1
|
Levin M. The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine. Bioessays 2025; 47:e202400196. [PMID: 39623868 PMCID: PMC11848127 DOI: 10.1002/bies.202400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
Collapse
Affiliation(s)
- Michael Levin
- Biology DepartmentAllen Discovery Center at Tufts UniversityMedfordMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Fábregas-Tejeda A, Sims M. On the prospects of basal cognition research becoming fully evolutionary: promising avenues and cautionary notes. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2025; 47:10. [PMID: 39913055 PMCID: PMC11802611 DOI: 10.1007/s40656-025-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
The research programme 'basal cognition' adopts an evolutionary perspective for studying biological cognition. This entails investigating possible cognitive processes in 'simple'-often non-neuronal-organisms as a means to discover conserved mechanisms and adaptive capacities underwriting cognition in more complex (neuronal) organisms. However, by pulling in the opposite direction of a tradition that views cognition as something that is unique to neuronal organisms, basal cognition has been met with a fair amount of scepticism by philosophers and scientists. The very idea of approaching cognition by way of investigating the behaviour and underlying mechanisms in, say, bacteria, has been seen as preposterous and harmful to both cognitive science and biology. This paper aims to temper such scepticism to a certain degree by drawing parallels with how the evolution of 'development,' another loaded concept that refers to a not-so-easily definable, contested bundle of phenomena, has been fruitfully approached in Evolutionary Developmental Biology (Evo-Devo). Through this comparison, we identify four promising features of the basal cognition approach. These features suggest that sweeping scepticism may be unwarranted. However, each of them comes with important epistemic cautionary notes that should not be disregarded. By presenting these twofold considerations as potential ways to integrate a fully evolutionary perspective into basal cognition, this paper seeks to provide clarity and direction for the advancement of this research programme.
Collapse
Affiliation(s)
| | - Matthew Sims
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- Institute for Philosophy II, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Kuchling F, Singh I, Daga M, Zec S, Kunen A, Levin M. Uncertainty minimization and pattern recognition in Volvox carteri and V. aureus. J R Soc Interface 2025; 22:20240645. [PMID: 39999882 PMCID: PMC11858792 DOI: 10.1098/rsif.2024.0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The field of diverse intelligence explores the capacity of systems without complex brains to dynamically engage with changing environments, seeking fundamental principles of cognition and their evolutionary origins. However, there are many knowledge gaps around a general behavioural directive connecting aneural to neural organisms. This study tests predictions of the computational framework of active inference based on the free energy principle in neuroscience, applied to aneural biological processes. We demonstrate pattern recognition in the green algae Volvox using phototactic experiments with varied light pulse patterns, measuring their phototactic bias as a readout for their preferential ability to detect and adapt to one pattern over another. Results show Volvox adapt more readily to regular patterns than irregular ones and even exhibit memory properties, exhibiting a crucial component of basal intelligence. Pharmacological and electric shock-based interventions and photoadaptation simulations reveal how randomized stimuli interfere with normal photoadaptation through a structured dynamic interplay of colony rotation and calcium-mediated photoreceptor-to-flagellar information transfer, consistent with uncertainty minimization. The detection of functional uncertainty minimization in an aneural organism expands concepts like uncertainty minimization beyond neurons and provides insights and novel intervention tools applicable to other living systems, similar to early learning validations in simpler neural organisms.
Collapse
Affiliation(s)
- Franz Kuchling
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Isha Singh
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Mridushi Daga
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Susan Zec
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
4
|
Etcheverry M, Moulin-Frier C, Oudeyer PY, Levin M. AI-driven automated discovery tools reveal diverse behavioral competencies of biological networks. eLife 2025; 13:RP92683. [PMID: 39804159 PMCID: PMC11729405 DOI: 10.7554/elife.92683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Many applications in biomedicine and synthetic bioengineering rely on understanding, mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The emerging field of diverse intelligence investigates the problem-solving capacities of unconventional agents. However, few quantitative tools exist for exploring the competencies of non-conventional systems. Here, we view gene regulatory networks (GRNs) as agents navigating a problem space and develop automated tools to map the robust goal states GRNs can reach despite perturbations. Our contributions include: (1) Adapting curiosity-driven exploration algorithms from AI to discover the range of reachable goal states of GRNs, and (2) Proposing empirical tests inspired by behaviorist approaches to assess their navigation competencies. Our data shows that models inferred from biological data can reach a wide spectrum of steady states, exhibiting various competencies in physiological network dynamics without requiring structural changes in network properties or connectivity. We also explore the applicability of these 'behavioral catalogs' for comparing evolved competencies across biological networks, for designing drug interventions in biomedical contexts and synthetic gene networks for bioengineering. These tools and the emphasis on behavior-shaping open new paths for efficiently exploring the complex behavior of biological networks. For the interactive version of this paper, please visit https://developmentalsystems.org/curious-exploration-of-grn-competencies.
Collapse
Affiliation(s)
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
5
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biological mechanisms contradict AI consciousness: The spaces between the notes. Biosystems 2025; 247:105387. [PMID: 39736318 DOI: 10.1016/j.biosystems.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The presumption that experiential consciousness requires a nervous system and brain has been central to the debate on the possibility of developing a conscious form of artificial intelligence (AI). The likelihood of future AI consciousness or devising tools to assess its presence has focused on how AI might mimic brain-centered activities. Currently, dual general assumptions prevail: AI consciousness is primarily an issue of functional information density and integration, and no substantive technical barriers exist to prevent its achievement. When the cognitive process that underpins consciousness is stipulated as a cellular attribute, these premises are directly contradicted. The innate characteristics of biological information and how that information is managed by individual cells have no parallels within machine-based AI systems. Any assertion of computer-based AI consciousness represents a fundamental misapprehension of these crucial differences.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
6
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
7
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
8
|
Baravalle L. How (not) to Talk to a Plant: An Application of Automata Theory to Plant Communication. Acta Biotheor 2024; 72:8. [PMID: 38949721 PMCID: PMC11217117 DOI: 10.1007/s10441-024-09484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Plants are capable of a range of complex interactions with the environment. Over the last decade, some authors have used this as evidence to argue that plants are cognitive agents. While there is no consensus on this view, it is certainly interesting to approach the debate from a comparative perspective, trying to understand whether different lineages of plants show different degrees of responsiveness to environmental cues, and how their responses compare with those of animals or humans. In this paper, I suggest that a potentially fruitful approach to these comparative studies is provided by automata theory. Accordingly, I shall present a possible application of this theory to plant communication. Two tentative results will emerge. First, that different lineages may exhibit different levels of complexity in response to similar stimuli. Second, that current evidence does not allow to infer great cognitive sophistication in plants.
Collapse
Affiliation(s)
- Lorenzo Baravalle
- Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Edifício C4, 3º Piso, Sala 4.3.24, 1749-016, Lisbon, Portugal.
| |
Collapse
|
9
|
Jaeger J, Riedl A, Djedovic A, Vervaeke J, Walsh D. Naturalizing relevance realization: why agency and cognition are fundamentally not computational. Front Psychol 2024; 15:1362658. [PMID: 38984275 PMCID: PMC11231436 DOI: 10.3389/fpsyg.2024.1362658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance. It must turn ill-defined problems into well-defined ones, turn semantics into syntax. This ability to realize relevance is present in all organisms, from bacteria to humans. It lies at the root of organismic agency, cognition, and consciousness, arising from the particular autopoietic, anticipatory, and adaptive organization of living beings. In this article, we show that the process of relevance realization is beyond formalization. It cannot be captured completely by algorithmic approaches. This implies that organismic agency (and hence cognition as well as consciousness) are at heart not computational in nature. Instead, we show how the process of relevance is realized by an adaptive and emergent triadic dialectic (a trialectic), which manifests as a metabolic and ecological-evolutionary co-constructive dynamic. This results in a meliorative process that enables an agent to continuously keep a grip on its arena, its reality. To be alive means to make sense of one's world. This kind of embodied ecological rationality is a fundamental aspect of life, and a key characteristic that sets it apart from non-living matter.
Collapse
Affiliation(s)
- Johannes Jaeger
- Department of Philosophy, University of Vienna, Vienna, Austria
- Complexity Science Hub (CSH) Vienna, Vienna, Austria
- Ronin Institute, Essex, NJ, United States
| | - Anna Riedl
- Middle European Interdisciplinary Master's Program in Cognitive Science, University of Vienna, Vienna, Austria
| | - Alex Djedovic
- Cognitive Science Program, University of Toronto, Toronto, ON, Canada
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
| | - John Vervaeke
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Denis Walsh
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
- Department of Philosophy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Joy R. An evaluation of the xenobotic cognitive project: Towards Stage 1 of xenobotic cognition. ENDEAVOUR 2024; 48:100927. [PMID: 38679490 DOI: 10.1016/j.endeavour.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/30/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Xenobot, the world's first biological robot, puts numerous philosophical riddles before us. One among them pertains to the cognitive status of these entities. Are these biological robots cognitive? To evaluate the cognitive status of xenobots and to resolve the puzzle of a single mind emerging from smaller sub-units, in this article, I juxtapose the cognitive capacities of xenobots with that of two other minimal models of cognition, i.e., basal cognition and nonliving active matter cognition. Further, the article underlines the essential cognitive capabilities that xenobots need to achieve to enter what I call stage 1 of xenobotic cognition. Stage 1 is characterized by numerous cognitive mechanisms, which are integral for the survival and cognition of basal organisms. Finally, I suggest that developing xenobots that can reach Stage 1 can help us achieve sophistication in the areas of evolution of the human mind, robotics, biology and medicine, and artificial intelligence (AI).
Collapse
Affiliation(s)
- Reshma Joy
- Indian Institute of Technology Ropar, India.
| |
Collapse
|
11
|
Levin M. Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue. ENTROPY (BASEL, SWITZERLAND) 2024; 26:481. [PMID: 38920491 PMCID: PMC11203334 DOI: 10.3390/e26060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Many studies on memory emphasize the material substrate and mechanisms by which data can be stored and reliably read out. Here, I focus on complementary aspects: the need for agents to dynamically reinterpret and modify memories to suit their ever-changing selves and environment. Using examples from developmental biology, evolution, and synthetic bioengineering, in addition to neuroscience, I propose that a perspective on memory as preserving salience, not fidelity, is applicable to many phenomena on scales from cells to societies. Continuous commitment to creative, adaptive confabulation, from the molecular to the behavioral levels, is the answer to the persistence paradox as it applies to individuals and whole lineages. I also speculate that a substrate-independent, processual view of life and mind suggests that memories, as patterns in the excitable medium of cognitive systems, could be seen as active agents in the sense-making process. I explore a view of life as a diverse set of embodied perspectives-nested agents who interpret each other's and their own past messages and actions as best as they can (polycomputation). This synthesis suggests unifying symmetries across scales and disciplines, which is of relevance to research programs in Diverse Intelligence and the engineering of novel embodied minds.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
12
|
Seifert G, Sealander A, Marzen S, Levin M. From reinforcement learning to agency: Frameworks for understanding basal cognition. Biosystems 2024; 235:105107. [PMID: 38128873 DOI: 10.1016/j.biosystems.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Organisms play, explore, and mimic those around them. Is there a purpose to this behavior? Are organisms just behaving, or are they trying to achieve goals? We believe this is a false dichotomy. To that end, to understand organisms, we attempt to unify two approaches for understanding complex agents, whether evolved or engineered. We argue that formalisms describing multiscale competencies and goal-directedness in biology (e.g., TAME), and reinforcement learning (RL), can be combined in a symbiotic framework. While RL has been largely focused on higher-level organisms and robots of high complexity, TAME is naturally capable of describing lower-level organisms and minimal agents as well. We propose several novel questions that come from using RL/TAME to understand biology as well as ones that come from using biology to formulate new theory in AI. We hope that the research programs proposed in this piece shape future efforts to understand biological organisms and also future efforts to build artificial agents.
Collapse
Affiliation(s)
- Gabriella Seifert
- Department of Physics, University of Colorado, Boulder, CO 80309, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Ava Sealander
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA.
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA; Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
13
|
Rodríguez Higuera CJ. Is meaning commensurable in scientific theories? From arbitrariness to non-nomological relations in meaning-making. Biosystems 2023; 234:105042. [PMID: 37797788 DOI: 10.1016/j.biosystems.2023.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
For scientific projects to deal with something as diffuse as meaning-making there are multiple hurdles to solve, starting with the validity of meaning as a specific phenomenon to be represented scientifically. Modulating the concept of meaning into a comprehensible phenomenon across different scales of validity - as a top-to-bottom approach in the sense of applying meaning to areas where it is not commonplace - requires being able to both differentiate its expression in subjective systems (as, for instance, individuals with the faculty of language) and as a biological principle that takes place in other forms of life. In this paper we will examine whether the latter sense of meaning can be somewhat commensurable with the former, and propose a philosophical change of gears in regards to the way we express the issues of meaning as arbitrary vs the non-nomological relations witnessed in accounts of biological meaning, making the latter the more accurate way to invoke the secondary sense of meaning without marring it with issues of subjectivity as it happens in the first sense. We propose the concept of "surjectivity" to account for processes underlying behavior that cannot be explained away by appealing to physical law.
Collapse
|
14
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Reid CR. Thoughts from the forest floor: a review of cognition in the slime mould Physarum polycephalum. Anim Cogn 2023; 26:1783-1797. [PMID: 37166523 PMCID: PMC10770251 DOI: 10.1007/s10071-023-01782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Sensing, communication, navigation, decision-making, memory and learning are key components in a standard cognitive tool-kit that enhance an animal's ability to successfully survive and reproduce. However, these tools are not only useful for, or accessible to, animals-they evolved long ago in simpler organisms using mechanisms which may be either unique or widely conserved across diverse taxa. In this article, I review the recent research that demonstrates these key cognitive abilities in the plasmodial slime mould Physarum polycephalum, which has emerged as a model for non-animal cognition. I discuss the benefits and limitations of comparisons drawn between neural and non-neural systems, and the implications of common mechanisms across wide taxonomic divisions. I conclude by discussing future avenues of research that will draw the most benefit from a closer integration of Physarum and animal cognition research.
Collapse
Affiliation(s)
- Chris R Reid
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
16
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
17
|
Affiliation(s)
- Pamela Lyon
- Faculty of Arts, Business, Law and Economics, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
18
|
Rouleau N, Levin M. The Multiple Realizability of Sentience in Living Systems and Beyond. eNeuro 2023; 10:ENEURO.0375-23.2023. [PMID: 37963652 PMCID: PMC10646883 DOI: 10.1523/eneuro.0375-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Allen Discovery Center at, Tufts University, Medford, MA 02155
| | - Michael Levin
- Allen Discovery Center at, Tufts University, Medford, MA 02155
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215
| |
Collapse
|
19
|
Grodstein J, McMillen P, Levin M. Closing the loop on morphogenesis: a mathematical model of morphogenesis by closed-loop reaction-diffusion. Front Cell Dev Biol 2023; 11:1087650. [PMID: 37645245 PMCID: PMC10461482 DOI: 10.3389/fcell.2023.1087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Morphogenesis, the establishment and repair of emergent complex anatomy by groups of cells, is a fascinating and biomedically-relevant problem. One of its most fascinating aspects is that a developing embryo can reliably recover from disturbances, such as splitting into twins. While this reliability implies some type of goal-seeking error minimization over a morphogenic field, there are many gaps with respect to detailed, constructive models of such a process. A common way to achieve reliability is negative feedback, which requires characterizing the existing body shape to create an error signal-but measuring properties of a shape may not be simple. We show how cells communicating in a wave-like pattern could analyze properties of the current body shape. We then describe a closed-loop negative-feedback system for creating reaction-diffusion (RD) patterns with high reliability. Specifically, we use a wave to count the number of peaks in a RD pattern, letting us use a negative-feedback controller to create a pattern with N repetitions, where N can be altered over a wide range. Furthermore, the individual repetitions of the RD pattern can be easily stretched or shrunk under genetic control to create, e.g., some morphological features larger than others. This work contributes to the exciting effort of understanding design principles of morphological computation, which can be used to understand evolved developmental mechanisms, manipulate them in regenerative-medicine settings, or engineer novel synthetic morphology constructs with desired robust behavior.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| |
Collapse
|
20
|
Beer RD. On the Proper Treatment of Dynamics in Cognitive Science. Top Cogn Sci 2023. [PMID: 37531569 DOI: 10.1111/tops.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
This essay examines the relevance of dynamical ideas for cognitive science. On its own, the mere mathematical idea of a dynamical system is too weak to serve as a scientific theory of anything, and dynamical approaches within cognitive science are too rich and varied to be subsumed under a single "dynamical hypothesis." Instead, after first attempting to dissect the different notions of "dynamics" and "cognition" at play, a more specific theoretical framework for cognitive science broadly construed is sketched. This framework draws upon not only dynamical ideas, but also such contemporaneous perspectives as situatedness, embodiment, ecological psychology, enaction, neuroethology/neuroscience, artificial life, and biogenic approaches. The paper ends with some methodological suggestions for pursuing this theoretical framework.
Collapse
Affiliation(s)
- Randall D Beer
- Cognitive Science Program, Informatics Department, Luddy School of Informatics, Computing and Engineering, Indiana University
| |
Collapse
|
21
|
Blackiston D, Kriegman S, Bongard J, Levin M. Biological Robots: Perspectives on an Emerging Interdisciplinary Field. Soft Robot 2023; 10:674-686. [PMID: 37083430 PMCID: PMC10442684 DOI: 10.1089/soro.2022.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.
Collapse
Affiliation(s)
- Douglas Blackiston
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| | - Sam Kriegman
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Center for Robotics and Biosystems, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Josh Bongard
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Department of Computer Science, University of Vermont, Burlington, Vermont, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| |
Collapse
|
22
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Sims R. Minimal cognition and stigmergic coordination: An everyday tale of building and bacteria. COGN SYST RES 2023. [DOI: 10.1016/j.cogsys.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Miller WB, Baluška F, Reber AS. A revised central dogma for the 21st century:all biology is cognitive information processing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00057-3. [PMID: 37268025 DOI: 10.1016/j.pbiomolbio.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Crick's Central Dogma has been a foundational aspect of 20th century biology, describing an implicit relationship governing the flow of information in biological systems in biomolecular terms. Accumulating scientific discoveries support the need for a revised Central Dogma to buttress evolutionary biology's still-fledgling migration from a Neodarwinian canon. A reformulated Central Dogma to meet contemporary biology is proposed: all biology is cognitive information processing. Central to this contention is the recognition that life is the self-referential state, instantiated within the cellular form. Self-referential cells act to sustain themselves and to do so, cells must be in consistent harmony with their environment. That consonance is achieved by the continuous assimilation of environmental cues and stresses as information to self-referential observers. All received cellular information must be analyzed to be deployed as cellular problem-solving to maintain homeorhetic equipoise. However, the effective implementation of information is definitively a function of orderly information management. Consequently, effective cellular problem-solving is information processing and management. The epicenter of that cellular information processing is its self-referential internal measurement. All further biological self-organization initiates from this obligate activity. As the internal measurement by cells of information is self-referential by definition, self-reference is biological self-organization, underpinning 21st century Cognition-Based Biology.
Collapse
Affiliation(s)
| | | | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
26
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
27
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Parise AG, Gubert GF, Whalan S, Gagliano M. Ariadne’s thread and the extension of cognition: A common but overlooked phenomenon in nature? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1069349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Over recent decades, our philosophical and scientific understanding of cognition has changed dramatically. We went from conceiving humans as the sole truly cognitive species on the planet to endowing several organisms with cognitive capacities, from considering brains as the exclusive seat of cognition to extending cognitive faculties to the entire physical body and beyond. That cognition could extend beyond the organism’s body is no doubt one of the most controversial of the recent hypotheses. Extended cognition (ExC) has been discussed not only to explain aspects of the human cognitive process, but also of other species such as spiders and more recently, plants. It has been suggested that ExC could offer insights for the grounding of environmentally extended cognitive traits in evolved ecological functions. Here, we reviewed the ecological literature for possible ExC examples that satisfy the mutual manipulability criterion, which can be used to establish experimentally the boundaries of cognitive systems. Our conclusion is that ExC might be far more common than previously thought, and present in organisms as diverse as plants, fungi, termites, spiders, mammals, and slime moulds. Experimental investigation is needed to clarify this idea which, if proven correct, could illuminate a new path into understanding the origins and evolution of cognition.
Collapse
|
29
|
Shreesha L, Levin M. Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010131. [PMID: 36673272 PMCID: PMC9858125 DOI: 10.3390/e25010131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
Collapse
Affiliation(s)
- Lakshwin Shreesha
- UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
30
|
Biswas S, Clawson W, Levin M. Learning in Transcriptional Network Models: Computational Discovery of Pathway-Level Memory and Effective Interventions. Int J Mol Sci 2022; 24:285. [PMID: 36613729 PMCID: PMC9820177 DOI: 10.3390/ijms24010285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Trainability, in any substrate, refers to the ability to change future behavior based on past experiences. An understanding of such capacity within biological cells and tissues would enable a particularly powerful set of methods for prediction and control of their behavior through specific patterns of stimuli. This top-down mode of control (as an alternative to bottom-up modification of hardware) has been extensively exploited by computer science and the behavioral sciences; in biology however, it is usually reserved for organism-level behavior in animals with brains, such as training animals towards a desired response. Exciting work in the field of basal cognition has begun to reveal degrees and forms of unconventional memory in non-neural tissues and even in subcellular biochemical dynamics. Here, we characterize biological gene regulatory circuit models and protein pathways and find them capable of several different kinds of memory. We extend prior results on learning in binary transcriptional networks to continuous models and identify specific interventions (regimes of stimulation, as opposed to network rewiring) that abolish undesirable network behavior such as drug pharmacoresistance and drug sensitization. We also explore the stability of created memories by assessing their long-term behavior and find that most memories do not decay over long time periods. Additionally, we find that the memory properties are quite robust to noise; surprisingly, in many cases noise actually increases memory potential. We examine various network properties associated with these behaviors and find that no one network property is indicative of memory. Random networks do not show similar memory behavior as models of biological processes, indicating that generic network dynamics are not solely responsible for trainability. Rational control of dynamic pathway function using stimuli derived from computational models opens the door to empirical studies of proto-cognitive capacities in unconventional embodiments and suggests numerous possible applications in biomedicine, where behavior shaping of pathway responses stand as a potential alternative to gene therapy.
Collapse
Affiliation(s)
- Surama Biswas
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Department of Computer Science & Engineering and Information Technology, Meghnad Saha Institute of Technology, Kolkata 700150, India
| | - Wesley Clawson
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Harrison D, Rorot W, Laukaityte U. Mind the matter: Active matter, soft robotics, and the making of bio-inspired artificial intelligence. Front Neurorobot 2022; 16:880724. [PMID: 36620483 PMCID: PMC9815774 DOI: 10.3389/fnbot.2022.880724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Philosophical and theoretical debates on the multiple realisability of the cognitive have historically influenced discussions of the possible systems capable of instantiating complex functions like memory, learning, goal-directedness, and decision-making. These debates have had the corollary of undermining, if not altogether neglecting, the materiality and corporeality of cognition-treating material, living processes as "hardware" problems that can be abstracted out and, in principle, implemented in a variety of materials-in particular on digital computers and in the form of state-of-the-art neural networks. In sum, the matter in se has been taken not to matter for cognition. However, in this paper, we argue that the materiality of cognition-and the living, self-organizing processes that it enables-requires a more detailed assessment when understanding the nature of cognition and recreating it in the field of embodied robotics. Or, in slogan form, that the matter matters for cognitive form and function. We pull from the fields of Active Matter Physics, Soft Robotics, and Basal Cognition literature to suggest that the imbrication between material and cognitive processes is closer than standard accounts of multiple realisability suggest. In light of this, we propose upgrading the notion of multiple realisability from the standard version-what we call 1.0-to a more nuanced conception 2.0 to better reflect the recent empirical advancements, while at the same time averting many of the problems that have been raised for it. These fields are actively reshaping the terrain in which we understand materiality and how it enables, mediates, and constrains cognition. We propose that taking the materiality of our embodied, precarious nature seriously furnishes an important research avenue for the development of embodied robots that autonomously value, engage, and interact with the environment in a goal-directed manner, in response to existential needs of survival, persistence, and, ultimately, reproduction. Thus, we argue that by placing further emphasis on the soft, active, and plastic nature of the materials that constitute cognitive embodiment, we can move further in the direction of autonomous embodied robots and Artificial Intelligence.
Collapse
Affiliation(s)
- David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, United Kingdom
- Leverhulme Centre for the Future of Intelligence, Cambridge, United Kingdom
- Konrad Lorenz Institute for Evolution and Cognition Research, Vienna, Austria
| | - Wiktor Rorot
- Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Urte Laukaityte
- Department of Philosophy, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
32
|
Dodig-Crnkovic G. Cognition as Morphological/Morphogenetic Embodied Computation In Vivo. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1576. [PMID: 36359666 PMCID: PMC9689251 DOI: 10.3390/e24111576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2023]
Abstract
Cognition, historically considered uniquely human capacity, has been recently found to be the ability of all living organisms, from single cells and up. This study approaches cognition from an info-computational stance, in which structures in nature are seen as information, and processes (information dynamics) are seen as computation, from the perspective of a cognizing agent. Cognition is understood as a network of concurrent morphological/morphogenetic computations unfolding as a result of self-assembly, self-organization, and autopoiesis of physical, chemical, and biological agents. The present-day human-centric view of cognition still prevailing in major encyclopedias has a variety of open problems. This article considers recent research about morphological computation, morphogenesis, agency, basal cognition, extended evolutionary synthesis, free energy principle, cognition as Bayesian learning, active inference, and related topics, offering new theoretical and practical perspectives on problems inherent to the old computationalist cognitive models which were based on abstract symbol processing, and unaware of actual physical constraints and affordances of the embodiment of cognizing agents. A better understanding of cognition is centrally important for future artificial intelligence, robotics, medicine, and related fields.
Collapse
Affiliation(s)
- Gordana Dodig-Crnkovic
- Department of Computer Science and Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
- Division of Computer Science and Software Engineering, School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden
| |
Collapse
|
33
|
Clawson WP, Levin M. Endless forms most beautiful 2.0: teleonomy and the bioengineering of chimaeric and synthetic organisms. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
The rich variety of biological forms and behaviours results from one evolutionary history on Earth, via frozen accidents and selection in specific environments. This ubiquitous baggage in natural, familiar model species obscures the plasticity and swarm intelligence of cellular collectives. Significant gaps exist in our understanding of the origin of anatomical novelty, of the relationship between genome and form, and of strategies for control of large-scale structure and function in regenerative medicine and bioengineering. Analysis of living forms that have never existed before is necessary to reveal deep design principles of life as it can be. We briefly review existing examples of chimaeras, cyborgs, hybrots and other beings along the spectrum containing evolved and designed systems. To drive experimental progress in multicellular synthetic morphology, we propose teleonomic (goal-seeking, problem-solving) behaviour in diverse problem spaces as a powerful invariant across possible beings regardless of composition or origin. Cybernetic perspectives on chimaeric morphogenesis erase artificial distinctions established by past limitations of technology and imagination. We suggest that a multi-scale competency architecture facilitates evolution of robust problem-solving, living machines. Creation and analysis of novel living forms will be an essential testbed for the emerging field of diverse intelligence, with numerous implications across regenerative medicine, robotics and ethics.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts University , Medford, MA , USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University , Boston, MA , USA
| |
Collapse
|
34
|
Fields C, Levin M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:819. [PMID: 35741540 PMCID: PMC9222757 DOI: 10.3390/e24060819] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022]
Abstract
One of the most salient features of life is its capacity to handle novelty and namely to thrive and adapt to new circumstances and changes in both the environment and internal components. An understanding of this capacity is central to several fields: the evolution of form and function, the design of effective strategies for biomedicine, and the creation of novel life forms via chimeric and bioengineering technologies. Here, we review instructive examples of living organisms solving diverse problems and propose competent navigation in arbitrary spaces as an invariant for thinking about the scaling of cognition during evolution. We argue that our innate capacity to recognize agency and intelligence in unfamiliar guises lags far behind our ability to detect it in familiar behavioral contexts. The multi-scale competency of life is essential to adaptive function, potentiating evolution and providing strategies for top-down control (not micromanagement) to address complex disease and injury. We propose an observer-focused viewpoint that is agnostic about scale and implementation, illustrating how evolution pivoted similar strategies to explore and exploit metabolic, transcriptional, morphological, and finally 3D motion spaces. By generalizing the concept of behavior, we gain novel perspectives on evolution, strategies for system-level biomedical interventions, and the construction of bioengineered intelligences. This framework is a first step toward relating to intelligence in highly unfamiliar embodiments, which will be essential for progress in artificial intelligence and regenerative medicine and for thriving in a world increasingly populated by synthetic, bio-robotic, and hybrid beings.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
| | - Michael Levin
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
35
|
Doctor T, Witkowski O, Solomonova E, Duane B, Levin M. Biology, Buddhism, and AI: Care as the Driver of Intelligence. ENTROPY (BASEL, SWITZERLAND) 2022; 24:710. [PMID: 35626593 PMCID: PMC9140411 DOI: 10.3390/e24050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Intelligence is a central feature of human beings' primary and interpersonal experience. Understanding how intelligence originated and scaled during evolution is a key challenge for modern biology. Some of the most important approaches to understanding intelligence are the ongoing efforts to build new intelligences in computer science (AI) and bioengineering. However, progress has been stymied by a lack of multidisciplinary consensus on what is central about intelligence regardless of the details of its material composition or origin (evolved vs. engineered). We show that Buddhist concepts offer a unique perspective and facilitate a consilience of biology, cognitive science, and computer science toward understanding intelligence in truly diverse embodiments. In coming decades, chimeric and bioengineering technologies will produce a wide variety of novel beings that look nothing like familiar natural life forms; how shall we gauge their moral responsibility and our own moral obligations toward them, without the familiar touchstones of standard evolved forms as comparison? Such decisions cannot be based on what the agent is made of or how much design vs. natural evolution was involved in their origin. We propose that the scope of our potential relationship with, and so also our moral duty toward, any being can be considered in the light of Care-a robust, practical, and dynamic lynchpin that formalizes the concepts of goal-directedness, stress, and the scaling of intelligence; it provides a rubric that, unlike other current concepts, is likely to not only survive but thrive in the coming advances of AI and bioengineering. We review relevant concepts in basal cognition and Buddhist thought, focusing on the size of an agent's goal space (its cognitive light cone) as an invariant that tightly links intelligence and compassion. Implications range across interpersonal psychology, regenerative medicine, and machine learning. The Bodhisattva's vow ("for the sake of all sentient life, I shall achieve awakening") is a practical design principle for advancing intelligence in our novel creations and in ourselves.
Collapse
Affiliation(s)
- Thomas Doctor
- Centre for Buddhist Studies, Rangjung Yeshe Institute, Kathmandu University, Kathmandu 44600, Nepal; (T.D.); (B.D.)
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
| | - Olaf Witkowski
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Cross Labs, Cross Compass Ltd., Kyoto 604-8206, Japan
- College of Arts and Sciences, University of Tokyo, Tokyo 113-8654, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 145-0061, Japan
| | - Elizaveta Solomonova
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Neurophilosophy Lab, Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Bill Duane
- Centre for Buddhist Studies, Rangjung Yeshe Institute, Kathmandu University, Kathmandu 44600, Nepal; (T.D.); (B.D.)
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Bill Duane and Associates LLC, San Francisco, CA 94117, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
36
|
Abstract
According to the current scientific paradigm, what we call ‘life’, ‘mind’, and ‘consciousness’ are considered epiphenomenal occurrences, or emergent properties or functions of matter and energy. Science does not associate these with an inherent and distinct existence beyond a materialistic/energetic conception. ‘Life’ is a word pointing at cellular and multicellular processes forming organisms capable of specific functions and skills. ‘Mind’ is a cognitive ability emerging from a matrix of complex interactions of neuronal processes, while ‘consciousness’ is an even more elusive concept, deemed a subjective epiphenomenon of brain activity. Historically, however, this has not always been the case, even in the scientific and academic context. Several prominent figures took vitalism seriously, while some schools of Western philosophical idealism and Eastern traditions promoted conceptions in which reality is reducible to mind or consciousness rather than matter. We will argue that current biological sciences did not falsify these alternative paradigms and that some forms of vitalism could be linked to some forms of idealism if we posit life and cognition as two distinct aspects of consciousness preeminent over matter. However, we will not argue in favor of vitalistic and idealistic conceptions. Rather, contrary to a physicalist doctrine, these were and remain coherent worldviews and cannot be ruled out by modern science.
Collapse
|
37
|
Sims M. Self-Concern Across Scales: A Biologically Inspired Direction for Embodied Artificial Intelligence. Front Neurorobot 2022; 16:857614. [PMID: 35574229 PMCID: PMC9106101 DOI: 10.3389/fnbot.2022.857614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Intelligence in current AI research is measured according to designer-assigned tasks that lack any relevance for an agent itself. As such, tasks and their evaluation reveal a lot more about our intelligence than the possible intelligence of agents that we design and evaluate. As a possible first step in remedying this, this article introduces the notion of “self-concern,” a property of a complex system that describes its tendency to bring about states that are compatible with its continued self-maintenance. Self-concern, as argued, is the foundation of the kind of basic intelligence found across all biological systems, because it reflects any such system's existential task of continued viability. This article aims to cautiously progress a few steps closer to a better understanding of some necessary organisational conditions that are central to self-concern in biological systems. By emulating these conditions in embodied AI, perhaps something like genuine self-concern can be implemented in machines, bringing AI one step closer to its original goal of emulating human-like intelligence.
Collapse
|
38
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
39
|
Abramson CI, Levin M. Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Commun Integr Biol 2021; 14:230-247. [PMID: 34925687 PMCID: PMC8677006 DOI: 10.1080/19420889.2021.2005863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The fields of developmental biology, biomedicine, and artificial life are being revolutionized by advances in synthetic morphology. The next phase of synthetic biology and bioengineering is resulting in the construction of novel organisms (biobots), which exhibit not only morphogenesis and physiology but functional behavior. It is now essential to begin to characterize the behavioral capacity of novel living constructs in terms of their ability to make decisions, form memories, learn from experience, and anticipate future stimuli. These synthetic organisms are highly diverse, and often do not resemble familiar model systems used in behavioral science. Thus, they represent an important context in which to begin to unify and standardize vocabulary and techniques across developmental biology, behavioral ecology, and neuroscience. To facilitate the study of behavior in novel living systems, we present a primer on techniques from the behaviorist tradition that can be used to probe the functions of any organism – natural, chimeric, or synthetic – regardless of the details of their construction or origin. These techniques provide a rich toolkit for advancing the fields of synthetic bioengineering, evolutionary developmental biology, basal cognition, exobiology, and robotics.
Collapse
Affiliation(s)
- Charles I Abramson
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Biology at Oklahoma State University, United States of America
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, United States of America
| |
Collapse
|
40
|
Affiliation(s)
- Mikio Akagi
- Roach Honors College, Texas Christian University, Fort Worth, United States
| |
Collapse
|
41
|
Sims M, Kiverstein J. Externalized memory in slime mould and the extended (non-neuronal) mind. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Rossi A, Parada FJ. Book Review: Neuroscience for Psychologists: An Introduction. Front Psychol 2021. [PMCID: PMC8421559 DOI: 10.3389/fpsyg.2021.737931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Tison R, Poirier P. Communication as Socially Extended Active Inference: An Ecological Approach to Communicative Behavior. ECOLOGICAL PSYCHOLOGY 2021. [DOI: 10.1080/10407413.2021.1965480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Shah D, Yang B, Kriegman S, Levin M, Bongard J, Kramer-Bottiglio R. Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002882. [PMID: 32954582 DOI: 10.1002/adma.202002882] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next-generation shape changing robots are also discussed.
Collapse
Affiliation(s)
- Dylan Shah
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Bilige Yang
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Sam Kriegman
- Department of Computer Science, University of Vermont, E428 Innovation Hall, Burlington, VT, 05405, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts University, 200 Boston Ave. Suite 4604, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Josh Bongard
- Department of Computer Science, University of Vermont, E428 Innovation Hall, Burlington, VT, 05405, USA
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| |
Collapse
|
45
|
Pezzulo G, LaPalme J, Durant F, Levin M. Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190765. [PMID: 33550952 PMCID: PMC7935058 DOI: 10.1098/rstb.2019.0765] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Fallon Durant
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
46
|
Bongard J, Levin M. Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern Science of Machine Behavior. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.650726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the most useful metaphors for driving scientific and engineering progress has been that of the “machine.” Much controversy exists about the applicability of this concept in the life sciences. Advances in molecular biology have revealed numerous design principles that can be harnessed to understand cells from an engineering perspective, and build novel devices to rationally exploit the laws of chemistry, physics, and computation. At the same time, organicists point to the many unique features of life, especially at larger scales of organization, which have resisted decomposition analysis and artificial implementation. Here, we argue that much of this debate has focused on inessential aspects of machines – classical properties which have been surpassed by advances in modern Machine Behavior and no longer apply. This emerging multidisciplinary field, at the interface of artificial life, machine learning, and synthetic bioengineering, is highlighting the inadequacy of existing definitions. Key terms such as machine, robot, program, software, evolved, designed, etc., need to be revised in light of technological and theoretical advances that have moved past the dated philosophical conceptions that have limited our understanding of both evolved and designed systems. Moving beyond contingent aspects of historical and current machines will enable conceptual tools that embrace inevitable advances in synthetic and hybrid bioengineering and computer science, toward a framework that identifies essential distinctions between fundamental concepts of devices and living agents. Progress in both theory and practical applications requires the establishment of a novel conception of “machines as they could be,” based on the profound lessons of biology at all scales. We sketch a perspective that acknowledges the remarkable, unique aspects of life to help re-define key terms, and identify deep, essential features of concepts for a future in which sharp boundaries between evolved and designed systems will not exist.
Collapse
|
47
|
Lyon P, Keijzer F, Arendt D, Levin M. Reframing cognition: getting down to biological basics. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190750. [PMID: 33487107 PMCID: PMC7935032 DOI: 10.1098/rstb.2019.0750] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The premise of this two-part theme issue is simple: the cognitive sciences should join the rest of the life sciences in how they approach the quarry within their research domain. Specifically, understanding how organisms on the lower branches of the phylogenetic tree become familiar with, value and exploit elements of an ecological niche while avoiding harm can be expected to aid understanding of how organisms that evolved later (including Homo sapiens) do the same or similar things. We call this approach basal cognition. In this introductory essay, we explain what the approach involves. Because no definition of cognition exists that reflects its biological basis, we advance a working definition that can be operationalized; introduce a behaviour-generating toolkit of capacities that comprise the function (e.g. sensing/perception, memory, valence, learning, decision making, communication), each element of which can be studied relatively independently; and identify a (necessarily incomplete) suite of common biophysical mechanisms found throughout the domains of life involved in implementing the toolkit. The articles in this collection illuminate different aspects of basal cognition across different forms of biological organization, from prokaryotes and single-celled eukaryotes-the focus of Part 1-to plants and finally to animals, without and with nervous systems, the focus of Part 2. By showcasing work in diverse, currently disconnected fields, we hope to sketch the outline of a new multidisciplinary approach for comprehending cognition, arguably the most fascinating and hard-to-fathom evolved function on this planet. Doing so has the potential to shed light on problems in a wide variety of research domains, including microbiology, immunology, zoology, biophysics, botany, developmental biology, neurobiology/science, regenerative medicine, computational biology, artificial life and synthetic bioengineering. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Pamela Lyon
- Southgate Institute for Health, Society and Equity, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Fred Keijzer
- Department of Theoretical Philosophy, Universityof Groningen, Oude Boteringestraat 52, Groningen 9712GL, The Netherlands
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69012 Heidelberg, Germany
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
48
|
Yamashita F, Rodrigues AL, Rodrigues TM, Palermo FH, Baluška F, de Almeida LFR. Potential Plant-Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum ( Sorghum bicolor). PLANTS 2021; 10:plants10030485. [PMID: 33806670 PMCID: PMC8001897 DOI: 10.3390/plants10030485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Despite the fact that they are sessile organisms, plants actively move their organs and also use these movements to manipulate the surrounding biotic and abiotic environments. Plants maintain communication with neighboring plants, herbivores, and predators through the emission of diverse chemical compounds by their shoots and roots. These infochemicals modify the environment occupied by plants. Moreover, some infochemicals may induce morphophysiological changes of neighboring plants. We have used methyl-jasmonate (MeJa), a plant natural infochemical, to trigger communication between emitters and receivers Sorghum bicolor plants. The split roots of two plants were allocated to three different pots, with the middle pot containing the roots of both plants. We scored low stomatal conductance (gS) and low CO2 net assimilation (A) using the plants that had contact with the infochemical for the first time. During the second contact, these parameters showed no significant differences, indicating a memory effect. We also observed that the plants that had direct leaf contact with MeJa transmitted sensory information through their roots to neighboring plants. This resulted in higher maximum fluorescence (FM) and structural changes in root anatomy. In conclusion, MeJa emerges as possible trigger for communication between neighboring sorghum plants, in response to the environmental challenges.
Collapse
Affiliation(s)
- Felipe Yamashita
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
- Correspondence:
| | - Angélica Lino Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Tatiane Maria Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Fernanda Helena Palermo
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
| | - Luiz Fernando Rolim de Almeida
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| |
Collapse
|
49
|
Lyon P, Kuchling F. Valuing what happens: a biogenic approach to valence and (potentially) affect. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190752. [PMID: 33487109 DOI: 10.1098/rstb.2019.0752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Valence is half of the pair of properties that constitute core affect, the foundation of emotion. But what is valence, and where is it found in the natural world? Currently, this question cannot be answered. The idea that emotion is the body's way of driving the organism to secure its survival, thriving and reproduction runs like a leitmotif from the pathfinding work of Antonio Damasio through four book-length neuroscientific accounts of emotion recently published by the field's leading practitioners. Yet while Damasio concluded 20 years ago that the homeostasis-affect linkage is rooted in unicellular life, no agreement exists about whether even non-human animals with brains experience emotions. Simple neural animals-those less brainy than bees, fruit flies and other charismatic invertebrates-are not even on the radar of contemporary affective research, to say nothing of aneural organisms. This near-sightedness has effectively denied the most productive method available for getting a grip on highly complex biological processes to a scientific domain whose importance for understanding biological decision-making cannot be underestimated. Valence arguably is the fulcrum around which the dance of life revolves. Without the ability to discriminate advantage from harm, life very quickly comes to an end. In this paper, we review the concept of valence, where it came from, the work it does in current leading theories of emotion, and some of the odd features revealed via experiment. We present a biologically grounded framework for investigating valence in any organism and sketch a preliminary pathway to a computational model. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Pamela Lyon
- Southgate Institute for Health, Society and Equity, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Franz Kuchling
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
50
|
Bechtel W, Bich L. Grounding cognition: heterarchical control mechanisms in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190751. [PMID: 33487110 PMCID: PMC7934967 DOI: 10.1098/rstb.2019.0751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms that select when a production is required and how it should be carried out. To operate on production mechanisms, control mechanisms need to procure information through measurement processes and evaluate possible actions. They are making decisions. In all organisms, these decisions are made by multiple different control mechanisms that are organized not hierarchically but heterarchically. In many cases, they employ internal models of features of the environment with which the organism must deal. Cognition, in the form of decision-making, is thus fundamental to living systems which must control their production mechanisms. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Philosophy, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian 20018, Spain
| |
Collapse
|