1
|
Perdigão LMA, Berger C, Yee NBY, Darrow MC, Basham M. RedLionfish - fast Richardson-Lucy Deconvolution package for efficient point spread function suppression in volumetric data. Wellcome Open Res 2024; 9:296. [PMID: 39309225 PMCID: PMC11413554 DOI: 10.12688/wellcomeopenres.21505.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 09/25/2024] Open
Abstract
The experimental limitations with optics observed in many microscopy and astronomy instruments result in detrimental effects for the imaging of objects. This can be generally described mathematically as a convolution of the real object image with the point spread function that characterizes the optical system. The popular Richardson-Lucy (RL) deconvolution algorithm is widely used for the inverse process of restoring the data without these optical aberrations, often a critical step in data processing of experimental data. Here we present the versatile RedLionfish python package, that was written to make the RL deconvolution of volumetric (3D) data easier to run, very fast (by exploiting GPU computing capabilities) and with automatic handling of hardware limitations for large datasets. It can be used programmatically in Python/numpy using conda or PyPi package managers, or with a graphical user interface as a napari plugin.
Collapse
Affiliation(s)
| | - Casper Berger
- The Rosalind Franklin Institute, Didcot, OX11 0DE, UK
| | | | | | - Mark Basham
- The Rosalind Franklin Institute, Didcot, OX11 0DE, UK
| |
Collapse
|
2
|
Nonappa. Seeing the Supracolloidal Assemblies in 3D: Unraveling High-Resolution Structures Using Electron Tomography. ACS MATERIALS AU 2024; 4:238-257. [PMID: 38737122 PMCID: PMC11083119 DOI: 10.1021/acsmaterialsau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 05/14/2024]
Abstract
Transmission electron microscopy (TEM) imaging has revolutionized modern materials science, nanotechnology, and structural biology. Its ability to provide information about materials' structure, composition, and properties at atomic-level resolution has enabled groundbreaking discoveries and the development of innovative materials with precision and accuracy. Electron tomography, single particle reconstruction, and microcrystal electron diffraction techniques have paved the way for the three-dimensional (3D) reconstruction of biological samples, synthetic materials, and hybrid nanostructures at near atomic-level resolution. TEM tomography using a series of two-dimensional (2D) projections has been used extensively in biological science, but in recent years it has become an important method in synthetic nanomaterials and soft matter research. TEM tomography offers unprecedented morphological details of 3D objects, internal structures, packing patterns, growth mechanisms, and self-assembly pathways of self-assembled colloidal systems. It complements other analytical tools, including small-angle X-ray scattering, and provides valuable data for computational simulations for predictive design and reverse engineering of nanomaterials with the desired structure and properties. In this perspective, I will discuss the importance of TEM tomography in the structural understanding and engineering of self-assembled nanostructures with specific emphasis on colloidal capsids, composite cages, biohybrid superlattices with complex geometries, polymer assemblies, and self-assembled protein-based superstructures.
Collapse
Affiliation(s)
- Nonappa
- Faculty of Engineering and Natural
Sciences, Tampere University, FI-33720 Tampere, Finland
| |
Collapse
|
3
|
Mochalov KE, Korzhov DS, Altunina AV, Agapova OI, Oleinikov VA. Ultrastructural 3D Microscopy for Biomedicine: Principles, Applications, and Perspectives. Acta Naturae 2024; 16:14-29. [PMID: 38698961 PMCID: PMC11062107 DOI: 10.32607/actanaturae.27323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 05/05/2024] Open
Abstract
Modern biomedical research often requires a three-dimensional microscopic analysis of the ultrastructure of biological objects and materials. Conceptual technical and methodological solutions for three-dimensional structure reconstruction are needed to improve the conventional optical, electron, and probe microscopy methods, which to begin with allow one to obtain two-dimensional images and data. This review discusses the principles and potential applications of such techniques as serial section transmission electron microscopy; techniques based on scanning electron microscopy (SEM) (array tomography, focused ion beam SEM, and serial block-face SEM). 3D analysis techniques based on modern super-resolution optical microscopy methods are described (stochastic optical reconstruction microscopy and stimulated emission depletion microscopy), as well as ultrastructural 3D microscopy methods based on scanning probe microscopy and the feasibility of combining them with optical techniques. A comparative analysis of the advantages and shortcomings of the discussed approaches is performed.
Collapse
Affiliation(s)
- K. E. Mochalov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - D. S. Korzhov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russian Federation
| | - A. V. Altunina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russian Federation
| | - O. I. Agapova
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, 123182 Russian Federation
| | - V. A. Oleinikov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russian Federation
| |
Collapse
|
4
|
Wang J, Wang J, Zhou J, Zhang Y, Wu Y. Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent. OPTICS EXPRESS 2023; 31:31142-31157. [PMID: 37710641 DOI: 10.1364/oe.499595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Multi-plane crosstalk is a key issue affecting the quality of holographic three-dimensional (3D) displays. The time-multiplexing stochastic gradient descent (TM-SGD) method has been applied to solve the inter-plane crosstalk problem in multi-plane reconstruction. However, the inter-plane crosstalk increases greatly as the inter-plane interval decreases, and the optimization time increases greatly as the number of planes increases. In this paper, we propose a double-constraint stochastic gradient descent method to suppress inter-plane crosstalk in multi-plane reconstruction. In the proposed method, we use the mask to make the optimization process focus more on the signal region and improve the reconstruction quality. Meanwhile, we adopt a constraint strategy of phase regularization to reduce the phase randomness of the signal region and suppress inter-plane crosstalk. Numerical simulation and optical experiment results confirm that our method can effectively suppress the inter-plane crosstalk and improve the quality of the reconstructed planes at a lower inter-plane interval. Moreover, the optimization time of our method is almost 4 times faster than that of TM-SGD. The proposed method can contribute to the realization of tomographic 3D visualization in the biomedical field, which requires the reconstruction of multiple tomographic images without inter-plane crosstalk.
Collapse
|
5
|
Wang Z, Chen T, Chen Q, Tu K, Feng Q, Lv G, Wang A, Ming H. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent. OPTICS EXPRESS 2023; 31:7413-7424. [PMID: 36859872 DOI: 10.1364/oe.483590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Multi-plane reconstruction is essential for realizing a holographic three-dimensional (3D) display. One fundamental issue in conventional multi-plane Gerchberg-Saxton (GS) algorithm is the inter-plane crosstalk, mainly caused by the neglect of other planes' interference in the process of amplitude replacement at each object plane. In this paper, we proposed the time-multiplexing stochastic gradient descent (TM-SGD) optimization algorithm to reduce the multi-plane reconstruction crosstalk. First, the global optimization feature of stochastic gradient descent (SGD) was utilized to reduce the inter-plane crosstalk. However, the crosstalk optimization effect would degrade as the number of object planes increases, due to the imbalance between input and output information. Thus, we further introduced the time-multiplexing strategy into both the iteration and reconstruction process of multi-plane SGD to increase input information. In TM-SGD, multiple sub-holograms are obtained through multi-loop iteration and then sequentially refreshed on spatial light modulator (SLM). The optimization condition between the holograms and the object planes converts from one-to-many to many-to-many, improving the optimization of inter-plane crosstalk. During the persistence of vision, multiple sub-hologram jointly reconstruct the crosstalk-free multi-plane images. Through simulation and experiment, we confirmed that TM-SGD could effectively reduce the inter-plane crosstalk and improve image quality.The proposed TM-SGD-based holographic display has wide applications in tomographic 3D visualization for biology, medical science, and engineering design, which need to reconstruct multiple independent tomographic images without inter-plane crosstalk.
Collapse
|
6
|
Raimondi A, Ilacqua N, Pellegrini L. Liver inter-organelle membrane contact sites revealed by serial section electron tomography. Methods Cell Biol 2023; 177:101-123. [PMID: 37451764 DOI: 10.1016/bs.mcb.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Inter-organelle membrane contact sites (MCSs) are defined as areas of close proximity between the membranes of two organelles (10-80nm). They have been implicated in many physiological processes such as Ca++, lipids or small molecules transfer, organelles biogenesis or dynamic and have an important role in many cellular processes such as apoptosis, autophagy, and signaling. Since the distance and the extent of these contacts are in the nanometer range, high resolution techniques are ideal for imaging these structures. It is for this reason that transmission electron microscopy (TEM) has been considered the gold standard for MCSs visualization and the first technique that described them. However, often TEM analysis is limited to 2D lacking information on the 3D association between the organelles involved in MCSs. To fully describe the complex architecture of MSCs and to unveil their role in cellular physiology a 3D analysis is required. This chapter provides a method for the analysis of MCSs using serial section electron tomography (ssET), a technique able to reconstruct in 3D at nanometer resolution cellular and subcellular structures. By applying this procedure, it was possible to elucidate the role of the contacts between Endoplasmic Reticulum (ER) and other organelles in liver lipid metabolism.
Collapse
Affiliation(s)
- Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolò Ilacqua
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Luca Pellegrini
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Investigating the Morphology and Mechanics of Biogenic Hierarchical Materials at and below Micrometer Scale. NANOMATERIALS 2022; 12:nano12091549. [PMID: 35564259 PMCID: PMC9102398 DOI: 10.3390/nano12091549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022]
Abstract
Investigating and understanding the intrinsic material properties of biogenic materials, which have evolved over millions of years into admirable structures with difficult to mimic hierarchical levels, holds the potential of replacing trial-and-error-based materials optimization in our efforts to make synthetic materials of similarly advanced complexity and properties. An excellent example is biogenic silica which is found in the exoskeleton of unicellular photosynthetic algae termed diatoms. Because of the complex micro- and nanostructures found in their exoskeleton, determining the intrinsic mechanical properties of biosilica in diatoms has only partly been accomplished. Here, a general method is presented in which a combination of in situ deformation tests inside an SEM with a realistic 3D model of the frustule of diatom Craspedostauros sp. (C. sp.) obtained by electron tomography, alongside finite element method (FEM) simulations, enables quantification of the Young’s modulus (E = 2.3 ± 0.1 GPa) of this biogenic hierarchical silica. The workflow presented can be readily extended to other diatom species, biominerals, or even synthetic hierarchical materials.
Collapse
|
8
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
9
|
Navikas V, Leitao SM, Grussmayer KS, Descloux A, Drake B, Yserentant K, Werther P, Herten DP, Wombacher R, Radenovic A, Fantner GE. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat Commun 2021; 12:4565. [PMID: 34315910 PMCID: PMC8316521 DOI: 10.1038/s41467-021-24901-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
High-resolution live-cell imaging is necessary to study complex biological phenomena. Modern fluorescence microscopy methods are increasingly combined with complementary, label-free techniques to put the fluorescence information into the cellular context. The most common high-resolution imaging approaches used in combination with fluorescence imaging are electron microscopy and atomic-force microscopy (AFM), originally developed for solid-state material characterization. AFM routinely resolves atomic steps, however on soft biological samples, the forces between the tip and the sample deform the fragile membrane, thereby distorting the otherwise high axial resolution of the technique. Here we present scanning ion-conductance microscopy (SICM) as an alternative approach for topographical imaging of soft biological samples, preserving high axial resolution on cells. SICM is complemented with live-cell compatible super-resolution optical fluctuation imaging (SOFI). To demonstrate the capabilities of our method we show correlative 3D cellular maps with SOFI implementation in both 2D and 3D with self-blinking dyes for two-color high-order SOFI imaging. Finally, we employ correlative SICM/SOFI microscopy for visualizing actin dynamics in live COS-7 cells with subdiffraction-resolution.
Collapse
Affiliation(s)
- Vytautas Navikas
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel M Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grussmayer
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Grussmayer Lab, Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Adrien Descloux
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Barney Drake
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Klaus Yserentant
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Imaging the inner structure of chromosomes: contribution of focused ion beam/scanning electron microscopy to chromosome research. Chromosome Res 2021; 29:51-62. [PMID: 33587224 DOI: 10.1007/s10577-021-09650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Visualization of the chromosome ultrastructure has revealed new insights into its structural and functional properties. The use of new methods for revealing not only the surface but also the inner structure of the chromosome has been emerged. Some methods have long been used, such as conventional transmission electron microscopy (TEM). Although it has indispensably contributed to the revelation of the ultrastructure of the various biological samples, including chromosomes, some challenges have also been encountered, such as laborious sample preparation, limited view areas, and loss of information on some parts due to ultramicrotome sectioning. Therefore, a more advanced method is needed. Scanning electron microscopy (SEM) is also advantageous in the surface visualization of chromosome samples. However, it is limited by accessibility to gain the inner structure information. Focused ion beam/scanning electron microscopy (FIB/SEM) provides a way to investigate the inner structure of the samples in a direct slice-and-view manner to observe the ultrastructure of the inner part of the sample continuously and further construct a three-dimensional image. This method has long been used in the material science field, and recently, it has also been applied to biological research, such as in showing the inner structure of chromosomes. This review article presents the contributions of this new method to chromosome research and its recent developments in the inner structure of chromosome and discusses its current and potential applications to the high-resolution imaging of chromosomes.
Collapse
|
11
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
12
|
Pascucci L, Scattini G. Imaging extracelluar vesicles by transmission electron microscopy: Coping with technical hurdles and morphological interpretation. Biochim Biophys Acta Gen Subj 2020; 1865:129648. [PMID: 32485221 DOI: 10.1016/j.bbagen.2020.129648] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-derived nanometric particles governing the complex interactions among cells through their bioactive cargo. Interest in EVs is rapidly increasing due to their extensive involvement in physiological and pathological conditions, their potential employment as diagnostic and therapeutic tools and their prospective use as bio-carriers of exogenous molecules. Given their nanometric size, transmission electron microscopy (TEM) provides significant contributions to assess EV presence and purity in a sample and to study morphological features. SCOPE OF REVIEW In this review, TEM methods for EV imaging are compared with respect to their applications, benefits and drawbacks. A critical evaluation of the actual contribution of TEM to the study of EVs is also provided and the most common artifacts encountered in the literature are discussed. MAJOR CONCLUSIONS TEM techniques are powerful tools for the investigation of EVs and have the potential to reveal sample purity, ultrastructure and molecular composition. However, technical challenges, procedural errors in sample processing or misinterpretations may result in a variety of different morphologies and artifacts. GENERAL SIGNIFICANCE The last decades have seen exponential technological progress in EV imaging by TEM. Nevertheless, protocols have not been standardized yet and sample preparation remains a critical step. An optimized, standardized and integrated protocol of different techniques could minimize artifacts and interpretative errors that could significantly improve the quality and reliability of downstream studies.
Collapse
Affiliation(s)
- L Pascucci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo, 4, Perugia, Italy.
| | - G Scattini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo, 4, Perugia, Italy
| |
Collapse
|
13
|
Cohen Hyams T, Mam K, Killingsworth MC. Scanning electron microscopy as a new tool for diagnostic pathology and cell biology. Micron 2019; 130:102797. [PMID: 31862481 DOI: 10.1016/j.micron.2019.102797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Scanning electron microscopy (SEM) use in the biomedical sciences has traditionally been used for characterisation of cell and tissue surface topography. This paper demonstrates the utility of high-resolution scanning electron microscopy (HRSEM) to diagnostic pathology and cell biology ultrastructural examinations. New SEM applications based on the production of transmission electron microscopy-like (TEM-like) images are now possible with the recent introduction of new technologies such as low kV scanning transmission electron microscopy (STEM) detectors, automated scan generators and high-resolution column configurations capable of sub-nanometre resolution. Typical specimen types traditionally imaged by TEM have been examined including renal, lung, prostate and brain tissues. The specimen preparation workflow was unchanged from that routinely used to prepare TEM tissue, apart from replacing copper grids for section mounting with a silicon substrate. These instruments feature a small footprint with little in the way of ancillary equipment, such as water chillers, and are more cost-effective than traditional TEM columns. Also, a new generation of benchtop SEMs have recently become available and have also been assessed for its utility in the tissue pathology and cell biology settings.
Collapse
Affiliation(s)
- Tzipi Cohen Hyams
- Correlative Microscopy Facility, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia; South Western Sydney Clinical School, University of New South Wales Sydney (UNSW), Liverpool NSW, Australia; School of Medicine, Western Sydney University (WSU), Liverpool NSW, Australia.
| | - Keriya Mam
- Thermo Fisher Scientific, Phenom-World B.V., Eindhoven, the Netherlands
| | - Murray C Killingsworth
- Correlative Microscopy Facility, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia; Electron Microscopy Laboratory, Anatomical Pathology, New South Wales Health Pathology (NSWHP), Liverpool NSW, Australia; South Western Sydney Clinical School, University of New South Wales Sydney (UNSW), Liverpool NSW, Australia; School of Medicine, Western Sydney University (WSU), Liverpool NSW, Australia
| |
Collapse
|