1
|
Kondo S, Okano Y, Iraha S, Tokunaga S. Substance P- and Insulin-like Growth Factor 1-derived Tetrapeptides for Neurotrophic Keratopathy Related to Leprosy: A Clinical Trial. OPHTHALMOLOGY SCIENCE 2025; 5:100634. [PMID: 39717761 PMCID: PMC11665617 DOI: 10.1016/j.xops.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024]
Abstract
Purpose Neurotrophic keratopathy is part of the leprosy sequelae and causes progressive deterioration of visual acuity. Although leprosy is bacteriologically curable, there is currently no efficient treatment. Eye drops containing tetrapeptides, phenylalanine-glycine-leucine-methionine-amide (FGLM-NH2) and serine-serine-serine-arginine (SSSR), derived from substance P and insulin-like growth factor 1, are clinically efficacious in the treatment of corneal epithelial disorders caused by neurotrophic keratopathy. To further investigate the effect of this treatment on leprosy sequalae, we evaluated the clinical efficacy of FGLM-NH2+SSSR eye drops for treating neurotrophic keratopathy. Design Clinical trial: interventional, multicenter, exploratory, single-arm, before and after comparison. Participants The eyes (12) of 11 patients, aged >60 years, were studied from 2 leprosy sanatoriums in Japan. Methods Patients with neurotrophic keratopathy in leprosy sanatorium, specifically those with corneal perception of <40 mm, assessed by the Cochet-Bonnet corneal esthesiometer, and persistent corneal epithelial defects (PEDs) or corneal stromal thinning, or both, were included in this study. Those treated for infection in the acute phase were excluded from the study. Eye drops containing FGLM-NH2 0.05% and SSSR 5 × 10-6% were administered 4 times daily for up to 3 months. Fluorescein staining and optical corneal sections were photographed using a slit lamp microscope at protocol-set intervals. Where possible, anterior segment OCT was performed before and after the intervention. Main Outcome Measures The primary outcome measured was improvement in neurotrophic keratopathy. The patient was judged to have improved when ≥1 of the following criteria were met: (1) healing epithelial defects or (2) increased thickness in the thin area of the cornea. Secondary end points were visual acuity, subjective findings, and time to complete healing for a PED. Results Neurotrophic keratopathy on epithelial defects or stromal thickness improved in 83.3% of the patients (90% confidence interval 56.2%-97.0%, P < 0.00001). The mean value of corrected visual acuity increased -0.16 by logarithm of the minimum angle of resolution. There were no adverse events reported in association with the treatment. Conclusions We confirmed that FGLM-NH2+SSSR eye drops are effective for neurotrophic keratopathy without any adverse reaction in leprosy. These results should be disseminated to any parties who could need this information. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Shoko Kondo
- Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Koshi, Japan
| | - Yoshiko Okano
- Department of Ophthalmology, National Sanatorium Oshima Seishoen, Takamatsu, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Koshi, Japan
- Department of Ophthalmology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
2
|
Woronkowicz M, Roberts H, Skopiński P. The Role of Insulin-like Growth Factor (IGF) System in the Corneal Epithelium Homeostasis-From Limbal Epithelial Stem Cells to Therapeutic Applications. BIOLOGY 2024; 13:144. [PMID: 38534414 DOI: 10.3390/biology13030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes. This review examines its role in maintaining the corneal epithelium homeostasis, with a special focus on the interplay with corneal limbal stem cells and the potential therapeutic applications of the system components.
Collapse
Affiliation(s)
- Małgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Piotr Skopiński
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
4
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
6
|
Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf 2022; 25:142-153. [PMID: 35779793 DOI: 10.1016/j.jtos.2022.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023]
Abstract
Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. SP is predominantly released by neurons and exerts its biological and immunological effects through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-inflammatory effects through autocrine or paracrine action on the immune cells in various ocular surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface diseases and several new approaches developed to counter the immune-mediated effects of SP either through modulating its production or blocking its target receptor.
Collapse
|
7
|
Lasagni Vitar RM, Rama P, Ferrari G. The two-faced effects of nerves and neuropeptides in corneal diseases. Prog Retin Eye Res 2021; 86:100974. [PMID: 34098111 DOI: 10.1016/j.preteyeres.2021.100974] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Corneal nerves are instrumental to maintain cornea integrity through regulation of key physiological functions such as tear secretion, blink reflex, and neuropeptide turnover. Corneal nerve injury/stimulation can follow many insults including mechanical/chemical trauma, infections and surgeries. Nerve disruption initiates a process named neurogenic inflammation which leads to edema, pain, and recruitment and activation of leukocytes. Interestingly, leukocyte influx in the cornea can further damage nerves by releasing inflammatory mediators-including neuropeptides. The clinical outcome of neuroinflammation can be beneficial or detrimental to corneal integrity. On one side, it ensures prompt wound healing and prevents infections. On the other, prolonged and/or deranged neuroinflammation can permanently disrupt corneal integrity and impair vision. The cornea is an ideal site to study peripheral neuroinflammation and neurogenic inflammation since it receives the highest density of sensory nerves of the entire body. We will review the corneal nerve anatomy and neurochemistry, discuss the beneficial and detrimental effects of neurogenic inflammation in corneal wound healing, inflammatory processes, and pain. We will also examine the emerging remote impact of corneal nerve disruption on the trigeminal ganglion and the brain, highlighting the key role of neuropeptide Substance P. Finally, we will discuss the clinical relevance of such neuroinflammatory network in the context of severe and highly prevalent ocular diseases, including potential treatments.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 2020; 65:513-529. [PMID: 32092364 PMCID: PMC8116932 DOI: 10.1016/j.survophthal.2020.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Ocular complications from diabetes mellitus are common. Diabetic keratopathy, the most frequent clinical condition affecting the human cornea, is a potentially sight-threatening condition caused mostly by epithelial disturbances that are of clinical and research attention because of their severity. Diabetic keratopathy exhibits several clinical manifestations, including persistent corneal epithelial erosion, superficial punctate keratopathy, delayed epithelial regeneration, and decreased corneal sensitivity, that may lead to compromised visual acuity or permanent vision loss. The limited amount of clinical studies makes it difficult to fully understand the pathobiology of diabetic keratopathy. Effective therapeutic approaches are elusive. We summarize the clinical manifestations of diabetic keratopathy and discuss available treatments and up-to-date research studies in an attempt to provide a thorough overview of the disorder.
Collapse
Affiliation(s)
- S Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - A Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Nicholas
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - D Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
9
|
Murugesan V, Dwivedi R, Saini M, Gupta V, Dada T, Vivekanandhan S. Tear neuromediators in eyes on chronic topical antiglaucoma therapy with and without BAK preservatives. Br J Ophthalmol 2019; 105:141-148. [PMID: 31383648 DOI: 10.1136/bjophthalmol-2019-314234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate tear neuropeptides (NPs) (vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF)) in chronic ocular topical hypotensive therapy with and without benzalkonium chloride (BAK) preservative. METHODS A comparative, open label, cross-sectional study of patients using antiglaucoma medications for >6 months with BAK (group I), without BAK (group II) and controls was done. Tear NPs (ELISA), ocular surface evaluation tests (tear breakup time (TBUT), Schirmer's test, corneal and conjunctival staining score) and confocal central corneal subbasal nerve fibre layer (SBNFL) imaging was done. RESULTS Of 153 eyes evaluated, group 1 (82 eyes (41 patients; mean age 48±14.5 years)) and group 2 (71 eyes (36 patients; mean age 43.11±15 years)) were on therapy for a mean duration of 10.05±2.0 and 9.67±2.3 months, respectively. Tear analysis showed elevated SP and NGF (p<0.01); decreased CGRP (p=0.03), VIP and NPY (p<0.01) compared with controls (n=30, mean age 29.33±5.7 years). Tear NP levels (SP (p=0.1), NGF (p=0.33), CGRP (p=1), VIP (p=0.87), NPY (p=0.83)) and SBNFL (p=0.09) were comparable in both groups. There was no correlation seen between tear NP levels and clinical tests and SBNFL. CONCLUSION Our study analysis points towards altered tear NP levels in eyes on chronic topical hypotensive therapy in comparison with controls with no significant difference in tear NP levels and central corneal SBNFL density between the BAK preservative and BAK-free antiglaucoma therapy.
Collapse
Affiliation(s)
- Vanathi Murugesan
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Roopa Dwivedi
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Manu Saini
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Viney Gupta
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Tanuj Dada
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - S Vivekanandhan
- Neurobiochemistry Lab, C N Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
An Update on Corneal Biomechanics and Architecture in Diabetes. J Ophthalmol 2019; 2019:7645352. [PMID: 31275634 PMCID: PMC6589322 DOI: 10.1155/2019/7645352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
In the last decade, we have witnessed substantial progress in our understanding of corneal biomechanics and architecture. It is well known that diabetes is a systemic metabolic disease that causes chronic progressive damage in the main organs of the human body, including the eyeball. Although the main and most widely recognized ocular effect of diabetes is on the retina, the structure of the cornea (the outermost and transparent tissue of the eye) can also be affected by the poor glycemic control characterizing diabetes. The different corneal structures (epithelium, stroma, and endothelium) are affected by specific complications of diabetes. The development of new noninvasive diagnostic technologies has provided a better understanding of corneal tissue modifications. The objective of this review is to describe the advances in the knowledge of the corneal alterations that diabetes can induce.
Collapse
|
11
|
Abstract
Diabetes mellitus (DM) has been emerging as one of the most serious health problems worldwide. Ocular complications of DM are currently one of the major causes of blindness in developed countries, among which diabetic retinopathy is relatively well studied and understood. However, although ocular surface complications of DM are common, diabetic complications of anterior segment of the eye, such as, cornea, conjunctiva, and lacrimal glands, are often overlooked. DM is associated with progressive damage to corneal nerves and epithelial cells, which increases the risk of anterior segment disorders including dry eye disease, corneal erosion, persistent epithelial defects, and even sight-threatening corneal ulcer. In this review, the authors will discuss the association of DM with disorders of anterior segment of the eye. Studies indicating the value of corneal nerve assessment as a sensitive, noninvasive, and repeatable biomarker for diabetic neuropathy will also be introduced. In addition, treatment modalities of anterior segment disorders associated with DM is discussed. The studies introduced in this review suggest that early and periodic screening of the anterior segment of the eye, as well as the retina, is important for the optimal treatment of DM.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea,
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
12
|
Han SB, Liu YC, Mohamed-Noriega K, Mehta JS. Application of Novel Drugs for Corneal Cell Regeneration. J Ophthalmol 2018; 2018:1215868. [PMID: 29854423 PMCID: PMC5954904 DOI: 10.1155/2018/1215868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
Corneal transplantation has been the only treatment method for corneal blindness, which is the major cause of reversible blindness. However, despite the advancement of surgical techniques for corneal transplantation, demand for the surgery can never be met due to a global shortage of donor cornea. The development of bioengineering and pharmaceutical technology provided us with novel drugs and biomaterials that can be used for innovative treatment methods for corneal diseases. In this review, the authors will discuss the efficacy and safety of pharmacologic therapies, such as Rho-kinase (ROCK) inhibitors, blood-derived products, growth factors, and regenerating agent on corneal cell regeneration. The promising results of these agents suggest that these can be viable options for corneal reconstruction and visual rehabilitation.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Yu-Chi Liu
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karim Mohamed-Noriega
- Department of Ophthalmology, Faculty of Medicine, University Hospital “Jose E. Gonzalez”, Autonomous University of Nuevo Leon, Monterrey, NL, Mexico
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Wang B, Yang S, Zhai HL, Zhang YY, Cui CX, Wang JY, Xie LX. A comparative study of risk factors for corneal infection in diabetic and non-diabetic patients. Int J Ophthalmol 2018; 11:43-47. [PMID: 29375989 PMCID: PMC5767656 DOI: 10.18240/ijo.2018.01.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
AIM To compare the clinical characteristics of infectious keratopathy in type 2 diabetes mellitus (T2DM) and non-diabetes mellitus (NDM) and to investigate risk factors for infectious keratopathy in T2DM patients. METHODS Totally 230 patients with T2DM and 168 with NDM diagnosed as infectious keratopathy were hospitalized at Qingdao Eye Hospital from 2001 to 2015. Data including sex, age, occupation, season, smoking and alcohol consumption habits, duration between onset and treatments, duration of hospitalization were collected. Initially identified indicators were analyzed with a multivariate logistic regression. Glycosylated hemoglobin A1c (HbA1c) in patients with T2DM was analyzed. The infectious keratopathies in the two groups were categorized and compared. RESULTS The diabetic group consisted of 146 (63.5%) males and 84 (36.5%) females. The NDM group consisted of 111 (66.1%) males and 57 (33.9%) females. There was no signigicantly difference in sex distribution between the two groups (P>0.05). There were significant differences in age, occupation of patients, season of the onset of diseases, duration between onset and treatment, and durations of hospitalization between the two groups (P<0.05). In most of the patients in the diabetic group, the duration between onset and treatment was ≤3mo, and most was ≥3mo in the NDM group. Multivariate logistic regression analysis revealed that age and season were related to the development of corneal infection in the T2DM group (OR=1.709, 1.706). In the T2DM group, HbA1c was 9.09%±2.12%. There were statistically significant differences in the incidences of bacterial keratitis and herpes simplex keratitis in the two groups (P<0.05), but no significant statistical difference was found between fungal keratitis and amoebic keratitis (P>0.05). CONCLUSION Advanced age and the summer and winter seasons are identified as risk factors for infectious keratopathy in T2DM patients, and T2DM patients are more prone to bacterial keratitis.
Collapse
Affiliation(s)
- Bin Wang
- Shandong University, Jinan 250100, Shandong Province, China
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Shuo Yang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Hua-Lei Zhai
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Yang-Yang Zhang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Chun-Xia Cui
- Comprehensive Center for Disease Control and Prevention of Inner Mongolia, Hohhot 010031, Inner Mongolia Autonomous Region, China
| | - Jun-Yi Wang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Li-Xin Xie
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| |
Collapse
|
14
|
The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocul Surf 2018; 16:45-57. [PMID: 29113918 DOI: 10.1016/j.jtos.2017.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
15
|
Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3242649. [PMID: 29238714 PMCID: PMC5697388 DOI: 10.1155/2017/3242649] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Recently, in vivo confocal microscopy is used to examine the human corneal nerve fibers morphology. Corneal nerve fiber architecture and its role are studied in healthy and pathological conditions. Corneal nerves of rats were studied by nonspecific acetylcholinesterase (NsAchE) staining. NsAchE-positive subepithelial (stromal) nerve fiber has been found to be insensitive to capsaicin. Besides, NsAchE-negative but capsaicin-sensitive subbasal nerve (leash) fibers formed thick mesh-like structure showing close interconnections and exhibit both isolectin B4- and transient receptor potential vanilloid channel 1- (TRPV1-) positive. TRPV1, TRPV3, TRPA (ankyrin) 1, and TRPM (melastatin) 8 are expressed in corneal nerve fibers. Besides the corneal nerve fibers, the expressions of TRPV (1, 3, and 4), TRPC (canonical) 4, and TRPM8 are demonstrated in the corneal epithelial cell membrane. The realization of the importance of TRP channels acting as polymodal sensors of environmental stresses has identified potential drug targets for corneal disease. The pathophysiological conditions of corneal diseases are associated with disruption of normal tissue innervation, especially capsaicin-sensitive small sensory nerve fibers. The relationships between subbasal corneal nerve fiber morphology and neurotrophic keratopathy in corneal diseases are well studied. The recommended treatment for neurotrophic keratopathy is administration of preservative free eye drops.
Collapse
|
16
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
|
18
|
Abstract
The cornea focuses external light onto the retina, a function for which it must be transparent and possess a smooth surface. Homeostasis of the corneal epithelium is regulated by various humoral factors present in the tear fluid and by neural factors derived from the trigeminal nerve. Neurotrophic keratopathy (NK) is characterized by corneal epithelial disorders that result from impairment of trigeminal nerve function and a consequent deficiency of neural factors. The ideal mode of treatment for this condition is the regeneration of damaged trigeminal nerve fibers, but such therapy is not currently available. In this review, we describe established and potential new treatments of NK. Our research demonstrated that a combination of the neurotransmitter substance P and insulin-like growth factor 1 (IGF-1) has a synergistic stimulatory effect on corneal epithelial migration in vitro and on corneal wound closure in vivo. Furthermore, we identified the minimal amino acid sequences of substance P and IGF-1 required for this synergistic action based on the assumption that the clinical application of peptides corresponding to these sequences would have fewer side effects compared with the full-length molecules. Combination of the substance P-derived peptide FGLM-amide and the IGF-1-derived peptide SSSR promoted corneal epithelial wound healing in patients with NK.Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01756456.
Collapse
|
19
|
Yoshida S, Sugahara K, Hashimoto M, Hirose Y, Shimogori H, Yamashita H. The minimum peptides of IGF-1 and substance P protect vestibular hair cells against neomycin ototoxicity. Acta Otolaryngol 2015; 135:411-5. [PMID: 25739461 DOI: 10.3109/00016489.2014.979438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONCLUSIONS Our data indicate that SSSR and SSSR + FGLM-NH2 protect sensory hair cells against neomycin-induced death in the vestibular epithelium. In addition, the results show that SSSR and FGLM-NH2 can be used as protective molecules against aminoglycoside ototoxicity. OBJECTIVES This study investigated the role of the peptides SSSR and SSSR + FGLM-NH2 in mammalian vestibular hair cell death induced by aminoglycoside. METHODS Cultured utricles from mature CBA/N mice were used in this study. The cultured utricles were assigned to five groups (control group, neomycin group, neomycin + SSSR group, neomycin + FGLM-NH2 group, and neomycin + SSSR + FGLM-NH2 group). Aat 24 h after exposure to neomycin, the hair cells were labeled immunohistochemically, and the rate of survival of vestibular hair cells was evaluated using a fluorescence microscope. RESULTS The rate of survival of vestibular hair cells was significantly higher in the neomycin + SSSR and neomycin + SSSR + FGLM-NH2 groups than in the neomycin group. The results suggest that SSSR could protect hair cells against aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine , Ube, Yamaguchi , Japan
| | | | | | | | | | | |
Collapse
|
20
|
Nishida T, Inui M, Nomizu M. Peptide therapies for ocular surface disturbances based on fibronectin-integrin interactions. Prog Retin Eye Res 2015; 47:38-63. [PMID: 25645519 DOI: 10.1016/j.preteyeres.2015.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 11/24/2022]
Abstract
The condition of the corneal epithelium is a critical determinant of corneal transparency and clear vision. The corneal epithelium serves as a barrier to protect the eye from external insults, with its smooth surface being essential for its optical properties. Disorders of the corneal epithelium include superficial punctate keratopathy, corneal erosion, and persistent epithelial defects (PEDs). The prompt resolution of these disorders is important for minimization of further damage to the cornea. Currently available treatment modalities for corneal epithelial disorders are based on protection of the ocular surface in order to allow natural healing to proceed. PEDs remain among the most difficult corneal conditions to treat, however. On the basis of characterization of the pathobiology of PEDs at the cell and molecular biological levels, we have strived to develop new modes of treatment for these defects. These treatments rely on two key concepts: provision of a substrate, such as the adhesive glycoprotein fibronectin, for the attachment and migration of corneal epithelial cells, and activation of these cells by biological agents such as the combination of substance P and insulin-like growth factor-1 (IGF-1). Central to both approaches is the role of the fibronectin-integrin system in corneal epithelial wound healing. Determination of the minimum amino acid sequences required for the promotion of corneal epithelial wound closure by fibronectin (PHSRN) and by substance P (FGLM-amide) plus IGF-1 (SSSR) has led to the development of peptide eyedrops for the treatment of PEDs that are free of adverse effects of the parent molecules.
Collapse
Affiliation(s)
- Teruo Nishida
- Ohshima Hospital of Ophthalmology, 11-8 Kamigofuku, Hakata-ku, Fukuoka 812-0036, Japan; Yamaguchi University, 1-1-1 Minami-kogushi, Ube City, Yamaguchi 755-8505, Japan.
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Motoyoshi Nomizu
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
21
|
Cortina MS, He J, Russ T, Bazan NG, Bazan HEP. Neuroprotectin D1 restores corneal nerve integrity and function after damage from experimental surgery. Invest Ophthalmol Vis Sci 2013; 54:4109-16. [PMID: 23702780 DOI: 10.1167/iovs.13-12075] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate if topical treatment of neuroprotectin D1 (NPD1) increases regeneration of functional nerves after lamellar keratectomy. METHODS An 8-mm stromal dissection was performed in the left eye of each rabbit. The rabbits were treated with NPD1, pigment epithelial-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) or vehicle for 6 weeks, and corneas were obtained at 8 weeks. After fixation, corneal wholemounts were stained with mouse monoclonal anti-βIII-tubulin antibody and double stained with chicken anti-calcitonin gene-related peptide (CGRP) antibody. Corneal sensitivity and tear secretion were measured using the Cochet-Bonnet esthesiometer and the Schirmer's test, respectively. Additional rabbits were treated with NPD1, PEDF+DHA, or vehicle, and corneal sections were stained with a rat monoclonal anti-neutrophil antibody. Cultures of trigeminal ganglia from 5-day-old mice were treated with NPD1, PEDF+DHA, lipoxin A4 (LXA4), 12- or 15-hydroxyeicosatetraenoic acid (12[S] or 15[S]-HETE), and nerve growth factor (NGF) as positive control. RESULTS NPD1 increased subepithelial corneal nerve area three times compared with vehicle-treated rabbits. The effect was similar to PEDF+DHA-treated animals. There was recovery of CGRP-positive neurons and an increase in corneal sensitivity and tear secretion in NPD1-treated animals. NPD1 decreased neutrophil infiltration after 2 and 4 days of treatment. In the in vitro cultures, NPD1 and PEDF+DHA induced a 3-fold increase in neurite outgrowth compared with cultures without supplementation. Treatments with LXA4, 12(S)-, and 15(S)- HETE did not stimulate neurite outgrowth. CONCLUSIONS NPD1 has anti-inflammatory and nerve regenerative properties. This study demonstrates that NPD1 may offer an effective treatment for neurotrophic corneas.
Collapse
Affiliation(s)
- Maria Soledad Cortina
- Department of Ophthalmology, University of Illinois Medical Center, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
22
|
Toyota H, Shimogori H, Sugahara K, Yamashita H. A novel treatment for vestibular disorder with FGLM-NH2 plus SSSR. Neurosci Lett 2012; 526:128-32. [DOI: 10.1016/j.neulet.2012.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 11/26/2022]
|
23
|
Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials 2011; 33:494-503. [PMID: 22014943 DOI: 10.1016/j.biomaterials.2011.09.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/27/2011] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) has been shown to induce potent mitogenic responses in various cell types, yet its sustained local delivery is still an underdeveloped domain in the clinic. We report here an engineered IGF-1 that facilitates extended local delivery to a site through its immobilization capacity within fibrin. Through recombinant fusion with a substrate sequence tag derived from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, α(2)PI(1-8)-IGF-1, was covalently incorporated into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Bioactivity of the variant was confirmed to be equivalent to wild type (WT) IGF-1 via IGF-1 receptor phosphorylation and cell proliferation studies in urinary tract-derived cells in 2-D. Assessment of functional retention within 3-D fibrin matrices demonstrated that incorporation of α(2)PI(1-8)-IGF-1 induced a 1.3- and 1.5-fold more robust proliferative response in smooth muscle cells (SMCs) than WT IGF-1 and negative control matrices, respectively, when release was not contained. Sustained α(2)PI(1-8)-IGF-1 availability at bladder lesion sites in vivo evoked a considerable increase in SMC proliferation and a favorable host tissue response after 28 days in rats. We conclude that the sustained local IGF-1 availability from fibrin provided by our variant protein enhances smooth muscle regeneration better than the WT form of the protein.
Collapse
|
24
|
Abdelkader H, Patel DV, McGhee CN, Alany RG. New therapeutic approaches in the treatment of diabetic keratopathy: a review. Clin Exp Ophthalmol 2011; 39:259-70. [PMID: 20973888 DOI: 10.1111/j.1442-9071.2010.02435.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cornea is densely innervated, and the integrity of these nerve fibres is critical in maintaining the refractive and protective functions of the cornea. Many ocular and systemic diseases can adversely affect corneal sensory nerves and consequently impair their function, with vision loss being the inevitable consequence of severe corneal neurotrophic ulceration. However, current standard treatments regimens are often ineffective. Over the past three decades, the role of growth factors in maintaining the normal structure and function of the cornea, and in corneal epithelial healing, has become increasingly evident. Many preclinical and clinical trials have shown that growth factors and cytokines can significantly enhance epithelialization (epithelial proliferation and migration) and consequently accelerate wound healing. More recently, local/topical administration of insulin, naltrexone (opioid antagonist) and nicergoline (ergoline derivatives) were found to improve, and significantly increase, the corneal wound healing rate. This report reviews the major attributes of these growth factors and therapeutic agents that may be used in ameliorating impaired corneal wound healing, and presents a perspective on the potential clinical use of these agents as a new generation of ophthalmic pharmaceuticals for the treatment of diabetic keratopathy.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Drug Delivery Research Unit (2DRU), School of Pharmacy Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, United Kingdom
| | | | | | | |
Collapse
|
25
|
|
26
|
Different experimental approaches in modelling cataractogenesis: An overview of selenite-induced nuclear cataract in rats. Interdiscip Toxicol 2010; 3:3-14. [PMID: 21217865 PMCID: PMC2984119 DOI: 10.2478/v10102-010-0005-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 11/24/2022] Open
Abstract
Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed.
Collapse
|