ratio in improving the gasification process.
Collapse
Affiliation(s)
- Dan-Kai Liang
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan
| | - Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan.
| |
Collapse
|
8
|
Nama M, Satasiya G, Sahoo TP, Moradeeya PG, Sadukha S, Singhal K, Saravaia HT, Dineshkumar R, Anil Kumar M. Thermo-chemical behaviour of Dunaliella salina biomass and valorising their biochar for naphthalene removal from aqueous rural environment. CHEMOSPHERE 2024; 353:141639. [PMID: 38447902 DOI: 10.1016/j.chemosphere.2024.141639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Thermo-chemical behavior of a microalgal biomass; Dunaliella salina was investigated through thermo-gravimetric analyses. Fully-grown D. salina biomass were subjected for biochar conversion using pyrolytic treatment at three distinct heating rates such as 2.5, 5, and 15 °C min-1. The kinetic appraisals were explained by using model-free kinetics viz., Kissinger-Akahira-Sanose, Flynn-Waal-Ozawa and Starink iso-conversional correlations with concomitant evaluation of activation energies (Ea). The Ea value is 194.2 kJ mol-1 at 90% conversion in FWO model, which is higher as compared to other two models. Moisture, volatile substances, and other biochemical components of the biomass were volatilized between 400 and 1000 K in two separate thermo-chemical breakdown regimes. Microscopic and surface characterization analyses were carried out to elucidate the elemental and morphological characteristics of the biomass and biochar. Further, the proficiency of the prepared biochar was tested for removing naphthalene from the watery media. The novelty of the present study lies in extending the applicability of biochar prepared from D. salina for the removal of a model polyaromatic hydrocarbon, naphthalene.
Collapse
Affiliation(s)
- Muskan Nama
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Gopi Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Shreya Sadukha
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Kirti Singhal
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Hitesh T Saravaia
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Ramalingam Dineshkumar
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
9
|
Yatoo AM, Hamid B, Sheikh TA, Ali S, Bhat SA, Ramola S, Ali MN, Baba ZA, Kumar S. Global perspective of municipal solid waste and landfill leachate: generation, composition, eco-toxicity, and sustainable management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23363-23392. [PMID: 38443532 DOI: 10.1007/s11356-024-32669-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Globally, more than 2 billion tonnes of municipal solid waste (MSW) are generated each year, with that amount anticipated to reach around 3.5 billion tonnes by 2050. On a worldwide scale, food and green waste contribute the major proportion of MSW, which accounts for 44% of global waste, followed by recycling waste (38%), which includes plastic, glass, cardboard, and paper, and 18% of other materials. Population growth, urbanization, and industrial expansion are the principal drivers of the ever-increasing production of MSW across the world. Among the different practices employed for the management of waste, landfill disposal has been the most popular and easiest method across the world. Waste management practices differ significantly depending on the income level. In high-income nations, only 2% of waste is dumped, whereas in low-income nations, approximately 93% of waste is burned or dumped. However, the unscientific disposal of waste in landfills causes the generation of gases, heat, and leachate and results in a variety of ecotoxicological problems, including global warming, water pollution, fire hazards, and health effects that are hazardous to both the environment and public health. Therefore, sustainable management of MSW and landfill leachate is critical, necessitating the use of more advanced techniques to lessen waste production and maximize recycling to assure environmental sustainability. The present review provides an updated overview of the global perspective of municipal waste generation, composition, landfill heat and leachate formation, and ecotoxicological effects, and also discusses integrated-waste management approaches for the sustainable management of municipal waste and landfill leachate.
Collapse
Affiliation(s)
- Ali Mohd Yatoo
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
- Department of Environmental Sciences, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Basharat Hamid
- Department of Environmental Sciences, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Tahir Ahmad Sheikh
- Faculty of Agriculture, SKUAST-Kashmir, Jammu and Kashmir, Wadura, 193201, India
| | - Shafat Ali
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Sartaj Ahmad Bhat
- River Basin Research Centre, Gifu University, 1-1 Yanagido, Gifu, Japan
- Waste Re-Processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
| | - Sudipta Ramola
- Zhejiang University of Technology, Hangzhou, 310014, China
| | - Md Niamat Ali
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zahoor Ahmad Baba
- Faculty of Agriculture, SKUAST-Kashmir, Jammu and Kashmir, Wadura, 193201, India
| | - Sunil Kumar
- Waste Re-Processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
| |
Collapse
|
10
|
Buratto WG, Muniz RN, Nied A, Barros CFDO, Cardoso R, Gonzalez GV. A Review of Automation and Sensors: Parameter Control of Thermal Treatments for Electrical Power Generation. SENSORS (BASEL, SWITZERLAND) 2024; 24:967. [PMID: 38339684 PMCID: PMC10856863 DOI: 10.3390/s24030967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
This review delves into the critical role of automation and sensor technologies in optimizing parameters for thermal treatments within electrical power generation. The demand for efficient and sustainable power generation has led to a significant reliance on thermal treatments in power plants. However, ensuring precise control over these treatments remains challenging, necessitating the integration of advanced automation and sensor systems. This paper evaluates the pivotal aspects of automation, emphasizing its capacity to streamline operations, enhance safety, and optimize energy efficiency in thermal treatment processes. Additionally, it highlights the indispensable role of sensors in monitoring and regulating crucial parameters, such as temperature, pressure, and flow rates. These sensors enable real-time data acquisition, facilitating immediate adjustments to maintain optimal operating conditions and prevent system failures. It explores the recent technological advancements, including machine learning algorithms and IoT integration, which have revolutionized automation and sensor capabilities in thermal treatment control. Incorporating these innovations has significantly improved the precision and adaptability of control systems, resulting in heightened performance and reduced environmental impact. This review underscores the imperative nature of automation and sensor technologies in thermal treatments for electrical power generation, emphasizing their pivotal role in enhancing operational efficiency, ensuring reliability, and advancing sustainability in power generation processes.
Collapse
Affiliation(s)
- William Gouvêa Buratto
- Electrical Engineering Graduate Program, Department of Electrical Engineering, Santa Catarina State University (UDESC), Joinville 89219-710, Brazil
| | - Rafael Ninno Muniz
- Electrical Engineering Graduate Program, Department of Electrical Engineering, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Production Engineering Graduate Program, Department of Science and Technology, Federal Fluminense University (UFF), Rio das Ostras 28895-532, Brazil
| | - Ademir Nied
- Electrical Engineering Graduate Program, Department of Electrical Engineering, Santa Catarina State University (UDESC), Joinville 89219-710, Brazil
| | - Carlos Frederico de Oliveira Barros
- Production Engineering Graduate Program, Department of Science and Technology, Federal Fluminense University (UFF), Rio das Ostras 28895-532, Brazil
| | - Rodolfo Cardoso
- Production Engineering Graduate Program, Department of Science and Technology, Federal Fluminense University (UFF), Rio das Ostras 28895-532, Brazil
| | | |
Collapse
|
11
|
Cui W, Wei Y, Ji N. Global trends of waste-to-energy (WtE) technologies in carbon neutral perspective: Bibliometric analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115913. [PMID: 38198897 DOI: 10.1016/j.ecoenv.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Waste-to-energy (WtE) technology is at the forefront of low-carbon municipal solid waste (MSW) treatment. MSW has been favoured by researchers in recent years due to its high potential to dispose of resources with WtE technology, which contributes to the carbon neutrality goal. However, there is a lack of research that integrates MSW WtE treatment from a global perspective and explores its future direction. Bibliometric methods are widely used because of their advantages in qualitative and quantitative literature information analysis. A comprehensive search was conducted in the Web of Science (WOS) Core Collection database, covering the period from 1990-2022, resulting in the collection of 702 articles. Subsequently, bibliometric software such as CiteSpace, VOSviewer, and Bibliometrix, were jointly employed for co-occurrence, co-citation, and cluster analyses, providing an in-depth qualitative and quantitative analysis of the research hotspots and development trends of WtE technology for MSW treatment. The research findings indicate a rapid growth in studies on carbon emission reduction through WtE technology for MSW treatment since 2015, with these related articles accounting for 50% of articles. Globally, China, the United States, Italy, and other countries were active research regions, with Chinese research institutions making the largest contributions. However, contributions from developing countries are limited. Furthermore, this study systematically elaborates on the research hotspots in this field. Finally, this study identified some frontier research hotspots and directions. Research on WtE technology primarily focuses on technological methods and policy management, particularly from the carbon neutrality perspective, emphasis WtE technology sustainability in reducing carbon emissions and achieving carbon neutrality goals. Promoting the use of assisted decision-making models in the MSW management process, and focusing on the conversion of food waste into valuable energy. It is hoped that these research directions will provide new ideas for the balanced and rapid development of WtE technology.
Collapse
Affiliation(s)
- Wenjing Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ningning Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Bhattarai A, Kemp A, Jahromi H, Kafle S, Adhikari S. Thermochemical Characterization and Kinetics of Biomass, Municipal Plastic Waste, and Coal Blends and Their Potential for Energy Generation via Gasification. ACS OMEGA 2023; 8:45985-46001. [PMID: 38075841 PMCID: PMC10702325 DOI: 10.1021/acsomega.3c06849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 05/05/2025]
Abstract
Feedstocks such as coal, biomass, plastics, and their blends have the potential to serve as fuels for the thermochemical conversion process owing to their relatively high calorific values. Nevertheless, the relative proportion of these feedstock blends has a pivotal influence over the overall energy conversion efficiency. Consequently, conducting a comprehensive study to optimize the blend proportion becomes crucial in order to obtain an optimal fuel. The study aims to investigate the thermochemical characterization and kinetics of blends composed of lignite coal, southern pine biomass, and municipal waste plastic blend to optimize the blend proportion. This optimization has been achieved through an analysis of 12 distinct blends, considering factors such as combustion reaction kinetics, combustion stability, and comprehensive combustion indices. The reaction kinetics, including activation energy, pre-exponential factor, and reaction order, were estimated using various methods, including Vyazovkin, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Master-plot, and multidistributed activation energy methods. The investigation revealed that increasing the biomass content within the blends enhances both the combustion stability and combustion performance. The multidistributed activation energy model exhibited a good fit with both the experimental thermogravimetric and the derivative thermogravimetric curves, achieving linear regression fitness values of 0.99 and 0.95, respectively. To showcase the viability of these blends as energy generation feedstock, the optimal blend comprised of 60% biomass, 10% coal, and 30% municipal waste plastic blend, possessing the lowest activation energy (110 kJ/mol), was employed as the feedstock for the fluidized bed oxy-steam gasification process. The gasification process resulted in a synthetic gas consisting of 47.79 mol % H2, 27.96 mol % CO, 5.85 mol % CH4, and 18.38 mol % CO2 (nitrogen-free basis) with a cold gas efficiency of 72.88%. The findings of this study can offer valuable insights into global industries engaged in the thermochemical conversion of solid waste materials.
Collapse
Affiliation(s)
- Ashish Bhattarai
- Biosystems
Engineering Department, Auburn University, 200 Corley Building, Auburn, Alabama 36849, United States
| | - Ayden Kemp
- Biosystems
Engineering Department, Auburn University, 200 Corley Building, Auburn, Alabama 36849, United States
| | - Hossein Jahromi
- Biosystems
Engineering Department, Auburn University, 200 Corley Building, Auburn, Alabama 36849, United States
- Center
for Bioenergy and Bioproducts, Auburn University, 519 Devall Drive, Auburn, Alabama 36849, United States
| | - Sagar Kafle
- Biosystems
Engineering Department, Auburn University, 200 Corley Building, Auburn, Alabama 36849, United States
| | - Sushil Adhikari
- Biosystems
Engineering Department, Auburn University, 200 Corley Building, Auburn, Alabama 36849, United States
- Center
for Bioenergy and Bioproducts, Auburn University, 519 Devall Drive, Auburn, Alabama 36849, United States
| |
Collapse
|
13
|
Chormare R, Moradeeya PG, Sahoo TP, Seenuvasan M, Baskar G, Saravaia HT, Kumar MA. Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes. CHEMOSPHERE 2023; 339:139760. [PMID: 37567272 DOI: 10.1016/j.chemosphere.2023.139760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
This overview addresses the formation of solid trash and the various forms of waste from a variety of industries, which environmentalists have embraced. The paper investigates the negative effects on the environment caused by unsustainable management of municipal solid trash as well as the opportunities presented by the formal system. This examination looks at the origins of solid waste as well as the typical treatment methods. Pyrolysis methods, feedstock pyrolysis, and lignocellulosic biomass pyrolysis were highlighted. Explain in detail the various thermochemical processes that take place during the pyrolysis of biomass. Due to its carbon content, low cost, accessibility, ubiquitousness, renewable nature, and environmental friendliness, biomass waste is a unique biochar precursor. This study looks at the different types of biomass waste that are available for treating wastewater. This study discussed a wide variety of reactors. Adsorption is the standard method that is used the most frequently to remove hazardous organic, dye, and inorganic pollutants from wastewater. These pollutants cause damage to the environment and water supplies, thus it is important to remove them. Adsorption is both simple and inexpensive to utilize. Temperature-dependent conversions explain the kinetic theories of biomaterial biochemical degradation. This article presents a review that explains how pyrolytic breakdown char materials can be used to reduce pollution and improve environmental management.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Tarini Prasad Sahoo
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600 119, Tamil Nadu, India
| | - Hitesh T Saravaia
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
14
|
Singa PK, Isa MH, Sivaprakash B, Ho YC, Lim JW, Rajamohan N. PAHs remediation from hazardous waste landfill leachate using fenton, photo - fenton and electro - fenton oxidation processes - performance evaluation under optimized conditions using RSM and ANN. ENVIRONMENTAL RESEARCH 2023; 231:116191. [PMID: 37211185 DOI: 10.1016/j.envres.2023.116191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Polycyclic aromatic hydrocharbons (PAHs) are a class of highly toxic pollutants that are highly detrimental to the ecosystem. Landfill leechate emanated from municipal solid waste are reported to constitute significant PAHs. In the present investigation, three Fenton proceses, namely conventional Fenton, photo-fenton and electro-fenton methods have been employed to treat landfill leehcate for removing PAHs from a waste dumpig yard. Response surface methodology (RSM) and artificial neural network (ANN) methodologies were adopted to optimize and validate the conditions for optimum oxidative removal of COD and PAHs. The statistical analysis results showed that all independent variables chosen in the study are reported to have significant influence of the removal effects with P-values <0.05. Sensitivity analysis by the developed ANN model showed that the pH had the highest significance of 1.89 in PAH removal when compared to the other parameters. However for COD removal, H2O2 had the highest relative importance of 1.15, followed by Fe2+ and pH. Under optimal treatment conditions, the photo-fenton and electro-fenton processes showed better removal of COD and PAH compared to the Fenton process. The photo-fenton and electro-fenton treatment processes removed 85.32% and 74.64% of COD and 93.25% and 81.65% of PAHs, respectively. Also the investigations revelaed the presence of 16 distinct PAH compunds and the removal percentage of each of these PAHs are also reported. The PAH treatment research studies are generally limited to the assay of removal of PAH and COD levels. In the present investigation, in addition to the treatment of landfill leachate, particle size distribution analysis and elemental characterization of the resultant iron sludge by FESEM and EDX are reported. It was revealed that elemental oxygen is present in highest percentage, followed by iron, sulphur, sodium, chlorine, carbon and potassium. However, iron percentage can be reduced by treating the Fenton-treated sample with NaOH.
Collapse
Affiliation(s)
- Pradeep Kumar Singa
- Department of Civil Engineering, Guru-Nanak Dev Engineering College, Bidar, 585403, Karnataka, India.
| | - Mohamed Hasnain Isa
- Department of Civil Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Jun-Wei Lim
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| |
Collapse
|
15
|
Jiang K, Bai R, Gao T, Lu P, Zhang J, Zhang S, Xu F, Wang S, Zhao H. Optimization of hydrogen production in Enterobacter aerogenes by Complex I peripheral fragments destruction and maeA overexpression. Microb Cell Fact 2023; 22:137. [PMID: 37496040 PMCID: PMC10373349 DOI: 10.1186/s12934-023-02155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
As a concentrated energy source with high added value, hydrogen has great development prospects, with special emphasis on sustainable microbial production as a replacement for traditional fossil fuels. In this study, λ-Red recombination was used to alter the activity of Complex I by single and combined knockout of nuoE, nuoF and nuoG. In addition, the conversion of malic to pyruvic acid was promoted by overexpressing the maeA gene, which could increase the content of NADH and formic acid in the bacterial cells. Compared to the original strain, hydrogen production was 65% higher in the optimized strain IAM1183-EFG/M, in which the flux of the formic acid pathway was increased by 257%, the flux of the NADH pathway was increased by 13%, and the content of metabolites also changed significantly. In further bioreactor, the total hydrogen production of the scale-up IAM1183-EFG/M after 44 h of fermentation was 4.76 L, which increased by 18% compared with the starting strain. This study provides a new direction for future exploration of microbial hydrogen production by combinatorial modification of multiple genes.
Collapse
Affiliation(s)
- Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jingya Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Shenyang Functional Cordyceps militaris Industrial Technology Research Institute, Shenyang, 110034, China
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Shenghou Wang
- Shenyang Functional Cordyceps militaris Industrial Technology Research Institute, Shenyang, 110034, China
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Inoue T, Chuaicham C, Saito N, Ohtani B, Sasaki K. Z-scheme heterojunction of graphitic carbon nitride and calcium ferrite in converter slag for the photocatalytic imidacloprid degradation and hydrogen evolution. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
17
|
Djandja OS, Liew RK, Liu C, Liang J, Yuan H, He W, Feng Y, Lougou BG, Duan PG, Lu X, Kang S. Catalytic hydrothermal carbonization of wet organic solid waste: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162119. [PMID: 36773913 DOI: 10.1016/j.scitotenv.2023.162119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Hydrothermal carbonization has gained attention in converting wet organic solid waste into hydrochar with many applications such as solid fuel, energy storage material precursor, fertilizer or soil conditioner. Recently, various catalysts such as organic and inorganic catalysts are employed to guide the properties of the hydrochar. This review presents a summarize and a critical discussion on types of catalysts, process parameters and catalytic mechanisms. The catalytic impact of carboxylic acids is related to their acidity level and the number of carboxylic groups. The catalysis level with strong mineral acids is likely related to the number of hydronium ions liberated from their hydrolysis. The impact of inorganic salts is determined by the Lewis acidity of the cation. The metallic ions in metallic salts may incorporate into the hydrochar and increase the ash of the hydrochar. The selection of catalysts for various applications of hydrochars and the environmental and the techno-economic aspects of the process are also presented. Although some catalysts might enhance the characteristics of hydrochar for various applications, these catalysts may also result in considerable carbon loss, particularly in the case of organic acid catalysts, which may potentially ruin the overall advantage of the process. Overall, depending on the expected application of the hydrochar, the type of catalyst and the amount of catalyst loading requires careful consideration. Some recommendations are made for future investigations to improve laboratory-scale process comprehension and understanding of pathways as well as to encourage widespread industrial adoption.
Collapse
Affiliation(s)
- Oraléou Sangué Djandja
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Chang Liu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jianhao Liang
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Haojun Yuan
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Weixin He
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yifei Feng
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Bachirou Guene Lougou
- School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Pei-Gao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Shimin Kang
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
18
|
Bashirova N, Poppitz D, Klüver N, Scholz S, Matysik J, Alia A. A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Sci Rep 2023; 13:1891. [PMID: 36732581 PMCID: PMC9894871 DOI: 10.1038/s41598-023-28712-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.,Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - David Poppitz
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Matysik
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany. .,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
19
|
Saravanan A, Kumar PS, Nhung TC, Ramesh B, Srinivasan S, Rangasamy G. A review on biological methodologies in municipal solid waste management and landfilling: Resource and energy recovery. CHEMOSPHERE 2022; 309:136630. [PMID: 36181855 DOI: 10.1016/j.chemosphere.2022.136630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization and urbanization growth combined with increased population has aggravated the issue of municipal solid waste generation. MSW has been accounted for contributing tremendously to the improvement of sustainable sources and safe environment. Biological processing of MSW followed by biogas and biomethane generation is one of the innumerable sustainable energy source choices. In the treatment of MSW, biological treatment has some attractive benefits such as reduced volume in the waste material, adjustment of the waste, economic aspects, obliteration of microorganisms in the waste material, and creation of biogas for energy use. In the anaerobic process the utilizable product is energy recovery. The current review discusses about the system for approaching conversion of MSW to energy and waste derived circular bioeconomy to address the zero waste society and sustainable development goals. Biological treatment process adopted with aerobic and anaerobic processes. In the aerobic process the utilizable product is compost. These techniques are used to convert MSW into a reasonable hotspot for resource and energy recovery that produces biogas, biofuel and bioelectricity and different results in without risk and harmless to the ecosystem. This review examines the suitability of biological treatment technologies for energy production, giving modern data about it. It likewise covers difficulties and points of view in this field of exploration.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Tran Cam Nhung
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
20
|
Co-pyrolysis of Soursop (Annona muricata) and Mango (Mangifera indica) Seeds: A Route to High-Quality Bio-oil. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kumar L, Mohan L, Anand R, Joshi V, Chugh M, Bharadvaja N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.998289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, the demand for energy is increasing with an emphasis on green fuels for a sustainable future. As the urge for alternative fuels is accelerating, microalgae have emerged as a promising source that can not only produce high lipid but many other platform chemicals. Moreover, it is a better alternative in comparison to conventional feedstock due to yearlong easy and mass cultivation, carbon fixation, and value-added products extraction. To date, numerous studies have been done to elucidate these organisms for large-scale fuel production. However, enhancing the lipid synthesis rate and reducing the production cost still remain a major bottleneck for its economic viability. Therefore, this study compiles information on algae-based biodiesel production with an emphasis on its unit operations from strain selection to biofuel production. Additionally, strategies to enhance lipid accumulation by incorporating genetic, and metabolic engineering and the use of leftover biomass for harnessing bio-products have been discussed. Besides, implementing a biorefinery for extracting oil followed by utilizing leftover biomass to generate value-added products such as nanoparticles, biofertilizers, biochar, and biopharmaceuticals has also been discussed.
Collapse
|